Chapter 3: The Reinforcement Learning Problem (Markov Decision Processes, or MDPs)

Objectives of this chapter:

- present Markov decision processes—an idealized form of the AI problem for which we have precise theoretical results
- introduce key components of the mathematics: value functions and Bellman equations

Agent and environment interact at discrete time steps: t = 0, 1, 2, 3, ...

Agent observes state at step *t*: $S_t \in S$ produces action at step *t* : $A_t \in \mathcal{A}(S_t)$ gets resulting reward: $R_{t+1} \in \mathcal{R} \subset \mathbb{R}$ and resulting next state: $S_{t+1} \in S^+$

$$\cdots \underbrace{S_t}_{A_t} \underbrace{R_{t+1}}_{A_{t+1}} \underbrace{S_{t+2}}_{A_{t+2}} \underbrace{R_{t+3}}_{A_{t+2}} \underbrace{S_{t+3}}_{A_{t+3}} \underbrace{A_{t+3}}_{A_{t+3}} \cdots$$

Markov Decision Processes

- ☐ If a reinforcement learning task has the Markov Property, it is basically a Markov Decision Process (MDP).
- □ If state and action sets are finite, it is a **finite MDP**.
- **T** To define a finite MDP, you need to give:
 - state and action sets
 - one-step "dynamics"

$$p(s', r | s, a) = \mathbf{Pr}\{S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a\}$$

• there is also:

$$p(s'|s,a) \doteq \Pr\{S_{t+1} = s' \mid S_t = s, A_t = a\} = \sum_{r \in \mathcal{R}} p(s',r|s,a)$$
$$r(s,a) \doteq \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s',r|s,a)$$

Policy at step $t = \pi_t =$

a mapping from states to action probabilities $\pi_t(a \mid s) =$ probability that $A_t = a$ when $S_t = s$

Special case - *deterministic policies*: $\pi_t(s)$ = the action taken with prob=1 when $S_t = s$

- Reinforcement learning methods specify how the agent changes its policy as a result of experience.
- Roughly, the agent's goal is to get as much reward as it can over the long run.

The Markov Property

- By "the state" at step *t*, the book means whatever information is available to the agent at step *t* about its environment.
- The state can include immediate "sensations," highly processed sensations, and structures built up over time from sequences of sensations.
- Ideally, a state should summarize past sensations so as to retain all "essential" information, i.e., it should have the Markov Property:

$$\mathbf{Pr}\{R_{t+1} = r, S_{t+1} = s' \mid S_0, A_0, R_1, \dots, S_{t-1}, A_{t-1}, R_t, S_t, A_t\} = p(s', r \mid s, a) = \mathbf{Pr}\{R_{t+1} = r, S_{t+1} = s' \mid S_t, A_t\}$$

 \Box for all $s' \in S^+$, $r \in \mathbb{R}$, and all histories $S_0, A_0, R_1, ..., S_{t-1}, A_{t-1}, R_t, S_t, A_t$.

The Meaning of Life (goals, rewards, and returns)

- The objective in RL is to maximize long-term future reward
- That is, to choose A_t so as to maximize $R_{t+1}, R_{t+2}, R_{t+3}, \ldots$
- But what exactly should be maximized?
- The discounted return at time t: $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \qquad \gamma \in [0, 1)$ the discount rate

γ	Reward sequence	Return
0.5(or any)	1000	
0.5	002000	
0.9	002000	
0.5	-12632000	

- The objective in RL is to maximize long-term future reward
- That is, to choose A_t so as to maximize $R_{t+1}, R_{t+2}, R_{t+3}, \ldots$
- But what exactly should be maximized?
- The discounted return at time t: $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \qquad \gamma \in [0, 1)$ the discount rate

γ	Reward sequence	Return
0.5(or any)	1000	1
0.5	002000	
0.9	002000	
0.5	-12632000	

- The objective in RL is to maximize long-term future reward
- That is, to choose A_t so as to maximize $R_{t+1}, R_{t+2}, R_{t+3}, \ldots$
- But what exactly should be maximized?
- The discounted return at time t: $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \qquad \gamma \in [0, 1)$ the discount rate

γ	Reward sequence	Return
0.5(or any)	1000	1
0.5	002000	0.5
0.9	002000	
0.5	-12632000	

