Chapter 11

Off-policy methods
with approximation

Recall off-policy learning involves two policies

e One policy w whose value function we are learning
e the target policy

« Another policy u that iIs used to select actions

e the behavior policy

Off-policy is much harder with Function Approximation

e Even linear FA

e Even for prediction (two fixed policies & and u)

* Even for Dynamic Programming
 The deadly triad: FA, TD, off-policy
 Any two are OK, but not all three

o With all three, we may get instabllity
(elements of @ may increase to +oo)

There are really 2 off-policy problems
One we know how to solve, one we are not sure
One about the future, one about the present

* [he easy problem is that of off-policy targets (future)
* \We have been correcting for that since Chapters 5 and 6
* Using importance sampling in the target

 The hard problem is that of the distribution of states to update (present);
we are no longer updating according to the on-policy distribution

Baird’'s counterexample illustrates the instability

m(solid|-) =1
u(dashed|-) = 6/7
u(solid|-) = 1/7

201+0g) |202+03g) (203+0g) (204+0g) (2054035 (20605

. |

———>

300

200 +

100

Components
of the parameter vector

at the end of the episode %,
under semi-gradient
off-policy TD(0)

(similar for DP) - 0, 96,,
, _ _ _,_-—__eﬁ”#ﬁm 07
0 _ 100
Episodes

What causes the instability?

* |t has nothing to do with learning or sampling

 Even dynamic programming suffers from divergence with FA
* |t has nothing to do with exploration, greedification, or control

* Even prediction alone can diverge

* |t has nothing to do with local minima
or complex non-linear approximators

 Even simple linear approximators can produce instability

The deadly triad

Any 2 Ok

* The risk of divergence arises whenever

1. Function approximation

we combine three things:

e significantly generalizing from large numbers of examples

2. Bootstrapping

* |earning value estimates from other value estimates,
as in dynamic programming and temporal-difference learning

3. Off-policy learning (Why is dynamic programming off-policy?)

* |earning about a policy from data not due to that policy,

as in Q-learning, where we learn about the greedy policy from
data with a necessarily more exploratory policy

TD(0) can diverge: A simple example

6 = r4+~0"'¢ —0'¢
= 04200
= 0
TD update: A0 = «adod
= af Diverges!
TD fixpoint: 0 = 0

Vg = @(7 9)

(Brv)(s) =) (s, a)

ac A

as a glant vector & RIS

The space of all
value functions

r(s,a) +7y) p(sls, a)v(s’)

s’'eS

VE

Value Error

(Geometric intuition

-0
N

/‘1—.[/117-(-5 min ||[VE]|

P
min | BE||

Can we do without bootstrapping?

e Bootstrapping is critical to the computational efficiency of DP
* Bootstrapping is critical to the data efficiency of TD methods

* On the other hand, bootstrapping introduces bias, which
harms the asymptotic performance of approximate methods

 The degree of bootstrapping can be finely controlled via the A
parameter, from A=0 (full bootstrapping) to A=1 (no
bootstrapping)

4 examples of the effect of bootstrapping

suggest that A=1 (no bootstrapping) is a very poor choice

MOUNTAIN CAR RANDOM WALK
700 : @-0.5
650 - | @ i
.‘ o
600 accumulating+ accumulating ',' - 0.4
Steps per s, _ traces RMS error
episode :
500 -
4307 replacing 2 ,
traces 'etFr);%‘; ':9 - 0.2
400 || 1 1 1 1 | T 1 T T T 1
0 02 04 06 0.8 1 0 02 04 06 08 1 '
In all cases \ N Rfed ptc))mtts tare the cases
lower is better o OT N0 DOOtStrapping
\/ PUDDLE WORLD CART AND POLE T
240 — 300
230- @l '.i
220 - T N el
210 .
Cost per 200- | Lo 1':)?)”36%5 per
episode g replacing B accumulating | | , steps
: traces O-__ _ 9. [1s0
180':_'_ _ -~ . '9~--§ traces* :
1704 27 4 T ‘\o,x’g\é - 100
160 - -
150 1 | I 1 | | | | 1 | 1 1 | 50

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1

Pure A No A |
bootstrapping bootstrapping We need bootstrapping!

