From Deep Blue to Monte Carlo: v

An Update on Game Tree Research

Akihiro Kishimoto and Martin Miiller

AAAI-14 Tutorial 5:
Monte Carlo Tree Search

Presenter:
Martin Muller, University of Alberta

Tutorial g —MCTS - Contents

Part 1:
Limitations of alphabeta and PNS
Simulations as evaluation replacement
Bandits, UCB and UCT
Monte Carlo Tree Search (MCTS)

Tutorial g —MCTS - Contents

Part 2:
MCTS enhancements: RAVE and prior knowledge
Parallel MCTS
Applications

Research challenges, ongoing work

Go: a Failure for Alphabeta

Game of Go

Decades of Research on knowledge-based and
alphabeta approaches

Level weak to intermediate

Alphabeta works much less well than in many other
games

Why?

Problems for Alphabeta in Go

Reason usually given: Depth and width of game tree
2 250 moves on average

2 game length > 200 moves

Real reason: Lack of good evaluation function

?2 Too subtle to model: very similar looking positions can
have completely different outcome

72 Material is mostly irrelevant
Stones can remain on the board long after they “die”
7 Finding safe stones and estimating territories is hard

Monte Carlo Methods to the Rescue!

Hugely successful

2 Backgammon (Tesauro 1995)

72 Go (many)

2 Amazons, Havannah, Lines of Action, ...

Application to deterministic games pretty recent
(less than 10 years)

Explosion in interest, applications far beyond games

72 Planning, motion planning, optimization, finance,
energy management,...

Brief History of Monte Carlo Methods

1940’s — now Popular in Physics, Economics, ...
to simulate complex systems
1990 (Abramson 1990) expected-outcome
1993 Brigmann, Gobble
2003 -05 Bouzy, Monte Carlo experiments
2006 Coulom, Crazy Stone, MCTS
2006 (Kocsis & Szepesvari2006) UCT
2007 — now MoGo, Zen, Fuego, many others
2012 — now MCTS survey paper (Browne et al 2012);

huge number of applications

ldea: Monte Carlo Simulation

No evaluation function? No problem!
Simulate rest of game using random moves (easy)
Score the game at the end (easy)

Use that as evaluation (hmm, but...)

The GIGO Principle

Garbage In, Garbage Out

Even the best algorithms do not work if the input
data is bad

How can we gain any information from playing
random games?

Well, it Works!

For many games, anyway

2 Go, NoGo, Lines of Action, Amazons, Konane,
DisKonnect,...,...,...

Even random moves often preserve some
difference between a good position and a bad one

The rest is statistics...

...well, not quite.

(Very) Basic Monte Carlo Search

Play lots of random games
start with each possible legal move

Keep winning statistics

? Separately for each startingmove
Keep going as long as you have time, then...

Play move with best winning percentage

Simulation Example in NoGo

Demo using GoGui and BobNoGo program
Random legal moves
End of game when ToPlay has no move (loss)

Evaluate:
+1 for win for current player
O for loss

Example — Basic Monte Carlo Search

:‘%: state s;
T Il”llu V(m[)=2/4=0'5
Seo | [%es | [%ee | (%o |
100t R i)
o s PR P
“ m “ :T?_— : f ?:__ __fg—— '—_f_f:.—l_—:
it [i&$ +1_* Simulations
1 pIy tree l;l T]I__l__ 'I 11 |
" e | e
root = current position S e e

s, = state after move m,
S, = ...

