
Off-policy methods 
with approximation

Chapter 11



Recall off-policy learning involves two policies

• One policy π whose value function we are learning 

• the target policy 

• Another policy 𝜇 that is used to select actions 

• the behavior policy



Off-policy is much harder with Function Approximation

• Even linear FA 

• Even for prediction (two fixed policies π and 𝜇) 

• Even for Dynamic Programming 

• The deadly triad: FA, TD, off-policy 

• Any two are OK, but not all three 

• With all three, we may get instability  
(elements of 𝜽 may increase to ±∞)



There are really 2 off-policy problems
One we know how to solve, one we are not sure
One about the future, one about the present

• The easy problem is that of off-policy targets (future) 

• We have been correcting for that since Chapters 5 and 6 

• Using importance sampling in the target 

• The hard problem is that of the distribution of states to update (present); 
we are no longer updating according to the on-policy distribution



Baird’s counterexample illustrates the instability
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Figure 11.2: Demonstration of instability on Baird’s counterexample. The step size was
↵ = 0.001, and the initial weights were ✓ = (1, 1, 1, 1, 1, 1, 10, 1)>.

In this case, there is no randomness and no asynchrony. Each state is updated exactly
once per sweep as in a classical DP backup. The method is entirely conventional
except in its use of semi-gradient function approximation. Yet still the system is
unstable, as is also shown in Figure 11.2. The same instability can occurs if semi-
gradient Q-learning is used (11.3)...

If we alter just the distribution of DP backups in Baird’s counterexample, from
the uniform distribution to the on-policy distribution (which generally requires asyn-
chronous updating), then convergence is guaranteed to a solution with error bounded
by (9.14). This example is striking because the TD and DP methods used are ar-
guably the simplest and best-understood bootstrapping methods, and the linear,
semi-descent method used is arguably the simplest and best-understood kind of
function approximation. The example shows that even the simplest combination
of bootstrapping and function approximation can be unstable if the backups are not
done according to the on-policy distribution.

There are also counterexamples similar to Baird’s showing divergence for Q-learning.
This is cause for concern because otherwise Q-learning has the best convergence
guarantees of all control methods. Considerable e↵ort has gone into trying to find
a remedy to this problem or to obtain some weaker, but still workable, guarantee.
For example, it may be possible to guarantee convergence of Q-learning as long as
the behavior policy (the policy used to select actions) is su�ciently close to the esti-
mation policy (the policy used in GPI), for example, when it is the "-greedy policy.
To the best of our knowledge, Q-learning has never been found to diverge in this
case, but there has been no theoretical analysis. In the rest of this section we present
several other ideas that have been explored.

Suppose that instead of taking just a step toward the expected one-step return on
each iteration, as in Baird’s counterexample, we actually change the value function
all the way to the best, least-squares approximation. Would this solve the instability
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Figure 11.1: Baird’s counterexample. The approximate state-value function for this Markov
process is of the form shown by the linear expressions inside each state. The solid action
usually results in the seventh state, and the dashed action usually results in one of the other
six states, each with equal probability. The episode terminates on all transitions with 1%
probability, much like a � = 0.99 discount rate. The reward is always zero.

state, ending the episode. (This is similar to a discount rate of 99%.) The behavior
policy µ takes the two actions with probabilities 6/7 and 1/7, so that the next-state
distribution under it is uniform (the same for all nonterminal states), which is also
the starting distribution for each episode. The target policy ⇡ always takes the solid
action, and so the on-policy distribution is concentrated in the seventh state. The
reward is zero on all transitions.

Consider estimating the state-value under the linear parameterization indicated
by the expression shown in each state circle. For example, the estimated value of
the first state is 2✓1 + ✓8, where the subscript corresponds to the component of the
overall weight vector ✓; this corresponds to a feature vector for the first state being
�(1) = (2, 0, 0, 0, 0, 0, 0, 1)>. The reward is zero on all transitions, so the true value
function is v⇡(s) = 0, for all s, which can be exactly approximated if ✓ = 0. In fact,
there are many solutions, as there are more components to the weight vector (8) than
there are nonterminal states (7). Moreover, the set of feature vectors, {�(s) : s 2 S},
corresponding to this function is a linearly independent set. In all ways, this task
seems a favorable case for linear function approximation.

If we apply semi-gradient TD(0) to this problem (11.2), then the weights diverge
to infinity, as shown in Figure 11.2. The instability occurs for any positive step size,
no matter how small. In fact, it even occurs if we do a DP-style expected backup
instead of a learning backup. That is, if the weight vector, ✓k, is updated in sweeps
through the state space, performing a synchronous, semi-gradient backup at every
state, s, using the DP (full backup) target:

✓k+1
.
= ✓k + ↵

X

s

h
E[Rt+1 + �v̂k(St+1) | St =s] � v̂k(s)

i
rv̂k(s).
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under semi-gradient
off-policy TD(0)
(similar for DP)



What causes the instability?

