
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Chapter 3: The Reinforcement Learning Problem  
(Markov Decision Processes, or MDPs)

❐ present Markov decision processes—an idealized form of 
the AI problem for which we have precise theoretical 
results 

❐ introduce key components of the mathematics: value 
functions and Bellman equations

Objectives of this chapter: 



Agent and environment interact at discrete time steps:  t = 0,1, 2,K
     Agent observes state at step t:    St ∈
     produces action at step t :   At ∈ (St )
     gets resulting reward:    Rt+1 ∈

     and resulting next state:  St+1 ∈
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The Agent-Environment InterfaceSUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
S

t

state at t
A

t

action at t
R

t

reward at t, dependent, like S

t

, on A

t�1

and S

t�1

G

t

return (cumulative discounted reward) following t

G

(n)

t

n-step return (Section 7.1)
G

�

t

�-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡

⇡(a|s) probability of taking action a in state s under stochastic policy ⇡

p(s0|s, a) probability of transition from state s to state s

0 under action a

r(s, a, s0) expected immediate reward on transition from s to s

0 under action a

v

⇡

(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q

⇡

(s, a) value of taking action a in state s under policy ⇡

q⇤(s, a) value of taking action a in state s under the optimal policy
V

t

estimate (a random variable) of v
⇡

or v⇤
Q

t

estimate (a random variable) of q
⇡

or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,w

t

vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s

w>x inner product of vectors, w>x =
P

i

w

i

x

i

; e.g., v̂(s,w) = w>x(s)
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The other random variables are a function of this sequence. The transitional

target rt+1

is a function of st, at, and st+1

. The termination condition �t,

terminal target zt, and prediction yt, are functions of st alone.
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44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R, and
finds itself in a new state, St+1.3 Figure 3.1 diagrams the agent–environment
interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and
Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).

3We use Rt+1 instead of Rt to denote the immediate reward due to the action taken
at time t because it emphasizes that the next reward and the next state, St+1, are jointly
determined.

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R ⇢
R, where R is the set of possible rewards, and finds itself in a new state, St+1.3

Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and
Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).

3We use Rt+1 instead of Rt to denote the immediate reward due to the action taken
at time t because it emphasizes that the next reward and the next state, St+1, are jointly
determined.

44 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 3.1: The agent–environment interaction in reinforcement learning.

gives rise to rewards, special numerical values that the agent tries to maximize
over time. A complete specification of an environment defines a task , one
instance of the reinforcement learning problem.

More specifically, the agent and environment interact at each of a sequence
of discrete time steps, t = 0, 1, 2, 3, . . ..2 At each time step t, the agent receives
some representation of the environment’s state, St 2 S, where S is the set of
possible states, and on that basis selects an action, At 2 A(St), where A(St)
is the set of actions available in state St. One time step later, in part as a
consequence of its action, the agent receives a numerical reward , Rt+1 2 R ⇢
R, where R is the set of possible rewards, and finds itself in a new state, St+1.3

Figure 3.1 diagrams the agent–environment interaction.

At each time step, the agent implements a mapping from states to prob-
abilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted ⇡t, where ⇡t(a|s) is the probability that At = a if St = s.
Reinforcement learning methods specify how the agent changes its policy as
a result of its experience. The agent’s goal, roughly speaking, is to maximize
the total amount of reward it receives over the long run.

This framework is abstract and flexible and can be applied to many di↵erent
problems in many di↵erent ways. For example, the time steps need not refer
to fixed intervals of real time; they can refer to arbitrary successive stages of
decision-making and acting. The actions can be low-level controls, such as the
voltages applied to the motors of a robot arm, or high-level decisions, such
as whether or not to have lunch or to go to graduate school. Similarly, the
states can take a wide variety of forms. They can be completely determined by

wider audience.
2We restrict attention to discrete time to keep things as simple as possible, even though

many of the ideas can be extended to the continuous-time case (e.g., see Bertsekas and
Tsitsiklis, 1996; Werbos, 1992; Doya, 1996).

