Chapter 3: The Reinforcement Learning Problem
(Markov Decision Processes, or MDPs)

Objectives of this chapter:

3 present Markov decision processes—an idealized form of
the Al problem for which we have precise theoretical

results

1 introduce key components of the mathematics: value
functions and Bellman equations
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The Agent-Environment Interface
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state reward action
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Agent and environment interact at discrete time steps: t=0,1,2,3,...

Agent observes state at stepf: S, €8
produces action atstep ¢ : A, € A(S,)
gets resulting reward: R, € R C R

and resulting next state: S, , € 8T

t+1
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Markov Decision Processes

1 If a reinforcement learning task has the Markov Property, it is
basically a Markov Decision Process (MDP).

1 If state and action sets are finite, it is a finite MDP.
1 To define a finite MDP, you need to give:
= state and action sets

= one-step “dynamics”

p(s',rls,a) = Pr{Sy1=5 Ryy1 =1 Si=s, Ay =a}
= there 1s also:
p(s'|s,a) = Pr{Si1=5"| St=s,Ay=a} = Zp(s’,r]s,a)

reR

r(s,a) = E[Ry11 | Si=s, Ar=a] = S:TS:p(Slaﬂsva)

recR s'es
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The Agent Learns a Policy

Policy atstep ¢t = =,
a mapping from states to action probabilities

7 .(als)= probability that A =a when §, = s

Special case - deterministic policies:

77 (s) = the action taken with prob=1 when §;=s

1 Reinforcement learning methods specify how the agent
changes its policy as a result of experience.

1 Roughly, the agent’s goal is to get as much reward as it can
over the long run.
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The Markov Property

1 By “the state” at step ¢, the book means whatever information is
available to the agent at step ¢ about its environment.

1 The state can include immediate “sensations,” highly processed
sensations, and structures built up over time from sequences of
sensations.

1 Ideally, a state should summarize past sensations so as to retain
all “essential” information, 1.e., it should have the Markov
Property:

Pr{Rt—l—l =T, St—i—l — S/ ‘ SO; A07 Rla RIS St—17 At—17 Rt7 St7At} =

p(S/,T"S,a) - Pr{RH—l =T, St-l-l - S/ ‘ StaAt}

Ij for all S, € 8+,T c R, and all hiStOrleS SO) A07 Rl) s St—h At—17 Rt7 Sta At°
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The Meaning of Life
(goals, rewards, and returns)
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Rewards and returns

The objective in RL is to maximize long-term future reward

That is, to choose A; so as to maximize Ryi1, Riyo, Rii3, ...

But what exactly should be maximized?

The discounted return at time t:

the discount rate

Gy =Riy1 +YRip2 + V' Rz + 7V Reya + -+ v €10,1)
Y Reward sequence Return

0.5(or any) 1000...

0.5 002000...

0.9 002000...

0.5 -12632000...
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4 value functions

state action

______________________ values | values
prediction Ur dr
control (V) d «

* All theoretical objects, mathematical ideals (expected values)

e Distinct from their estimates:

Vi(s)  Qils,a)



Values are expected returns

* The value of a state, given a policy:
ve(8) =E{G; | St = s, At.oo ~7} Ve 18 — RN

The value of a state-action pair, given a policy:
QW(S7CL):E{G75‘St:stt:afaAt—i—l:ooNW} QTF:SX‘A%%

The optimal value of a state:

V4 (8) = max v, (s) Ve : 8 = R

The optimal value of a state-action pair:
¢« (s,a) = max ¢, (s, a) ge : S XA — R

Optimal policy: m, is an optimal policy if and only if
m«(als) > 0 only where g, (s,a) = MAxX g (s,b) Vsed

* in other words, 7« is optimal iff it is greedy wrt g«



R. S. Sutton an

optimal policy example
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Gridworld

1 Actions: north, south, east, west; deterministic.

1 If would take agent off the grid: no move but reward = —1

1 Other actions produce reward = 0, except actions that move
agent out of special states A and B as shown.

#0

<_I_.

Actions

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

3.3
1.5

8.8
3.0

44/53|15
23/19/05

0.1

0.7

0.7/04/-04

-1.0

-0.4

-0.4-0.6-1.2

-1.9

-1.3

-1.2-1.4/-2.0

(b)

State-value function
for equiprobable
random policy;
vy=0.9
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Golf

1 State is ball location
1 Reward of —1 for each stroke

until the ball is in the hole Pure
1 Value of a state?
1 Actions: Q
= putt (use putter) ! By -4
= driver (use driver) -6

[ putt succeeds anywhere on
the green

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



Optimal Value Functions

1 For finite MDPs, policies can be partially ordered:
mzma ifandonlyif v_(s)zv_(s) forallsES

1 There are always one or more policies that are better than or
equal to all the others. These are the optimal policies. We
denote them all ...