• It has nothing to do with learning or sampling 

• Even dynamic programming suffers from divergence with FA 

• It has nothing to do with exploration, greedification, or control 

• Even prediction alone can diverge 

• It has nothing to do with local minima 
 or complex non-linear approximators 

• Even simple linear approximators can produce instability 



The deadly triad
• The risk of divergence arises whenever we combine three things: 

1. Function approximation 

• significantly generalizing from large numbers of examples 

2. Bootstrapping 

• learning value estimates from other value estimates,  
as in dynamic programming and temporal-difference learning 

3. Off-policy learning 

• learning about a policy from data not due to that policy,  
as in Q-learning, where we learn about the greedy policy from 
data with a necessarily more exploratory policy

(Why is dynamic programming off-policy?)

Any 2 Ok



TD(0) can diverge: A simple example

TD update:

TD fixpoint:

� 2�
r=1

⇥ = r + �⇤⇥⌅� � ⇤⇥⌅

= 0 + 2⇤ � ⇤

= ⇤

�⇤ = �⇥⌅

= �⇤

�� = 0

Diverges!



Geometric intuition

according to a stationary decision making policy ⇡ : S ⇥ A ! [0, 1] where ⇡(s, a) is the
probability that At = a given that St = s, for all t. To solve the MDP is to find an optimal
policy ⇡⇤, defined as a policy that maximizes the expected �-discounted reward received
from each state:

⇡⇤ = argmax
⇡

v⇡(s), 8s 2 S,

where

v⇡(s) = E⇡
⇥
Rt+1

+ �Rt+2

+ �2Rt+3

+ · · ·
�� St = s

⇤
, 8s 2 S, (1)

where � 2 [0, 1) is known as the discount-rate parameter, and the subscript on the E
indicates that the expectation is conditional on the policy ⇡ being used to select actions.
The function v⇡ is called the state-value function for policy ⇡.

A key subproblem underlying almost all e�cient solution strategies for MDPs is policy
evaluation, the computation or estimation of v⇡ for a given policy ⇡. For example, the
popular DP algorithm known as policy iteration involves computing the value function for
a sequence of policies, each of which is better than the previous, until an optimal policy is
found. In TDL, algorithms such as TD(�) are used to approximate the value function for
the current policy, for example as part of actor–critic methods.

If the state space is finite, then the estimated value function may be represented in a
computer as a large array with one entry for each state and the entries directly updated to
form the estimate. Such tabular methods can handle large state spaces, even continuous
ones, through discretization, state aggregation, and interpolation, but as the dimensionality
of the state space increases, these methods rapidly become computationally infeasible or
ine↵ective. This is the e↵ect which gave rise to the phrase “the curse of dimensionality.”

A more general and flexible approach is to represent the value function by a functional
form of fixed size and fixed structure with many variable parameters or weights. The weights
are then changed to reshape the approximate value function to better match the true value
function. We denote the parameterized value function approximator as

v✓(s) ⇡ v⇡(s), 8s 2 S, (2)

where ✓ 2 Rn, with n ⌧ |S|, is the weight/parameter vector. The approximate value
function can have arbitrary form as long as it is everywhere di↵erentiable with respect to
the weights. For example, it could be a cubic spline, or it could implemented by a multi-
layer neural network where ✓ is the concatenation of all the connection weights. Henceforth
refer to ✓ exclusively as the weights, or weight vector, and reserve the word “parameter”
for things like the discount-rate parameter, �, and step-size parameters.

An important special case is that in which the approximate value function is linear in
the weights and in features of the state:

v✓(s) = ✓>�(s), (3)

where the �(s) 2 Rn, 8s 2 S, are feature vectors characterizing each state s, and x>y
denotes the inner product of two vectors x and y.

2

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ � B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤
2

. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤
2

. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤
r✓v✓(s) = ~0. (12)
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where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ � B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤
2

. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤
2

. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s) � v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not
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TheothertwogoalsforapproximationarerelatedtotheBellmanequation,whichcan
bewrittencompactlyinvectorformas

v⇡=B⇡v⇡,(7)

whereB⇡:R|S|!R|S|istheBellmanoperatorforpolicy⇡,definedby

(B⇡v)(s)=
X

a2A
⇡(s,a)

"
r(s,a)+�

X

s02S
p(s0|s,a)v(s0)

#
,8s2S,8v:S!R.(8)

(Ifthestateandactionspacesarecontinuous,thenthesumsarereplacedbyintegralsand
thefunctionp(·|s,a)istakentobeaprobabilitydensity.)Thetruevaluefunctionv⇡is
theuniquesolutiontotheBellmanequation;theBellmanequationcanbeviewedasan
alternatewayofdefiningv⇡.Foranyvaluefunctionv:S!Rnotequaltov⇡,therewill
alwaysbeatleastonestatesatwhichv(s)6=(B⇡v)(s).