3We use Rt+1 instead of Rt to denote the immediate reward due to the action taken
at time t because it emphasizes that the next reward and the next state, St+1, are jointly
determined.



R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 3

Markov Decision Processes

❐ If a reinforcement learning task has the Markov Property, it is 
basically a Markov Decision Process (MDP).

❐ If state and action sets are finite, it is a finite MDP. 
❐ To define a finite MDP, you need to give:

! state and action sets
! one-step “dynamics” 

! there is also:
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A particular finite MDP is defined by its state and action sets and by the
one-step dynamics of the environment. Given any state and action s and a,
the probability of each possible pair of next state and reward, s0, r, is denoted

p(s0, r|s, a) = Pr{St+1 =s0, Rt+1 = r | St =s, At =a}. (3.6)

These quantities completely specify the dynamics of a finite MDP. Most of the
theory we present in the rest of this book implicitly assumes the environment
is a finite MDP.

Given the dynamics as specified by (3.6), one can compute anything else
one might want to know about the environment, such as the expected rewards
for state–action pairs,

r(s, a) = E[Rt+1 | St =s, At =a] =
X

r2R

r
X

s02S

p(s0, r|s, a), (3.7)

the state-transition probabilities,

p(s0|s, a) = Pr{St+1 =s0 | St =s, At =a} =
X

r2R

p(s0, r|s, a), (3.8)

and the expected rewards for state–action–next-state triples,

r(s, a, s0) = E[Rt+1 | St =s, At =a, St+1 = s0] =

P
r2R rp(s0, r|s, a)

p(s0|s, a)
. (3.9)

In the first edition of this book, the dynamics were expressed exclusively in
terms of the latter two quantities, which were denote Pa

ss0 and Ra
ss0 respectively.

One weakness of that notation is that it still did not fully characterize the
dynamics of the rewards, giving only their expectations. Another weakness is
the excess of subscripts and superscripts. In this edition we will predominantly
use the explicit notation of (3.6), while sometimes referring directly to the
transition probabilities (3.8).

Example 3.7: Recycling Robot MDP The recycling robot (Example
3.3) can be turned into a simple example of an MDP by simplifying it and
providing some more details. (Our aim is to produce a simple example, not
a particularly realistic one.) Recall that the agent makes a decision at times
determined by external events (or by other parts of the robot’s control system).
At each such time the robot decides whether it should (1) actively search for
a can, (2) remain stationary and wait for someone to bring it a can, or (3) go
back to home base to recharge its battery. Suppose the environment works
as follows. The best way to find cans is to actively search for them, but this
runs down the robot’s battery, whereas waiting does not. Whenever the robot
is searching, the possibility exists that its battery will become depleted. In
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3.6 Markov Decision Processes

A reinforcement learning task that satisfies the Markov property is called a Markov
decision process, or MDP. If the state and action spaces are finite, then it is called a
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to the theory of reinforcement learning. We treat them extensively throughout this
book; they are all you need to understand 90% of modern reinforcement learning.
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Policy at step t = π t =

               a mapping from states to action probabilities
               π t (a | s) =  probability that At = a when St = s

The Agent Learns a Policy

❐ Reinforcement learning methods specify how the agent 
changes its policy as a result of experience.

❐ Roughly, the agent’s goal is to get as much reward as it can 
over the long run.

Special case - deterministic policies:
  πt (s) = the action taken with prob=1 when St = s
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The Markov Property

❐ By “the state” at step t, the book means whatever information is 
available to the agent at step t about its environment.

❐ The state can include immediate “sensations,” highly processed 
sensations, and structures built up over time from sequences of 
sensations. 