1 Optimal policies share the same optimal state-value function:
v.(s)=maxv_(s) forall s€ES

1 Optimal policies also share the same optimal action-value
function:

g.(s,a)=maxgq_(s,a) forall s€Sandac A

This 1s the expected return for taking action a in state s
and thereafter following an optimal policy.

14
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Why Optimal State-Value Functions are Useful

Any policy that is greedy with respect to v, i1s an optimal policy.

Therefore, given y,, one-step-ahead search produces the
long-term optimal actions.

E.g., back to the gridworld:

Ad |B\ 22.024.4/22.019.4/17.5 — <—I—> «— <—I—> «—

+5 19.822.0/19.817.8(16.0 [ O PR R

0| | B! 17.8/19.8(17.8/16.0| 14.4 L e P O

16.017.8/16.0/14.4{13.0 LR o O

A"f 14.4/16.0(14.413.0/11.7 [EN I P PR P |
a) gridworld b) Vi c) TCs

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Optimal Value Function for Golf

1 We can hit the ball farther with driver than with putter,
but with less accuracy

[ gq. (s,driver) gives the value or using driver first, then
using whichever actions are best

q.(s,driver)

16

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction



What About Optimal Action-Value Functions?

Given g¢., the agent does not even
have to do a one-step-ahead search:

7T, (s) = argmaxq.(s,a)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Value Functions
X 4

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Bellman Equations
X 4

R. S. Sutton and A Barto: Reinforcement Learning: An Introduction
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Bellman Equation for a Policy n

The basic 1dea:
Gt = Rt+1 +Y Rt+2 +Y 2I€t+3 TV 3Rt+4+
= Rt+1 + )/ (Rt+2 + )/ Rt+3 + y 2I€t+4+“.)

= Rt+1 + y Gt+1

So: v, (s)=E, {Gt 5, = S}
-E. {Rt+1 + 7V, (S,.1)| S, = S}

Or, without the expectation operator:

U (8) = Z 7(als) Zp(s’, rls,a) [r + vvﬁ(s’)}

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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More on the Bellman Equation

Vr(8) = Z m(als) Zp(s’, r|s,a) [T + vvﬁ(s’)}

This 1s a set of equations (in fact, linear), one for each state.
The value function for m 1s its unique solution.

Backup diagrams:

S S,

a

forv_

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Gridworld

1 Actions: north, south, east, west; deterministic.
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Bellman Optimality Equation for v.

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

vi(s) = maxgr,(s,a)
= mC?XE[RtH + Y0 (St41) | St=s5, Ay =al
= maXZp(S’,ﬂs, a) |1+ yv.(s')].

The relevant backup diagram: a

V. 1s the unique solution of this system of nonlinear equations.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Bellman Optimality Equation for g.

¢:(s,a) = E [Rt+1 T Vm?}XQ*(StH; a’) | S =8, A = a]

= Zp(s’, rls, a) [fr + ymax g, (s, a’)} .

s'r

S,d
The relevant backup diagram: {

max

d- 1s the unique solution of this system of nonlinear equations.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Why Optimal State-Value Functions are Useful

Any policy that is greedy with respect to v, i1s an optimal policy.

Therefore, given y,, one-step-ahead search produces the
long-term optimal actions.

E.g., back to the gridworld:
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Solving the Bellman Optimality Equation

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

1 Finding an optimal policy by solving the Bellman
Optimality Equation requires the following:

= accurate knowledge of environment dynamics;
= we have enough space and time to do the computation;
= the Markov Property.

1 How much space and time do we need?

= polynomial in number of states (via dynamic
programming methods; Chapter 4),

= BUT, number of states is often huge (e.g., backgammon
has about 1020 states).

1 We usually have to settle for approximations.

1 Many RL methods can be understood as approximately
solving the Bellman Optimality Equation.

26



Summary

1 Agent-environment interaction [ Value functions

= States = State-value function for a policy
= Actions = Action-value function for a policy
= Rewards = Optimal state-value function
1 Policy: stochastic rule for = Optimal action-value function
selecting actions [ Optimal value functions

[ Return: the function of future Optimal policies
rewards agent tries to maximize 7 Bellman Equations

1 Episodic and continuing tasks 71 The need for approximation

J

Markov Property
[ Markov Decision Process
= Transition probabilities

= Expected rewards

27
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