@g_
i

(WY
[HY
o

Outcomes

Example for NoGo

Demo for NoGo
1 ply search plus random simulations

Show winning percentages for different first moves

Evaluation

Surprisingly good e.g. in Go - much better than
random or simple knowledge-based players

Still limited
Prefers moves that work “on average”
Often these moves fail against the best response

Likes “silly threats”

Improving the Monte Carlo Approach

Add a game tree search (Monte Carlo Tree Search)
72 Major new game tree search algorithm

Improved, better-than-random simulations
72 Mostly game-specific

Add statistics over move quality
7 RAVE, AMAF

Add knowledge in the game tree
72 human knowledge
72 machine-learnt knowledge

Add game tree search (Monte Carlo Tree Search)

Naive approach and why it fails

Bandits and Bandit algorithms
72 Regret, exploration-exploitation, UCB algorithm

Monte Carlo Tree Search
2 UCT algorithm

Naive Approach

Use simulations directly as an evaluation function for a8

Problems
? Single simulation is very noisy, only 0/1 signal
72 running many simulations for one evaluation is very slow

2 Example:
typical speed of chess programs 1 million eval/second

Go: 1 million moves/second, 400 moves/simulation,
100 simulations/eval = 25 eval/second

Result: Monte Carlo was ignored for over 10 years in Go

Monte Carlo Tree Search

Idea: use results of simulations to guide growth of
the game tree

Exploitation: focus on promising moves

Exploration: focus on moves where uncertainty
about evaluation is high

Two contradictory goals?
72 Theory of bandits can help

Bandits

Multi-armed bandits « | f5i ,ii a4
(slot machines in Casino) £ £ 1 B Eei i!!g \:_\h L)

- ‘.J

Assumptions:
A Choice of several arms

2 each arm pull is independent of other pulls

2 Each arm has fixed, unknown average payoff
Which arm has the best average payoff?

Want to minimize regret = loss from playing
non-optimal arm

Example (1)

Three arms A, B, C

Each pull of one arm is either
72 awin (payoff 1) or
? aloss (payoff 0)

Probability of win for each arm is fixed but unknown:
72 p(A wins) =60%
72 p(Bwins)=55%
2 p(Cwins) =40%

A is best arm (but we don’t know that)

Example (2)

How to find out which arm Which arm is best ??7?7?7?

is best? .
Play each arm many times

The only thing we can do 72 the empirical payoff will

is play them approach the (unknown)

true payoff

Example:

A Play A, win It is expensive to play bad

2 Play B, loss arms too often

A Play C, win How to choose which arm

2 PlayA, loss to pull in each round?

?2 Play B, loss

Applying the Bandit Model to Games

Bandit arm = move in game
Payoff = quality of move

Regret = difference to best move

Explore and Exploit with Bandits

Explore all arms, but also:
Exploit: play promising arms more often

Minimize regret from playing poor arms

Formal Setting for Bandits

One specific setting, more general ones exist

K arms (actions, possible moves) named 1, 2, ..., K
t > 1 time steps

X: random variable, payoff of arm i

72 Assumed independent of time here
? Later: discussion of drift over time, i.e. with trees

Assume X; € [0...1] e.g. 0 = loss, 1 = win
W, = E[X;] expected payoff of arm i
r,reward at time t

? realization of random variable X; from playing arm i
attime t

Formalization Example

Same example as with A, B, C before, but use
formal notation

K=3..3arms,arm1=A,arm2=B,arm3=C

X, = random variable — pull arm 1

2 X,=1 with probability 0.6

A X,=0 with probability 1-0.6=0.4

A similar for X,, X,

A Ww,=EX,1=06,u,=E[X,]=0.55 pu,=E[X;]=0.4

Each r, is either O or 1, with probability given by the
arm which was pulled.

A Example:r;=0,r,=0,r;=1,r,=1,r.=0,r, =1, ...

Formal Setting for Bandits (2)

Policy: Strategy for choosing arm to play at time t

? given arm selections and outcomes of previous trials
attimes 1, ..., t - 1.