❐ Ideally, a state should summarize past sensations so as to retain 
all “essential” information, i.e., it should have the Markov 
Property:

❐ for all                      and all histories  

⇤3.5. THE MARKOV PROPERTY 55

defined only by specifying the complete probability distribution:

Pr{Rt+1 = r, St+1 = s0 | S0, A0, R1, . . . , St�1, At�1, Rt, St, At}, (3.4)

for all r, s0, and all possible values of the past events: S0, A0, R1, ..., St�1,
At�1, Rt, St, At. If the state signal has the Markov property, on the other
hand, then the environment’s response at t + 1 depends only on the state and
action representations at t, in which case the environment’s dynamics can be
defined by specifying only

p(s0, r|s, a) = Pr{Rt+1 = r, St+1 = s0 | St, At}, (3.5)

for all r, s0, St, and At. In other words, a state signal has the Markov property,
and is a Markov state, if and only if (3.5) is equal to (3.4) for all s0, r, and
histories, S0, A0, R1, ..., St�1, At�1, Rt, St, At. In this case, the environment
and task as a whole are also said to have the Markov property.

If an environment has the Markov property, then its one-step dynamics
(3.5) enable us to predict the next state and expected next reward given the
current state and action. One can show that, by iterating this equation, one
can predict all future states and expected rewards from knowledge only of the
current state as well as would be possible given the complete history up to the
current time. It also follows that Markov states provide the best possible basis
for choosing actions. That is, the best policy for choosing actions as a function
of a Markov state is just as good as the best policy for choosing actions as a
function of complete histories.

Even when the state signal is non-Markov, it is still appropriate to think
of the state in reinforcement learning as an approximation to a Markov state.
In particular, we always want the state to be a good basis for predicting
future rewards and for selecting actions. In cases in which a model of the
environment is learned (see Chapter 8), we also want the state to be a good
basis for predicting subsequent states. Markov states provide an unsurpassed
basis for doing all of these things. To the extent that the state approaches the
ability of Markov states in these ways, one will obtain better performance from
reinforcement learning systems. For all of these reasons, it is useful to think of
the state at each time step as an approximation to a Markov state, although
one should remember that it may not fully satisfy the Markov property.

The Markov property is important in reinforcement learning because de-
cisions and values are assumed to be a function only of the current state. In
order for these to be e↵ective and informative, the state representation must
be informative. All of the theory presented in this book assumes Markov state
signals. This means that not all the theory strictly applies to cases in which
the Markov property does not strictly apply. However, the theory developed

=
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histories, S0, A0, R1, ..., St�1, At�1, Rt, St, At. In this case, the environment
and task as a whole are also said to have the Markov property.

If an environment has the Markov property, then its one-step dynamics
(3.5) enable us to predict the next state and expected next reward given the
current state and action. One can show that, by iterating this equation, one
can predict all future states and expected rewards from knowledge only of the
current state as well as would be possible given the complete history up to the
current time. It also follows that Markov states provide the best possible basis
for choosing actions. That is, the best policy for choosing actions as a function
of a Markov state is just as good as the best policy for choosing actions as a
function of complete histories.

Even when the state signal is non-Markov, it is still appropriate to think
of the state in reinforcement learning as an approximation to a Markov state.
In particular, we always want the state to be a good basis for predicting
future rewards and for selecting actions. In cases in which a model of the
environment is learned (see Chapter 8), we also want the state to be a good
basis for predicting subsequent states. Markov states provide an unsurpassed
basis for doing all of these things. To the extent that the state approaches the
ability of Markov states in these ways, one will obtain better performance from
reinforcement learning systems. For all of these reasons, it is useful to think of
the state at each time step as an approximation to a Markov state, although
one should remember that it may not fully satisfy the Markov property.

The Markov property is important in reinforcement learning because de-
cisions and values are assumed to be a function only of the current state. In
order for these to be e↵ective and informative, the state representation must
be informative. All of the theory presented in this book assumes Markov state
signals. This means that not all the theory strictly applies to cases in which
the Markov property does not strictly apply. However, the theory developed
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The Meaning of Life
(goals, rewards, and returns)



Rewards and returns
• The objective in RL is to maximize long-term future reward 

• That is, to choose      so as to maximize  

• But what exactly should be maximized?  