- The objective in RL is to maximize long-term future reward
- That is, to choose A_t so as to maximize $R_{t+1}, R_{t+2}, R_{t+3}, \ldots$
- But what exactly should be maximized?
- The discounted return at time t: $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \qquad \gamma \in [0, 1)$ the discount rate

γ	Reward sequence	Return
0.5(or any)	1000	1
0.5	002000	0.5
0.9	002000	1.62
0.5	-12632000	

- The objective in RL is to maximize long-term future reward
- That is, to choose A_t so as to maximize $R_{t+1}, R_{t+2}, R_{t+3}, \ldots$
- But what exactly should be maximized?
- The discounted return at time t: $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \qquad \gamma \in [0, 1)$ the discount rate

γ	Reward sequence	Return
0.5(or any)	1000	1
0.5	002000	0.5
0.9	002000	1.62
0.5	-12632000	2

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

$$G_4 =$$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

• What are the following returns?

 $G_4 = 0$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

$$G_4 = 0 \quad G_3 =$$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

• What are the following returns?

 $G_4 = 0 \quad G_3 = 16$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

• What are the following returns?

 $G_4 = 0 \quad G_3 = 16 \quad G_2 =$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 =$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

• What are the following returns?

 $G_4 = 0$ $G_3 = 16$ $G_2 = -4$ $G_1 = 4$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

• What are the following returns?

 $G_4 = 0$ $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 =$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = 3$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

• What are the following returns?

 $G_4 = 0$ $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = 3$

- Suppose $\gamma = 0.5$ and the reward sequence is all 1s.

G =

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

• What are the following returns?

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = 3$

• Suppose $\gamma = 0.5$ and the reward sequence is all 1s.

$$G = \frac{1}{1 - \gamma}$$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

• What are the following returns?

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = 3$

- Suppose $\gamma = 0.5$ and the reward sequence is all 1s.

$$G = \frac{1}{1 - \gamma} = 2$$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = 3$

- Suppose $\gamma = 0.5$ and the reward sequence is all 1s. $G = \frac{1}{1 \gamma} = 2$
- Suppose $\gamma = 0.5$ and the reward sequence is

$$R_1 = 1, R_2 = 13, R_3 = 13, R_4 = 13$$
, and so on, all 13s
 $G_2 =$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

• What are the following returns?

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = 3$

- Suppose $\gamma = 0.5$ and the reward sequence is all 1s. $G = \frac{1}{1 \gamma} = 2$
- Suppose $\gamma = 0.5$ and the reward sequence is

 $R_1 = 1, R_2 = 13, R_3 = 13, R_4 = 13$, and so on, all 13s $G_2 = 26$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = 3$

- Suppose $\gamma = 0.5$ and the reward sequence is all 1s. $G = \frac{1}{1 \gamma} = 2$
- Suppose $\gamma = 0.5$ and the reward sequence is

$$R_1 = 1, R_2 = 13, R_3 = 13, R_4 = 13$$
, and so on, all 13s
 $G_2 = 26$ $G_1 =$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = 3$

- Suppose $\gamma = 0.5$ and the reward sequence is all 1s. $G = \frac{1}{1 \gamma} = 2$
- Suppose $\gamma = 0.5$ and the reward sequence is

$$R_1 = 1, R_2 = 13, R_3 = 13, R_4 = 13$$
, and so on, all 13s
 $G_2 = 26$ $G_1 = 26$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

• What are the following returns?

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = 3$

- Suppose $\gamma = 0.5$ and the reward sequence is all 1s. $G = \frac{1}{1 \gamma} = 2$
- Suppose $\gamma = 0.5$ and the reward sequence is

 $R_1 = 1, R_2 = 13, R_3 = 13, R_4 = 13$, and so on, all 13s $G_2 = 26$ $G_1 = 26$ $G_0 =$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

• What are the following returns?

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = 3$

- Suppose $\gamma = 0.5$ and the reward sequence is all 1s. $G = \frac{1}{1 \gamma} = 2$
- Suppose $\gamma = 0.5$ and the reward sequence is

 $R_1 = 1, R_2 = 13, R_3 = 13, R_4 = 13$, and so on, all 13s $G_2 = 26$ $G_1 = 26$ $G_0 = 14$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

• What are the following returns?