I, €{1,...,K} .. arm selected at time t

Ti(t) = Yot 1(Js = 1)
.. total number of times arm i was played
fromtime1l, ..., t

Example

Example:1;,=2,1,=3,1;=2,1,=3,1:=2,1,=2
T,(6)=0,T,(6)=4,T,(6)=2

Simple policies:

72 Uniform - play a least-played arm, break ties
randomly

72 Greedy - play an arm with highest empirical playoff
? Question —what is a smart strategy?

Formal Setting for Bandits (3)

Best possible payoff: /L* = MaXi<ij<kMi
Expected payoff after n steps: Zf(:1 ,LL,']E[T,'(n)]
Regret after n steps is the difference:

nu* — Z:(:1 ,u,,IE[T,(n)]

Minimize regret: minimize T, (n) for the non-optimal
moves, especially the worst ones

Example, continued

A p,;=06,p,=0.55p;=0.4

2 W=06

72 With our fixed exploration policy from before:
E[T,(6)] = 0, E[T,(6)] = 4, E[T,(6)] = 2
expected payoff p, * 0+, * 4 +p,*2=3.0
expected payoff if always playsarm 1: u* * 6 =3.6
Regret=3.6-3.0=0.6

72 Important: regret of a policy is expected regret

Will be achieved in the limit, as average of many
repetitions of this experiment

In any single experiment with six rounds, the payoff
can be anything from 0 to 6, with varying probabilities

Formal Setting for Bandits (4)

(Auer et al 2002)
Statistics on each arm so far
Xj average reward from arm jso far

n; number of times arm i played so far
(same meaning as T, (t) above)

n total number of trials so far

UCB2 Formula (Auer et al 2002)

Name UCB stands for Upper Confidence Bound
Policy:
First, try each arm once

Then, at each time step:

? choose arm i that maximizes the UCB1 formula for
the upper confidence bound:

_ 2In(n
Xi + ()
n;

UCB Demystified - Formula

_ 2In(n
Xj + ()

Exploitation: higher observed reward Xj is better

Expect “true value” p, to be in some confidence
interval around Xj.

“Optimism in face of uncertainty”:
choose move for which the upper bound of
confidence interval is highest

UCB Demystified — Exploration Term

_ 2In(n
Xj n(.)
I

Interval is large when number of trials n; is small.
Interval shrinks in proportion to /N

High uncertainty about move
7 large exploration term in UCB formula
72 move is explored

v/ In(n) term, intuition:

explore children more if parent is important
(has many simulations)

Theoretical Properties of UCB1

Main question: rate of convergence to optimal arm

Huge amount of literature on different bandit
algorithms and their properties

Typical goal: regret O(log n) for n trials

For many kinds of problems, cannot do better
asymptotically (Lai and Robbins 1985)

UCB1 is a simple algorithm that achieves this
asymptotic bound for many input distributions

Is UCB What we Really Want???

No.
UCB minimizes cumulative regret
Regret is accumulated over all trials

In games, we only care about the final move choice
72 We do not care about simulating bad moves

Simple regret: loss of our final move choice,
compared to best move

? Better measure, but theory is much less developed
for trees

The case of Trees: From UCB to UCT

UCB makes a single decision

What about sequences of decisions (e.g. planning,
games)?

Answer: use a lookahead tree (as in games)

Scenarios
7 Single-agent (planning, all actions controlled)

our # Adversarial (as in games, or worst-case analysis)
? Probabilistic (average case, “neutral” environment)

Focus

Monte Carlo Planning - UCT

Main ideas:
Build lookahead tree (e.g. game tree)
Use rollouts (simulations) to generate rewards

Apply UCB — like formula in interior nodes of tree
? choose “optimistically” where to expand next

Generic Monte Carlo Planning Algorithm

MonteCarloPlanning(state) search(state, depth)
repeat search(state, 0) until Timeout if Terminal(state) then return O
return bestAction(state,0) if Leaf(state, depth) then return Evaluate(state)

action := selectAction(state, depth)
(nextstate, reward) := simulate (state, action)
g := reward + y search(nextstate, depth + 1)
UpdateValue(state, action, q, depth)
return g

* Reinforcement-learning-like framework

(Kocsis and Szepesvari 2006)
 Rewards at every time step
e future rewards discounted by factory
* Apply to games:
* 0/1reward, only at end of game
 v=1 (no discount)