• The discounted return at time t:

At Rt+1, Rt+2, Rt+3, . . .

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

Reward sequence
1 0 0 0…

Return
1

0 0 2 0 0 0…
0.5(or any)

0.5 0.5
0.9 0 0 2 0 0 0… 1.62
0.5 -1 2 6 3 2 0 0 0… 2
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the discount rate
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• Suppose                and the reward sequence is 

• What are the following returns?  

• Suppose                and the reward sequence is all 1s.  

• Suppose                and the reward sequence is 

• And if 

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · · � 2 [0, 1)

R1 = 1, R2 = 6, R3 = �12, R4 = 16, then zeros for R5 and later
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4 value functions

• All theoretical objects, mathematical ideals (expected values) 

• Distinct from their estimates:

state 
values

action 
values

prediction

control q⇤v⇤

v⇡ q⇡

Vt(s) Qt(s, a)



Values are expected returns
• The value of a state, given a policy: 

• The value of a state-action pair, given a policy: 

• The optimal value of a state: 

• The optimal value of a state-action pair: 

• Optimal policy:       is an optimal policy if and only if 

• in other words,      is optimal iff it is greedy wrt

v⇡(s) = E{Gt | St = s,At:1⇠⇡} v⇡ : S ! <

q⇡(s, a) = E{Gt | St = s,At = a,At+1:1⇠⇡} q⇡ : S⇥A ! <

v⇤(s) = max

⇡
v⇡(s) v⇤ : S ! <

⇡⇤(a|s) > 0 only where q⇤(s, a) = max

b
q⇤(s, b)

⇡⇤

⇡⇤ q⇤

8s 2 S

q⇤(s, a) = max

⇡
q⇡(s, a) q⇤ : S⇥A ! <
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optimal policy example

11
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Gridworld

❐ Actions: north, south, east, west; deterministic.
❐ If would take agent off the grid: no move but reward = –1
❐ Other actions produce reward = 0, except actions that move 

agent out of special states A and B as shown.

State-value function 
for equiprobable 
random policy;
γ = 0.9
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Golf

❐ State is ball location
❐ Reward of –1 for each stroke 

until the ball is in the hole
❐ Value of a state?
❐ Actions: 

! putt (use putter)
! driver (use driver)

❐ putt succeeds anywhere on 
the green 

Q*(s,driver)

V
putt

sand

green

!1

s
a
n
d

!2
!2

!3

!4

!1

!5
!6

!4

!3

!3
!2

!4

sand

green

!1

s
a
n
d

!2

!3

!2

0

0

!"

!"

vputt

q*(s,driver)
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π ≥ #π     if and only if  vπ (s) ≥ vπ # (s)  for all s ∈

Optimal Value Functions

v*(s) = max
π
vπ (s)   for all  s ∈

q*(s,a) = max
π
qπ (s,a)  for all  s ∈  and a∈ (s)

This is the expected return for taking action a in state s  
and thereafter following an optimal policy.

❐ For finite MDPs, policies can be partially ordered: 

❐ There are always one or more policies that are better than or 
equal to all the others. These are the optimal policies. We 
denote them all π*.

❐ Optimal policies share the same optimal state-value function:

❐ Optimal policies also share the same optimal action-value 
function:

SUMMARY OF NOTATION xiii

Summary of Notation

Capital letters are used for random variables and major algorithm variables.
Lower case letters are used for the values of random variables and for scalar
functions. Quantities that are required to be real-valued vectors are written
in bold and in lower case (even if random variables).

s state
a action
S set of all nonterminal states
S+ set of all states, including the terminal state
A(s) set of actions possible in state s

t discrete time step
T final time step of an episode
S

t

state at t
A

t

action at t
R

t

reward at t, dependent, like S

t

, on A

t�1

and S

t�1

G

t

return (cumulative discounted reward) following t

G

(n)

t

n-step return (Section 7.1)
G

�

t

�-return (Section 7.2)