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = 3$

- Suppose $\gamma = 0.5$ and the reward sequence is all 1s. $G = \frac{1}{1 \gamma} = 2$
- Suppose $\gamma = 0.5$ and the reward sequence is

 $R_1 = 1, R_2 = 13, R_3 = 13, R_4 = 13$, and so on, all 13s

$$G_2 = 26$$
 $G_1 = 26$ $G_0 = 14$

• And if $\gamma = 0.9?$

 $G_1 =$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

• What are the following returns?

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = 3$

- Suppose $\gamma = 0.5$ and the reward sequence is all 1s. $G = \frac{1}{1 \gamma} = 2$
- Suppose $\gamma = 0.5$ and the reward sequence is

$$R_1 = 1, R_2 = 13, R_3 = 13, R_4 = 13$$
, and so on, all 13s
 $G_2 = 26$ $G_1 = 26$ $G_0 = 14$

• And if $\gamma = 0.9?$ $G_1 = 130$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

• What are the following returns?

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = 3$

- Suppose $\gamma = 0.5$ and the reward sequence is all 1s. $G = \frac{1}{1 \gamma} = 2$
- Suppose $\gamma = 0.5$ and the reward sequence is

$$R_1 = 1, R_2 = 13, R_3 = 13, R_4 = 13, \text{ and so on, all } 13s$$

$$G_2 = 26 \quad G_1 = 26 \quad G_0 = 14$$

• And if $\gamma = 0.9?$

 $G_1 = 130$ $G_0 =$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots \qquad \gamma \in [0, 1)$$

 $R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$, then zeros for R_5 and later

• What are the following returns?

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = 3$

- Suppose $\gamma = 0.5$ and the reward sequence is all 1s. $G = \frac{1}{1 \gamma} = 2$
- Suppose $\gamma = 0.5$ and the reward sequence is

$$R_1 = 1, R_2 = 13, R_3 = 13, R_4 = 13$$
, and so on, all 13s
 $G_2 = 26$ $G_1 = 26$ $G_0 = 14$
And if $\gamma = 0.9$?

 $G_1 = 130$ $G_0 = 118$

4 value functions

	state values	action values
prediction	v_{π}	q_{π}
control	v_*	q_*

- All theoretical objects, mathematical ideals (expected values)
- Distinct from their estimates:

 $V_t(s) = Q_t(s,a)$

Values are *expected* returns

• The value of a state, given a policy:

 $v_{\pi}(s) = \mathbb{E}\{G_t \mid S_t = s, A_{t:\infty} \sim \pi\} \qquad v_{\pi} : S \to \Re$

- The value of a state-action pair, given a policy: $q_{\pi}(s, a) = \mathbb{E}\{G_t \mid S_t = s, A_t = a, A_{t+1:\infty} \sim \pi\}$ $q_{\pi} : S \times A \to \Re$
- The optimal value of a state:

$$v_*(s) = \max_{\pi} v_{\pi}(s) \qquad v_* : \mathcal{S} \to \Re$$

• The optimal value of a state-action pair:

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a) \qquad q_* : \mathcal{S} \times \mathcal{A} \to \Re$$

- Optimal policy: π_* is an optimal policy if and only if $\pi_*(a|s) > 0$ only where $q_*(s, a) = \max_b q_*(s, b) \quad \forall s \in S$
 - in other words, π_* is optimal iff it is greedy wrt q_*

What policy is optimal? A: left B: Right C. Other If x=0? IF X=.99 It &= 2?

Gridworld

- Actions: north, south, east, west; deterministic.
- □ If would take agent off the grid: no move but reward = -1
- Other actions produce reward = 0, except actions that move agent out of special states A and B as shown.

State-value function for equiprobable random policy; $\gamma = 0.9$

Golf

- **I** State is ball location
- Reward of –1 for each stroke until the ball is in the hole
- □ Value of a state?
- **Actions:**
 - putt (use putter)
 - driver (use driver)
- putt succeeds anywhere on the green

Optimal Value Functions

T For finite MDPs, policies can be **partially ordered**:

 $\pi \ge \pi'$ if and only if $v_{\pi}(s) \ge v_{\pi'}(s)$ for all $s \in S$

There are always one or more policies that are better than or equal to all the others. These are the **optimal policies**. We denote them all π_* .