Generic Monte Carlo Tree Search

Select leaf node L in game tree
Expand children of L
Simulate a randomized game from (new) leaf node

Update (or backpropagate) statistics on path to

root
Selection Expansnon Simulation Backpropagation
y @ e @ o/‘\
@) G9) (t2) \‘ ./ (2) @) €3) @ @) (2) @) C2)
@) 3

Image source: http://en.wikipedia.org/wiki/Monte-Carlo_tree_search o:

Drift

In basic bandit framework, we assumed that payoff
for each arm comes from a fixed (stationary)
distribution

If distribution changes over time, UCB will still
converge under some relatively weak conditions

In UCT, the tree changes over time
? payoffs of choices within tree also change

2 Example: better move is discovered for one of the
players

Convergence Property of UCT

Very informal presentation here.
See (K+S 2006), Section 2.4 for precise statements.

Assumptions:

1. average payoffs converge for each arm /

2. “tail inequalities”: probability of being “far off” is
very small

Under those conditions:

probability of selecting a suboptimal move
approaches zero in the limit

Towards Practice: UCBa-tuned

Finite-time Analysis of the Multiarmed Bandit
Problem (Auer et al 2002)

UCB1 formula simply assumes variance decreases
with 1/sqrt of number of trials n,

UCB1-tuned idea: take measured variance of each
arm (move choice) into account

Compute upper confidence bound using that
measured variance

#” Can be better in practice

We will see many more extensions to UCB ideas

MoGo — First UCT Go Program

Original MoGo technical report (Gelly et al 2006)

Modify UCB1-tuned, add two parameters:
? First-play urgency - value for unplayed move

? exploration constant c (called p in first paper) -
controls rate of exploration
p = 1.2 found best empirically for early MoGo

_ logn
X ;
i TP Tj(n)

Formula from original MoGo report

min{1/47 ij(nj)}

Move Selection for UCT

Scenario:
72 run UCT as long as we can

72 run simulations, grow tree

When out of time, which move to play?
? Highest mean
7 Highest UCB

72 Most-simulated move

later refinement: most wins

Summary — MCTS So Far

UCB, UCT are very important algorithms in both
theory and practice

Well founded, convergence guarantees under
relatively weak conditions

Basis for extremely successful programs for games
and many other applications

MCTS Enhancements

Improved simulations
72 Mostly game-specific
72 We will discuss it later

Improved in-tree child selection
2 General approaches

2 Review —the history heuristic
? AMAF and RAVE

Prior knowledge for initializing nodes in tree

Improved In-Tree Child Selection

Plain UCT: in-tree child selection by UCB formula

2 Components: exploitation term (mean) and
exploration term

Enhancements: modify formula, add other terms
A Collect other kinds of statistics — AMAF, RAVE
? Prior knowledge — game specific evaluation terms

Two main approaches
72 Add another term

72 “Equivalent experience” — translate knowledge into
(virtual, fake) simulation wins or losses

Review - History Heuristic

Game-independent enhancement for alphabeta

Goal: improve move ordering
(Schaeffer 1983, 1989)

Give bonus for moves that lead to cutoff
Prefer those moves at other places in the search

Similar ideas in MCTS:
2 all-moves-as-first (AMAF) heuristic, RAVE

Assumptions of History Heuristic

Abstract concept of move

?2 Not just a single edge in the game graph
7 identify class of all moves e.g. “Black F3” -
place stone of given color on given square
History heuristic: quality of such moves is correlated
? tries to exploit that correlation

Special case of reasoning by similarity:
in similar state, the same action may also be good

Classical: if move often lead to a beta cut in search, try it
again, might lead to similar cutoff in similar position.