⇡ policy, decision-making rule
⇡(s) action taken in state s under deterministic policy ⇡

⇡(a|s) probability of taking action a in state s under stochastic policy ⇡

p(s0|s, a) probability of transition from state s to state s

0 under action a

r(s, a, s0) expected immediate reward on transition from s to s

0 under action a

v

⇡

(s) value of state s under policy ⇡ (expected return)
v⇤(s) value of state s under the optimal policy
q

⇡

(s, a) value of taking action a in state s under policy ⇡

q⇤(s, a) value of taking action a in state s under the optimal policy
V

t

estimate (a random variable) of v
⇡

or v⇤
Q

t

estimate (a random variable) of q
⇡

or q⇤

v̂(s,w) approximate value of state s given a vector of weights w
q̂(s, a,w) approximate value of state–action pair s, a given weights w
w,w

t

vector of (possibly learned) weights underlying an approximate value function
x(s) vector of features visible when in state s

w>x inner product of vectors, w>x =
P

i

w

i

x

i

; e.g., v̂(s,w) = w>x(s)
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Why Optimal State-Value Functions are Useful

v*

v*

Any policy that is greedy with respect to      is an optimal policy.

Therefore, given    , one-step-ahead search produces the 
long-term optimal actions.

E.g., back to the gridworld:

a) gridworld b) V* c) !*

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

A B

A'

B'+10

+5

v* π*
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Optimal Value Function for Golf

❐ We can hit the ball farther with driver than with putter, 
but with less accuracy

❐ q* (s,driver) gives the value or using driver first, then 
using whichever actions are best

Q*(s,driver)

V
putt

sand

green

!1

s
a
n
d

!2
!2

!3

!4

!1

!5
!6

!4

!3

!3
!2

!4

sand

green

!1

s
a
n
d

!2

!3

!2

0

0

!"

!"

vputt

q*(s,driver)
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What About Optimal Action-Value Functions?

Given      , the agent does not even
have to do a one-step-ahead search:  

q*

π*(s) = argmaxa q*(s,a)
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Value Functions
x 4
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Bellman Equations
x 4
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Bellman Equation for a Policy π

Gt = Rt+1 + γ Rt+2 + γ
2Rt+3 + γ

3Rt+4L
= Rt+1 + γ Rt+2 + γ Rt+3 + γ

2Rt+4L( )
= Rt+1 + γGt+1

The basic idea: 

So: vπ (s) = Eπ Gt St = s{ }
= Eπ Rt+1 + γ vπ St+1( ) St = s{ }

Or, without the expectation operator: 

...+

...+

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

i
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More on the Bellman Equation

This is a set of equations (in fact, linear), one for each state.
The value function for π  is its unique solution.

Backup diagrams:

for vπ for qπ

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0)
i
, (2)

i
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Gridworld

❐ Actions: north, south, east, west; deterministic.
❐ If would take agent off the grid: no move but reward = –1
❐ Other actions produce reward = 0, except actions that move 

agent out of special states A and B as shown.

State-value function 
for equiprobable 
random policy;
γ = 0.9
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Bellman Optimality Equation for v*

The value of a state under an optimal policy must equal
the expected return for the best action from that state:

The relevant backup diagram: 

     is the unique solution of this system of nonlinear equations.v*

s,as

a

s'

r

a'

s'

r

(b)(a)

max

max

v⇡(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St=s
⇤

= E⇡[Rt+1 + �v⇡(St+1) | St=s] (1)

=

X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a)
h
r + �v⇡(s

0
)

i
, (2)

v⇤(s) = max

a
q⇡⇤(s, a)

= max

a
E[Rt+1 + �v⇤(St+1) | St=s,At=a] (3)

= max

a

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0
)

⇤
. (4)

i
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Bellman Optimality Equation for q*