☐ Optimal policies share the same **optimal state-value function**: $v_*(s) = \max_{\pi} v_{\pi}(s)$ for all $s \in S$

Optimal policies also share the same optimal action-value function:

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a) \text{ for all } s \in S \text{ and } a \in A$$

This is the expected return for taking action *a* in state *s* and thereafter following an optimal policy.

Why Optimal State-Value Functions are Useful

Any policy that is greedy with respect to v_* is an optimal policy.

Therefore, given v_* , one-step-ahead search produces the long-term optimal actions.

E.g., back to the gridworld:

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

c) π_*

Optimal Value Function for Golf

- We can hit the ball farther with driver than with putter, but with less accuracy
- □ q_{*} (s,driver) gives the value or using driver first, then using whichever actions are best

Given q_* , the agent does not even have to do a one-step-ahead search:

$$\pi_*(s) = \arg\max_a q_*(s,a)$$

Value Functions x 4

Bellman Equations x 4

Bellman Equation for a Policy π

The basic idea:

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

= $R_{t+1} + \gamma \left(R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots \right)$
= $R_{t+1} + \gamma G_{t+1}$

So:

$$\begin{aligned}
v_{\pi}(s) &= E_{\pi} \left\{ G_{t} \mid S_{t} = s \right\} \\
&= E_{\pi} \left\{ R_{t+1} + \gamma v_{\pi} \left(S_{t+1} \right) \mid S_{t} = s \right\}
\end{aligned}$$

Or, without the expectation operator:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

More on the Bellman Equation

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

This is a set of equations (in fact, linear), one for each state. The value function for π is its unique solution.

Backup diagrams:

Gridworld

- Actions: north, south, east, west; deterministic.
- □ If would take agent off the grid: no move but reward = -1
- Other actions produce reward = 0, except actions that move agent out of special states A and B as shown.

State-value function for equiprobable random policy; $\gamma = 0.9$

Bellman Optimality Equation for *v*_{*}

The value of a state under an optimal policy must equal the expected return for the best action from that state:

$$v_*(s) = \max_a q_{\pi_*}(s, a)$$

=
$$\max_a \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) \mid S_t = s, A_t = a]$$

=
$$\max_a \sum_{s', r} p(s', r \mid s, a) [r + \gamma v_*(s')].$$

The relevant backup diagram:

 V_* is the unique solution of this system of nonlinear equations.

Bellman Optimality Equation for q_*

$$q_*(s,a) = \mathbb{E} \Big[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1},a') \ \Big| \ S_t = s, A_t = a \Big] \\ = \sum_{s',r} p(s',r|s,a) \Big[r + \gamma \max_{a'} q_*(s',a') \Big].$$

The relevant backup diagram:

 q_* is the unique solution of this system of nonlinear equations.

Why Optimal State-Value Functions are Useful

Any policy that is greedy with respect to v_* is an optimal policy.

Therefore, given v_* , one-step-ahead search produces the long-term optimal actions.

E.g., back to the gridworld:

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

c) π_*

Solving the Bellman Optimality Equation

- Finding an optimal policy by solving the Bellman Optimality Equation requires the following:
 - accurate knowledge of environment dynamics;
 - we have enough space and time to do the computation;
 - the Markov Property.
- How much space and time do we need?
 - polynomial in number of states (via dynamic programming methods; Chapter 4),
 - BUT, number of states is often huge (e.g., backgammon has about 10²⁰ states).
- **•** We usually have to settle for approximations.
- Many RL methods can be understood as approximately solving the Bellman Optimality Equation.

Summary

- **Agent-environment interaction**
 - States
 - Actions
 - Rewards
- Policy: stochastic rule for selecting actions
- Return: the function of future rewards agent tries to maximize
- Episodic and continuing tasks
- Markov Property
- Markov Decision Process
 - Transition probabilities
 - Expected rewards

□ Value functions

- State-value function for a policy
- Action-value function for a policy
- Optimal state-value function
- Optimal action-value function
- Optimal value functions
- Optimal policies
- Bellman Equations
- **The need for approximation**