MCTS: if move helped to win previous simulations, then give

it a bonus for its evaluation - will lead to more exploration of
the move

All Moves As First (AMAF) Heuristic

(Brigmann 1993)

Plain Monte Carlo search:

72 no game tree, only simulations, winrate statistics for
each first move

AMAF idea: bonus for all moves in a winning
simulation, not just the first.

2 Treat all moves like the first
Statistics in global table, separate from winrate

Main advantage: statistics accumulate much faster

Disadvantage: some moves good only if played
right now - they will get a very bad AMAF score.

RAVE - Rapid Action Value Estimate

Idea (Gelly and Silver 2007): compute separate
AMAF statistics in each node of the MCTS tree

After each simulation, update the RAVE scores
of all ancestors that are in the tree

Each move jin the tree now also has a RAVE score:
2 number of simulations n; 4.
2 number of Wins V; gve

A RAVE value X; gave = Vi gave/ N pave

RAVE lllustration

Image source: (Silver 2009)

Adding RAVE to the UCB Formula

Basic idea: replace mean value x;
with weighted combination
of mean value and RAVE value

Bxi+(1-PB)Xrave

How to choose B7?
Not constant, depends on all statistics

Try to find best combined estimator
given x; and X; payr

Adding RAVE (2)

Original method in MoGo (Gelly and Silver 2007):

2 equivalence parameter k = number of simulations
when mean and RAVE have equal weight
When n; =k, then $ =0.5

? Results were quite stable for wide range of
k=50...10000

Formula

B(s,a) = ’

3n(s) + k

Adding RAVE (3)

(Silver 2009, Chapter 8.4.3)
72 Assume independence of estimates
not true in real life, but useful assumption
2 Can compute optimal choice in closed form (!)
? Estimated by machine learning, or trial and error

Adding RAVE (4) — Fuego Program

General scheme to combine different estimators
72 Combining mean and RAVE is special case

Very similar to Silver’s scheme

General scheme: each estimator has:
1. initial slope
2. final asymptotic value

? Details: http: //fuego.sourceforge.net/fuego-
doc-1.1/ smartgame-doc/sguctsearchweights.html

Using Prior Knowledge

(Gelly and Silver 2007)

Most nodes in the game tree are leaf nodes
(exponential growth)

Almost no statistics for leaf nodes - only simulated once

Use domain-specific knowledge to initialize nodes

72 “equivalent experience” - a number of wins and losses
? additive term (Rosin 2011)

Similar to heuristic initialization in proof-number search

Types of Prior Knowledge

(Silver 2009) machine-learned 3x3 pattern values
Later Mogo and Fuego: hand-crafted features

Crazy Stone: many features, weights trained by
Minorization-Maximization (MM) algorithm
(Coulom 2007)

Fuego today:
7 large number of simple features

72 weights and interaction weights trained by
Latent Feature Ranking (Wistuba et al 2013)

Example — Pattern Features (Coulom)

= Analyze [z] H [modified] Crazy Patterns vs Unknown [:][E][Z]

PatternPlayer::MoveOrder File Game Program Go Edit Yiew Bookmarks Tools Help
PatternPlayer::Proba

PatternPlayer::Parameters
©.GTP::Parameters

|PatternPlayer::Proba -

Auto run (O Black
Clear board (® White

[Run][gear]

9B Q14 [2.2]

PatternPlayer::Proba

Image source: Remi Coulom

Improving Simulations

Goal: strong correlation between initial position
and result of simulation

Preserve wins and losses

How?
72 Avoid blunders
? “Stabilize” position
Go: prefer local replies

Go: urgent pattern replies

Improving Simulations (2)

Game-independent techniques

A If thereis an immediate win,
then take it (1 ply win check)

2 Avoid immediate losses in simulation
(1 ply mate check)

72 Avoid moves that give opponent an immediate win
(2 play mate check)

? Last Good Reply — next slide

Last Good Reply

Last Good Reply (Drake 2009),
Last Good Reply with Forgetting (Baier et al 2010)

ldea: after winning simulation, store (opponent move,
our answer) move pairs

Try same reply in future simulations
Forgetting: delete move pair if it fails

Evaluation: worked well for Go program with simpler
playout policy (Orego)

