Summary for off-policy

Off-policy RL with FA and ID remains challenging;
there are multiple solution ideas, plus combinations

 Higher A (less TD)

e Better state rep’'ns (less FA)

* Recognizers (less off-policy)

e LSTD (O(n?) methods)

 GGradient TD, proximal gradient TD, and hybrids

e Emphatic TD

Goals for today

® | earn that policies can be optimized
directly, without learning value functions,
by policy-gradient methods

® Glimpse how one could learn real-valued
(continuous) actions

® Glimpse how to handle hidden state

Policy-gradient methods

A new approach to control

Approaches to control

|. Previous approach: Action-value methods:
* learn the value of each action;
* pick the max (usually)
2. New approach: Policy-gradient methods:
* learn the parameters of a stochastic policy
* update by gradient ascent in performance

* includes actor-critic methods, which learn both
value and policy parameters

Actor-critic architecture

N
\ .
= Policy
\
Actor
y TD
Critic / error
Value
state r—®) '
Function action
/T
reward

VVhy approximate policies
rather than values?

® |n many problems, the policy is simpler to
approximate than the value function

® |n many problems, the optimal policy is
stochastic

® e.g., bluffing, POMDPs
® Jo enable smoother change in policies
® TJo avoid a search on every step (the max)

® Jo better relate to biology

Policy Approximation

® Policy = a function from state to action
® How does the agent select actions!?

® |n such a way that it can be affected by
learning!?

® |n such a way as to assure exploration?

® Approximation: there are too many states
and/or actions to represent all policies

® TJo handle large/continuous action spaces

We first saw this in Chapter 2, with the

Gradient-bandit algorithm

Store action preferences H:(a)
rather than action-value estimates);(a)

Instead of e-greedy, pick actions by an exponential soft-max:

th(CL)
(At =aj SN0 t(a)
Also store the sample average of rewards as R O (Ay)
S5, (o) /Tt AL)
t(a)

Then update:

Ht+1(a) — Ht(CL) -+ Oé(Rt — Rt) |

eg, linear-exponential policies
(discrete actions)

® The “preference” for action a in state s is linear
in 0 and a state-action feature vector ¢(s,a)

® The probability of action a in state s is
exponential in its preference

. exp(8 (s, a))
T O S e @7 (.)
® Corresponding eligibility function:

vr(als,6) _ S, a) — w(bls S
Taleg) = 9050 ~ 7005, 01905,

eg, linear-gaussian policies
(continuous actions)

LI A
[=0, 0%=0.2, ==/ _
=0, O?=1.0, m—| -
H=0, 0?=5.0, == |
H=-2, 0%=0.5, ==

action os| inear -

| u and o linear :
prob. N in the state -
density | ‘

action

eg, linear-gaussian policies
(continuous actions)

® The mean and std. dev. for the action taken in
state s are linear and linear-exponential in

0=(0,:0,)" uls)=0,0(s) o(s)=exp(6,¢(s)

® The probability density function for the action
taken in state s is gaussian

L1 (a—ps))
7T(a|3,9)—0(8)\/% P(20(s)? >

Gaussian eligibility functions

Vguﬂ'(a‘s,e) B 1 0 o o
7_‘_(&‘379) o O'(S)Q(:u())¢M()

Vo,r(als.0) _ ((a— u(s))’ 3
R G L

Policy-gradient setup

Given a policy parameterization:

6
7T(CL‘S,9) v;’?cfgsé)) = Vg logm(als,0)

And objective:
77(9) — (S (S()) (or average reward)

Approximate stochastic gradient ascent:

Ht_|_1 — Ht + &V/U(E)
Typically, based on the Policy-Gradient Theorem:

V(@) = dx(s)» ax(s,a)Ven(als,6)

Proof of the
Policy-Gradient

Theorem
(from the 2nd Edition)

Vur(s) , VseS (Exercise 3.11)

=V Z m(als)qx(s,a)

— Z :vw(a|3)qﬂ(s, a) + w(als)Var (s, a)] (product rule)

_ Z :Vw(a,|s)q7r(s, a) + w(als)V ZP(S/a rls,a)(r + ’Ww(sl)ﬂ

s'r

(Exercise 3.12 and Equation 3.8)

=3 |Vn(als)gn(s,a) + m(als) > p(s'|s, a) Vur(s))
i ’ (Eq. 3.10)
= {Vﬂ(a|s)qﬂ(s, a) + m(als) Z vp(s'|s, a) (unrolling)

> [Vrla|)an('sa) + 7@l 3 (sl) Ten ("))

a’ s/

_szykPr s—x, k,m ZV?T a|lxr)g-(x,a),

xed k=0

after repeated unrolling, where Pr(s— x, k,) is the probability of transition-

ing from state s to state x in k steps under policy m. It is then immediate
that

Vn(0) = VUW(S())

—ZnykPr so—> S, k,m ZVﬂ' als)qr(s,a)

s k=0

— Zdw ZVﬂ' (als)qr(s,a). Q.E.D.

Deriving REINFORCE from the PGT

= Z dr(s) Z 4n(s,a)Vor(als, 0).