Desiderata: VWe want a I D algorithm that

® Bootstraps (genuine TD)

® Works with linear function approximation
(stable, reliably convergent)

® |s simple, like linear TD — O(n)
® | earns fast, like linear TD
® Can learn off-policy

® | earns from online causal trajectories
(no repeat sampling from the same state)

4 easy steps to stochastic gradient descent

|. Pick an objective function J(6),
a parameterized function to be minimized

2. Use calculus to analytically compute the gradient Vg.J(6)

3. Find a “sample gradient” Vy.J;(0) that you can sample on
every time step and whose expected value equals the gradient

4. Take small steps in 6 proportional to the sample gradient:

0 — 0 — aVeJ,(0)

Conventional TD is not the gradient of anything

TD(0) algorith e
(0) algorithm: S =1 +~0Td —07 ¢
Assume there is a | such that: gé] = 0¢;

Then look at the second derivative:

04.J B O(5¢;) B / L
893.@92. o 89]' — (7¢j o gb])gbz 6’2J # 82J
00.00, ~ 060,00
0°J _ a(5¢) L / N J ? 11UV
p0.00, — o8, 1%~ 00,

Real 2"? derivatives must be symmetric
Etienne Barnard 1993

A-split example (Dayan 1992)

Clearly, the true values are

V(A)=0.5
50% 50% V(B) =1
@ But if you minimize the naive
objective fn,
100% N
 / v J(Q) — ‘L[52]’
1 0 then you get the solution
V(A)=1/3
V(B)=2/3

Even in the tabular case (no FA)

Indistinguishable pairs of MDPs

0 These two have different Value Errors,

o X0))2 o X0 o)) but the same Return Errors

(both errors have the same minima)
JRE(Q)Q — JVE(H)Q + I [(UW(St) — Gt)2 ‘ At:oo ~ W}

1 -1 These two have different Bellman Errors,

1 -1)
/l, but the same Projected Bellman Errors

(the errors have different minima)

Not all objectives can be estimated from data
Not all minima can be found by learning

Data

Data dlstrlbutlon
distribution

/Pu(§)
MDP, MDP\ MDP, MDP2 \\

l l . l pBE

VE; VE, BE, BE2 v
l l l 9;: 0;
0; 03

No learning algorithm can find the minimum of the Bellman Error

The Gradient-TD Family of Algorithms

* [Jrue gradient-descent algorithms in the Projected Bellman Error
 GTD(A) and GQ(A), for learning V and Q
* Solve two open problems:

* convergent linear-complexity off-policy TD learning

* convergent non-linear 1D

 Extended to control variate, proximal forms by Mahadevan et al.

First relate the geometry to the lid statistics

\
7 \
// \

QS\%%@

N IITV,
A0 ?
MSPBE(Q) 4 _ __ RMSPBE

2 matrix of the feature vectors for all states
Ve —IIT'Vy || S W
M=3&@ D) 'd"D

= || TI(Ve = TVe) |15 T D(TVy — Vy) = E[3¢)
(Ve — TVp)) D(II(Vy — TVj)) 3" DP = E[pe"
Vo —TVy) 'I1' DII(Vy — TV,)

Vo —TVy)' D'®(®@"'DD)1®"' D(Vy — TVy)

®' D(TVy — V@)) (&' DP)'® "' D(TVy — Vp)

= E[6¢] E[ps7] E[dg].

(
(
(
(

Derivation of the TDC algorithm

1

(sampling)

X

2

T

, S > S
—5aV | Vo — TV, ||5 l 1/
1 b ¢

—5aVy (EWGIE [p07] " E[d¢)])

—a(VeE[6g])E [6¢"] " E[5¢]

' T ' This is the trick!
QWO — ayP o w w € K" is a second

set of weights

I'D with gradient correction (1DC) algorithm
aka GTD(0)

® on each transition §—S

® update two parameters with gradient
.~ correction

0 T ED
W «— W + ﬁ(estimate of the

® where, as usual TD error (9) for
the current state ¢
b=r+~0'¢/ —0'¢

Convergence theorems

o All algorithms converge w.p.1 to the TD fix-point:

L0¢p| — 0

e GID, GTD-2 converges at one time scale

a=p0-—0

 [D-C converges in a two-time-scale sense
@7

o, 3 — 0 > 0
o

Off-policy result: Baird’s counter-example

10
10 |
8 7
_ 10 7)
5 +/-10
- o T
y ©
o T 5
& GTD ~10 N~ U |
o 4* - 10 &
10 1000 2000 3000 4000 5000
GTD_2 Sweeps
27
TDC
O A
0] 20 40 60 80 100 120 140 160 180 200
Sweeps

Gradient algorithms converge. TD diverges.