Trouble reproducing success with stronger Go programs

72 Simple form of adaptive simulations

Hybrid Approaches

Combine MCTS with “older” ideas from the
alphabeta world

Examples
72 Prove wins/losses
2 Use evaluation function

? Hybrid search strategy MCTS+alphabeta

Hybrids: MCTS + Game Solver

Recognize leaf nodes that are wins/losses
Backup in minimax/proof tree fashion

Problem: how to adapt child selection if some
children are proven wins or losses?

72 At least, don’t expand those anymore

Useful in many games, e.g. Hex, Lines of Action,
NoGo, Havannah, Konane,...

Hybrids: MCTS + Evaluation

Use evaluation function
Standard MCTS plays until end of game

2 Some games have reasonable and fast evaluation
functions, but can still profit from exploration

Examples: Amazons, Lines of Action

Hybrid approach (Lorentz 2008, Winands et al 2010)

2 run short simulation for fixed number of moves
(e.g. 5-6 in Amazons)

?A call static evaluation at end, use as simulation result

Hybrids: MCTS + Minimax

1-2 ply lookahead in playouts (discussed before)
72 Require strong evaluation function

(Baier and Winands 2013) add minimax with no
evaluation function to MCTS

72 Playouts
Avoid forced losses

A Selection/Expansion

Find shallow wins/losses

Towards a Tournament-Level Program

Early search termination — best move cannot change
Pondering — think in opponent’s time

Time control — how much time to spend for each move
Reuse sub-tree from previous search

Multithreading (see later)

Code optimization

Testing, testing, testing,...

Machine Learning for MCTS

Learn better knowledge
? Patterns, features (discussed before)

Learn better simulation policies
7 Simulation balancing (Silver and Tesauro 2009)
?2 Simulation balancing in practice (Huang et al 2011)

Adapt simulations online

Dyna2, RLGo (Silver et al 2012)

Nested Rollout Policy Adaptation (Rosin 2011)
Last Good Reply (discussed before)

Use RAVE (Rimmel et al 2011)

A N NN

Parallel MCTS

MCTS scales well with more computation

Currently, hardware is moving quickly towards
more parallelism

MCTS simulations are “embarassingly parallel”

Growing the tree is a sequential algorithm

72 How to parallelize it?

Parallel MCTS - Approaches

root parallelism
shared memory

distributed memory

New algorithm: depth-first UCT (Yoshizoe et al
2011)

2 Avoid bottleneck of updates to the root

Root Parallelism

(Cazenave and Jouandeau 2007, Soejima et al.
2010)

Run n independent MCTS searches on n nodes
Add up the top-level statistics
Easiest to implement, but limited

Majority vote may be better

Shared Memory Parallelism

n cores together build one tree in shared memory

How to synchronize access? Need to write results
(changes to statistics for mean and RAVE), add
nodes, and read statistics for in-tree move selection

Simplest approach: lock tree during each change

Better: lock-free hash table (Coulom2008)
or tree (Enzenberger and Miller 2010)

Possible to use spinlock

Limits to Parallelism

Loss of information from running n simulations in
parallel as opposed to sequentially

Experiment (Segal 2010)
72 runsingle-threaded
? delay tree updates by n - 1 simulations

Best-case experiment for behavior of parallel MCTS

Predicts upper limit of strength over 4000 Elo
above single-threaded performance

Virtual Loss

Record simulation as a loss at start
? Leads to more variety in UCT-like child selection

Change to a win if outcome is a win

Crucial technique for scaling

With virtual loss, scales well up to 64 threads

Can also use virtual wins

Relative ELO

Fuego Virtual Loss Experiment

200 LA N L L L L B LA
S ~ S R SRR s o -
__.ﬂ‘“-'--d---—-—-f“"'- H M
Lo i o —""-'----“-
-200 |- Bt ; -
-400
-600
-800 AT
1 7
i ’,/
_1000 1 | |||‘||||||||4(f|||||||||
1 2 4 8 16 32 64

Time for All Moves (minutes)

128

2 Threads

4 Threads

8 Threads
16 Threads
32 Threads
64 Threads
128 Threads
256 Threads
512 Threads

[S—
[T S,

- -

-
cece@enna

—————

Fig. 2. Self-play of N threads against a uni-processor with equal total computation.