— EW t Zqﬂ St VQTF CL’St):|

Vor(alS;, @)]
:Eﬂ' tzﬂ- a’St q7T Sta) (C§|S‘1t tg))
' Vor(A;|S,, 0))
E. _7 qﬁ(St,At) (415, 0) (replacing a by the sample A; ~ 7)
I VQW(At|St,0)]
— t b E |G| S, At] = ¢ (S, A
E,,T -’y Gt W(At\St,H) (ecause [t’ t t] q (t t))
Thus
— A\ A t ~ Vor(At|St,0)

' W(At’St, 9)

REINFORCE with baseline

Policy-gradient theorem with baseline:
— Z dﬁ(s) Z qﬂ(& a)veﬂ(a‘57 9) any function of state, not action
= Zd Z(% s,a) — b(s))ng(a]s,ﬁ)

Because

Zb(WVeor(als,0) VQZTF als,) s)Vgl =0 Vs e§

Thus

Y, Vor(A:|S;, 6
9t+1é9t+aA(Gt—b(St)) om(Ad] 51, 9)

(A, 0) e.g., b(s) = (s, w)

Actor-critic architecture

N
\ .
= Policy
\
Actor
y TD
Critic / error
Value
state r—®) '
Function action
/T
reward

Actor-Critic methods

REINFORCE with baseline;

t

v Vgﬂ'(At‘St 9)
A B ;
Ouvs £ 01+ (G =M8) S G

Actor-Critic method:

t

.
0,120, + aA(Ggl) _ @(St,w))
v, —R,

VQ’]T(At‘St, 6)
W(At\St,H)

VQTF(At‘St, 9)

— 0, + O‘A(Rt+1A+ Y0(St41,W) — ”(S’f’w)) m(Az|St, 0)

Complete PG algorithm

Initialize parameters of policy 8 € R™, and state-value tunction w € R™

Initialize eligibility traces e’ € R" and e¥ € R™ to 0

Initialize R =0

On each step, in state S:

Choose A according to m(:|S, 0)
Take action A, observe S, R
J— R— R+ @(S’7 W) — @(S, W) form TD error from critic

R« R4+ a% update average reward estimate
eV + eV + Vy0(S, w) update eligibility trace for critic
w<—w+aVoeV update critic parameters

e? « \ef 4 Zﬁ;"‘ggg’) update eligibility trace for actor

O «— 0+ a?5e? update actor parameters

Steps to understanding
Policy-gradient methods

® Policy approximations (als, 0)
® and their eligibility functions
® Approximate stochastic gradient ascent

® The policy-gradient theorem and its proof

® Approximating the gradient (REINFORCE)
e REINFORCE with a baseline

® Actor-critic methods

The generality of the
policy-gradient strategy

® Can be applied whenever we can compute the
effect of parameter changes on the action
probabilities, Vr(A;|S;, 6)

® E.g., has been applied to spiking neuron models

® There are many possibilities other than linear-
exponential and linear-gaussian

® e.g, mixture of random, argmax, and fixed-
width gaussian; learn the mixing weights, drift/
diffusion models

Goals for today

® | earn that policies can be optimized
directly, without learning value functions,
by policy-gradient methods

® Glimpse how one could learn real-valued
(continuous) actions

® Glimpse how to handle hidden state

Hidden State

What it is
What to do about it

What is hidden state?

® Sometimes the environment includes state
variables that are not visible to the agent

® the agent sees only observations, not state

® c.g,the object in the box, or in other
rooms, velocities, even real positions as
distinct from sensor readings

® |his makes the environment Non-Markov

® All real problems involve extensive hidden
state

® The agent’s approximation to the hidden
state of the environment will be imperfect
and non-Markov

® But all of our methods rely on the Markov
(state) property to some extent

® VWhat to do!

DON'T
PANIC

The usual over-reaction

® |ntroducing a whole new mathematical theory
® like POMDPs (Partially Observable MDPs)
® or HMMs (Hidden Markov Models)

® Relying on complete models of the hidden underlying
environment and observation generators

® cven though these things are all hidden

® Thereby making both learning and planning
intractably complex

There may be nothing
you can do

® |f the agent’s approximate state is very poor,
then any policy based on it will be poor

Use your tools!
|. Function approximation

® Features can be anything; they can be an
arbitrary summary of past observations

® Nothing in our theory relies on the
features being Markov

-. FA will work ok with non-Markov features

Use your tools!
2. Eligibility traces

® Monte Carlo methods are much less reliant on
having a good state approximation

® because they don’t bootstrap

® FEligibility traces allow our learning methods to
be fully or partly Monte Carlo

® and thus resistant to hidden state

Remember: the bound of approximation accuracy depends on A

Remember: why do we ever bootstrap!?

The long-term solution

® Don’t panic
® Use your tools
® Embrace approximation

® Develop a recurrent process for updating the
agent’s approximate state

® Accept that it will be approximate, imperfect

® And that it will have to monitored, debugged,
improved...forever approximate

Foreground-background architecture

Planning is in
— »| Planner the background

Interaction and

learning are in
the foreground World I

Foreground-background architecture
with partial observability

A, R---5-- | -Model Planning is in
" » Planner the background
State update @~ :
i A
A S’_—> 7-‘\-\\ @
................................. IR
R

Interaction and O

' A
learning are in
the foreground World I

Agent state and its update

> * Agent state is whatever the
A R-cemee -Modél
’ 3 agent uses as state
| Planner * in policy, value fn, model...
o :\ * may differ from env state
A ! S 7 Q | and information state
T * State update:
O R: A St+1 = u(St, Ag, Opq1)
World [«— * e.g., Bayes rule, k-order

Markov (history), PSRs,
predictions

Planning should be state-to-state

e State update is in the foreground!

=
A, R “‘}""'Mﬂdel * Planner and model see only
—> Planner states, never observations
-, i * We lost this with POMDPs; Why?
A _, Q) e Classical and MDP planning
5 —_— were always state-to-state
O R: A * Planning can always be state-to-
World l«— state in information state

* Function approximation makes
planning in the info state a natural,

Si41 = u(St, Ay, Opy1) flexible, and scalable approach

Goals for today

® Glimpse how to handle hidden state