The relevant backup diagram: 

     is the unique solution of this system of nonlinear equations.q*

s,as

a

s'

r

a'

s'

r

(b)(a)

max

max

68 CHAPTER 3. THE REINFORCEMENT LEARNING PROBLEM

q⇤(s, driver). These are the values of each state if we first play a stroke with
the driver and afterward select either the driver or the putter, whichever is
better. The driver enables us to hit the ball farther, but with less accuracy.
We can reach the hole in one shot using the driver only if we are already very
close; thus the �1 contour for q⇤(s, driver) covers only a small portion of
the green. If we have two strokes, however, then we can reach the hole from
much farther away, as shown by the �2 contour. In this case we don’t have
to drive all the way to within the small �1 contour, but only to anywhere
on the green; from there we can use the putter. The optimal action-value
function gives the values after committing to a particular first action, in this
case, to the driver, but afterward using whichever actions are best. The �3
contour is still farther out and includes the starting tee. From the tee, the best
sequence of actions is two drives and one putt, sinking the ball in three strokes.

Because v⇤ is the value function for a policy, it must satisfy the self-
consistency condition given by the Bellman equation for state values (3.12).
Because it is the optimal value function, however, v⇤’s consistency condition
can be written in a special form without reference to any specific policy. This
is the Bellman equation for v⇤, or the Bellman optimality equation. Intuitively,
the Bellman optimality equation expresses the fact that the value of a state
under an optimal policy must equal the expected return for the best action
from that state:

v⇤(s) = max
a2A(s)

q⇡⇤(s, a)

= max
a

E⇡⇤[Gt | St =s, At =a]

= max
a

E⇡⇤

" 1X

k=0

�kRt+k+1

����� St =s, At =a

#

= max
a

E⇡⇤

"
Rt+1 + �

1X

k=0

�kRt+k+2

����� St =s, At =a

#

= max
a

E[Rt+1 + �v⇤(St+1) | St =s, At =a] (3.16)

= max
a2A(s)

X

s0,r

p(s0, r|s, a)
⇥
r + �v⇤(s

0)
⇤
. (3.17)

The last two equations are two forms of the Bellman optimality equation for
v⇤. The Bellman optimality equation for q⇤ is

q⇤(s, a) = E
h
Rt+1 + � max

a0
q⇤(St+1, a

0)
��� St = s, At = a

i

=
X

s0,r

p(s0, r|s, a)
h
r + � max

a0
q⇤(s

0, a0)
i
.
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Why Optimal State-Value Functions are Useful

v*

v*

Any policy that is greedy with respect to      is an optimal policy.

Therefore, given    , one-step-ahead search produces the 
long-term optimal actions.

E.g., back to the gridworld:

a) gridworld b) V* c) !*

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

A B

A'

B'+10

+5

v* π*
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Solving the Bellman Optimality Equation
❐ Finding an optimal policy by solving the Bellman 

Optimality Equation requires the following:
! accurate knowledge of environment dynamics;
! we have enough space and time to do the computation;
! the Markov Property.

❐ How much space and time do we need?
! polynomial in number of states (via dynamic 

programming methods; Chapter 4),
! BUT, number of states is often huge (e.g., backgammon 

has about 1020 states).
❐ We usually have to settle for approximations.
❐ Many RL methods can be understood as approximately 

solving the Bellman Optimality Equation.
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Summary

❐ Agent-environment interaction
! States
! Actions
! Rewards

❐ Policy: stochastic rule for 
selecting actions

❐ Return: the function of future 
rewards agent tries to maximize

❐ Episodic and continuing tasks
❐ Markov Property
❐ Markov Decision Process

! Transition probabilities
! Expected rewards

❐ Value functions
! State-value function for a policy
! Action-value function for a policy
! Optimal state-value function
! Optimal action-value function

❐ Optimal value functions
❐ Optimal policies
❐ Bellman Equations
❐ The need for approximation