Image source: (Segal 2010)

Relative ELO

200

-200 |
-400

-600

T LI LI L AL I LA L B ALLI RLAL B

-800

-1000

/ ; E E
L 111:’111 NI ENENIT SRS R

4 8 16 32 64 128 256

Time for All Moves (minutes)

2 Threads

4 Threads

8 Threads
16 Threads
32 Threads
64 Threads
128 Threads
256 Threads
512 Threads

-
ccccdecaa

=

- =
[S—

-

Fig. 4. Self-play of N threads against a uni-processor and virtual loss enabled.

Distributed Memory Parallelism

Many copies of MCTS engine, one on each compute node
Communicate by message passing (MPI)

MoGo model:
72 synchronize a few times per second

7 synchronize only “heavy” nodes which have many
simulations

Performance depends on

? hardware for communication

?2 shape of tree

2 game-specific properties, length of playouts

Normal UCT vs. Depth-first UCT

(D) (0
OO) @
®) @ j\> (Q (D (e
olo olo
Normal UCT Depth First UCT

always return to root returns only if needed

Image source: K. Yoshizoe

Depth-first UCT

Bottleneck of updates to “heavy” nodes including root

Depth-first reformulation of UCT

stay in subtree while best-child selection is unlikely to change
about 1 - 2% wrong child selections

#” Delay updates further up the tree

Similar idea as df-pn

AN

Unlike df-pn, sometimes the 3"-best (or worse) child can
become best

Distributed Memory: TDS

TDS — Transposition Table Driven Scheduling
(Romein et al 1999)

Single global hash table
2 Each node in tree owned by one processor
72 Work is sent to the processor that owns the node

7 Insingle-agent search, achieved almost perfect
speedup on mid-size parallel machines

TDS-df-UCT

Use TDS approach to implement df-UCT on
(massively) parallel machines

2 TSUBAME?2 (17984 cores)
2 SGI UV-1000 (2048 cores)

Implemented artificial game (P-game)
and Go (MP-Fuego program)

? In P-game: measure effect of playout speed
(artificial slowdown for fake simulations)

TDS-df-UCT Speedup - 1200 Cores

0.1 milli sec playout 1.0 milli sec playout

gs)
S 9400)
Q —_
> g i 5
——
branch 8 D 300 -
==-branch40 — o -m-branch40 /3
@ 200 0
i —tblanclll.'iﬂ_/% 100 —a—-branch 150 | ng
4 S —
- I @_ I ? T | @ - T - T . ‘I‘ T T 1
0 200 400 600 _ 800 1000 1200 0 200 400 600 800 1000 1200
Number of Cores Number of Cores

330 fold speedup for 0.1 ms playout
740 fold speedup for 1.0 ms playout

Image source: K. Yoshizoe

800

700

600 -

500 -

400

300

200

100

P-game 4,800 Cores

0.1 milli sec playout

1.0 milli sec playout

4,800
=&=branch 8 4,000 =4=branch 8
=#-branch 40
3,200 =#—=branch 150
% = 2,400
/ 1,600
_7VA 800
:{A
0 800 1600 2400 3200 4000 4800 800 1600 2400 3200 4000 4800
Number of Cores Number of Cores
job number 700-fold for 0.1 ms playout
= cores x 10 3,200-fold for 1.0 ms playout

Image source: K. Yoshizoe

TDS-df-UCT = TDS + depth first UCT

Speedup including Go
/)