Computer Go experiment

® | earn a linear value
function (probability of
winning) for 9x9 Go
from self play

0.6

® One million features, >4

each corresponding to a

template on a part of >
the Go board

0 : : : : : |
.000001 .000003 .00001 .00003 .0001 .0003 .001

® An established x
experimental testbed

ALGORITHM

TD(N), Approx. LSTD(N), ¢ oy o Residual
Sarsa(\) DP LSPE(A) gradient

Linear
computation J J x ‘/

Nonlinear
convergent

X

Oft-policy
convergent

Model-free,
onhline

Converges to
PBE = 0

vV | Y
X | v
x| v
v | &8

INn conclusion

Off-policy RL with FA and TD remains challenging;
there are multiple ideas, plus combinations

e Gradient TD, proximal gradient TD, and hybrids

 Emphatic 1D

| | More work needed
* Higher A (less TD) on these novel algs!

|

» Better state rep'ns (less FA)

* Recognizers (less off-policy)

e LSTD (O(n2) methods)

>

—mphnatic temporal-
difference learning

Rupam Mahmood, Huizhen (Janey) Yu, Martha White, Rich Sutton

Reinforcement Learning and Artificial Intelligence Laboratory
Department of Computing Science
University of Alberta
Canada

-

State weightings are important,

powerful, even magical,

when using “genuine function approximation”
(i.e., when the optimal solution can’t be approached)

* [hey are the difference between convergence and divergence
In on-policy and off-policy TD learning

 [hey are needed to make the problem well-defined

 We can change the weighting by emphasizing some steps
more than others in learning

Often some time steps are more important

o Early time steps of an episode may be more important
* Because of discounting

 Because the control objective Is to maximize the
value of the starting state

* |n general, function approximation resources are limited
* Not all states can be accurately valued
 The accuracy of different state must be traded off!

* You may want to control the tradeotft

Bootstrapping interacts with
state Importance

* |n the Monte Carlo case (A=1) the values of different
states (or time steps) are estimated independently,

iINndependently

and thelr importances can be assigned

o But with bootstrapping (A<1) each state’s value is
estimated based on the estimated values of |later

states; If the state is impor

mportant to accurate
they are not importan

ant, then it becomes

V va

ue the later states even if

- on thelr own

Two kinds of importance

e |ntrinsic and derived, primary and secondary

 [he one you specify, and the one that follows from
It because of bootstrapping

R .

o Ourterms: Interest and Emphasis

e Your Intrinsic interest in valuing accurately on a
time step

e [he total resultant emphasis that you place on
each time step

e Data ¢o:S—R"

feature function

l
S ¢(St) At Rt—l—l qb(St—l—l) At—l—l Rt—|—2 n

e State distribution

behavior policy

Problem dy(s) = lim Pr[S, = s | Aoy ~ L]
* Objective to minimize e el transpose
parameter vector function (inner product)
\ / o
MSE(8) = > du(s)i(s) (ve(s) — 07 (s))
SES interestTfunction tabr\get policy

i8S — RT

 Emphatic TD(O)

041 = 0¢ + aMp, (Riy1 + 70, dry1 — 0, 1) P
N

emphasis importance sampling ratio
M, > 0 o PINg
~ m(A]Sy)

o (A St)

Solution
b = B(S1)

Elp:] =1

!
T Cb(St) At Rt—l—l ¢(St—|—1) At—l—l Rt—|—2 T

e State distribution

behavior policy

d,u(S) — lim Pr [St — S ‘ A():t—l ~ L]

{— 00

Problem |

e Objective to minimize true value transpose
parameter vector fUﬂ/CtiOﬂ (inner product)
\ 2
- T
MSE(8) =3 d, ()i(s) (v2(5) ~ 070(s))
SES interest function &9t policy
i8S —> R

 Emphatic TD(O)

0111 =0 + ?Mtpt (Rt—l—l + V0;¢t+1 — 9;@) oF
N

emphasis importance sampling ratio
M, >0
f t _ T(ASH) _ bt = P(St)
- Pt — A S E[pt] =1
SOIU“O” (A |St)

 Emphatic LSTD(0)

t t
A; = Z Mp.pr @i (dr — Yo 1)T b; = Z My, pr. Ry,
k=0 k=1

0,41 = Ay by

Emphasis algorithm

(Sutton, Mahmood & White 2015)

* Derived from analysis of general bootstrapping
re‘atiOﬂShipS (Sutton, Mahmood, Precup & van Hasselt 2014)

* Emphasis is a scalar signal M; > 0
Mt —)\t Z(St) —|— (]. —)\t)Ft
e Defined from a new scalar followon trace F; > 0

Fiy = pr1v Fr—1 + 1(S)

Off-

policy Implications

The emphasis weighting is stable under off-policy TD(A)
(like the on-policy weighting) (Sutton, Mahmood & White 2015)

* |t is the followon weighting, from the interest weighted behavior
distribution (d,(s)i(s)), under the target policy

Learnir

g Is convergent (tho

under t

ne emphasis weighti

ugh not necessarily of finite variance)

19

for arbitrary target and behavior policies (with coverage) (vu 2015)

There are error bounds analogous to those for on-policy TD(A) (Munos)

Emphatic T

D Is the simplest convergent off-policy TD algorithm

(one parameter, one learning rate)