2,000 72 2 playouts at leaf
P-game, b=150
. / / Z (approx. 0.8 ms playout)

1,500 Y=
? 5jobs/core

MP-Fuego

1,000 -

Mga me, b=40
0 800 1600 2400 3200 4000 4800

Number of Cores

Hardwarel: TSUBAME?2 supercomputer

Hardware2: SGI UV1000 (Hungabee)

Image source: K. Yoshizoe

Search Time and Speedup

MP-Fuego speedup (19x19)

2,000 v=x/ Short thinking time =
1,800 / slower speedup
1,600

/ 20-60 sec. per move

o One major difficulty in
1,200 .
L 000 massive parallel search

I move

800

600

400 -

Nec. per move

\

0 800 1600 2400
Number of Cores

200

Image source: K. Yoshizoe

Summary — MCTS Tutorial so far...

Reviewed algorithms, enhancements, applications
Bandits

Simulations

Monte Carlo Tree Search

AMAF, RAVE, adding knowledge

Hybrid algorithms

N N N N N D

Parallel algorithms

Still to come: impact of MCTS, research topics

Impact - Applications of MCTS

Classical Board Games
A Go, Hex

A Amazons
2 Lines of Action, Arimaa, Havannah, NoGo, Konane,...

Multi-player games, card games, RTS, video games

Probabilistic Planning, MDP, POMDP

Optimization, energy management, scheduling,
distributed constraint satisfaction, library
performance tuning, ...

Impact — Strengths of MCTS

Very general algorithm for decision making

Works with very little domain-specific knowledge

72 Need a simulator of the domain
Can take advantage of knowledge when present

Successful parallelizations for both shared memory
and massively parallel distributed systems

Current Topics in MCTS

Recent progress, Limitations, random half-baked
ideas, challenges for future work,...

Dynamically adaptive simulations
Integrating local search and analysis
Improve in-tree child selection

Parallel search
2 Extra simulations should never hurt
? Sequential halving and SHOT

Dynamically Adaptive Simulations

Idea: adapt simulations to specific current context
2 Very appealing idea, only modest results so far

? Biasing using RAVE (Rimmel et al 2010) — small
improvement

7 Last Good Reply (with Forgetting) (Drake 2009, Baier
et al 2010)

Integrating Local Search and Analysis

Mainly For Go
?2 Players do much local analysis

? Much of the work on simulation policies and
knowledge is about local replies

Combinatorial Game Theory has many theoretical
concepts

Tactical alphabeta search (Fuego, unpublished)

Life and death solvers

Improve In-tree Child Selection

Intuition: want to maximize if we’re certain, average if
uncertain

Is there a better formula than average weighted by
number of simulations? (My intuition: there has to

be...)

Part of the benefits of iterative widening may be that
the max is over fewer sibling nodes — measure that

?2 Restrict averaging to top n nodes

Extra Simulations Should Never Hurt

Ideally, adding more search should never make an
algorithm weaker

For example, if you search nodes that could be
pruned in alphabeta, it just becomes slower, but
produces the same result

Unfortunately it is not true for MCTS

Because of averaging, adding more simulations to
bad moves hurts performance - it is worse than
doing nothing!

Extra Simulations Should Never Hurt (2)

Challenge: design a MCTS algorithm that is robust
against extra search at the “wrong” nodes

This would be great for parallel search

A rough idea: keep two counters in each node -
total simulations, and “useful” simulations

III

Use only the “useful” simulations for child

selections

Could also “disable” old, obsolete simulations?

Sequential Halving, SHOT

Early MC algorithm: successive elimination of
empirically worst move (Bouzy 2005)

Sequential halving (Karnin et al 2013):
72 Rounds of uniform sampling
7 keep top half of all moves for next round

SHOT (Cazenave 2014)

72 Sequential halving applied to trees

Like UCT, uses bandit algorithm to control tree
growth

7
72 Promising results for NoGo
? Promising for parallel search