ThediscrepancybetweenthetwosidesoftheBellmanequation,v⇡�B⇡v⇡,isanerror
vector,andreducingitisthebasisforoursecondandthirdgoalsforapproximation.The
secondgoalistominimizetheerrorvector’slengthinthed-metric.Thatis,tominimize
themean-squaredBellmanerror:

BE(✓)=
X

s2S
d(s)

⇥
(B⇡v✓)(s)�v✓(s)

⇤2

.(9)

Notethatifv⇡isnotrepresentable,thenitisnotbepossibletoreducetheBellmanerror
tozero.Foranyv✓,thecorrespondingB⇡v✓willgenerallynotberepresentable;itwilllie
outsidethespaceofrepresentablefunctions,assuggestedbythefigure...

Finally,inourthirdgoalofapproximation,wefirstprojecttheBellmanerrorandthen
minimizeitslength.Thatis,weminimizetheerrornotintheBellmanequation(7)butin
itsprojectedform:

v✓=⇧B⇡v✓,(10)

UnliketheoriginalBellmanequation,formostfunctionapproximators(e.g.,linearones)
theprojectedBellmanequationcanbesolvedexactly.Ifitcan’tbesolvedexactly,youcan
minimizethemean-squaredprojectedBellmanerror:

PBE(✓)=
X

s2S
d(s)

⇥
(⇧(B⇡v✓�v✓))(s)

⇤2

.(11)

Theminimumisachievedattheprojectionfixpoint,atwhich

X

s2S
d(s)

⇥
(B⇡v✓)(s)�v✓(s)

⇤
r✓v✓(s)=~0.(12)
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at
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at
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p
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b
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b
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b
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at
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b
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b
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⇡
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b
e

re
p
re

se
nt

ab
le

;
it

w
il
l
li
e

ou
ts

id
e

th
e

sp
ac

e
of

re
p
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at
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b
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⇡
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b
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b
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p
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re
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h
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p
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b
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p
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p
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at
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b
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2.2 Bellman error

The second goal for approximation is to approximately solve the Bellman equation:

v⇡ = B⇡v⇡,

(8)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A

⇡(s, a)

"
r(s, a) + �

X

s02S

p(s0 |s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (9)

(If the state and action spaces are continuous, then the sums are replaced by integrals and

the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is

the unique solution to the Bellman equation, and in this sense the Bellman equation can

be viewed as an alternate way of defining v⇡. For any value function v✓ not equal to v⇡, we

can ask the Bellman equation to hold approximately, v✓ ⇡ B⇡v✓. That is, we can minimize

the Bellman error : BE(✓) = ||v✓ � B⇡v✓||,
(10)

though we cannot expect to drive it to zero if v⇡ is outside the representable subspace.

Figure 1 shows the geometric relationships; note that the Bellman operator is shown as

taking value functions inside the subspace outside to something that is not representable,

and that the point of minimum BE is in general di↵erent from that of minimum VE.

The BE was first proposed as an objective function for DP by Schweitzer and Seidmann

(1985). Baird (1995, 1999) extended it to TDL based on stochastic gradient descent, and

Engel, Mannor, and Meir (2003) extended it to least squares (O(n2)) methods known as

Gaussian Process TDL. In the literature, BE minimization is often referred to as Bellman

residual minimization.

2.3 Projected Bellman error

The third goal for approximation is to approximately solve the projected Bellman equation:

v✓ = ⇧B⇡v✓.

(11)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones) the

projected Bellman equation can be solved exactly. The original TDL methods (Sutton 1988,

Dayan 1992) converge to this solution, as does least-squares TDL (Bradke & Barto 1996,

Boyan 1999). The goal of achieving (11) exactly is common; less common is to consider

approximating it as an objective. The early work on gradient-TD (e.g., Sutton et al. 2009)

appears to be first to have explicitly proposed minimizing the d-weighted norm of the error

in (11), which we here call the projected Bellman error :

PBE(✓) = ||v✓ � ⇧B⇡v✓||.
(12)

This objective is best understood by looking at the left side of Figure 1. Starting at v✓,

the Bellman operator takes us outside the subspace, and the projection operator takes us

back into it. The distance between where we end up and where we started is the PBE. The

distance is minimal (zero) when the trip up and back leaves us in the same place.
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(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation, and in this sense the Bellman equation can
be viewed as an alternate way of defining v⇡. For any value function v✓ not equal to v⇡,
we can ask the Bellman equation to hold approximately, v✓ ⇡ B⇡v✓. The error between the
two sides of this equation we define as the Bellman error (BE):

�̄✓
.
= B⇡v✓ � v✓. (15)

The Bellman error objective is to minimize the norm of this vector:

J
BE

(✓)
.
=

���̄✓

�� , (16)

Note that we cannot expect to drive �̄✓ to zero if v⇡ is outside the representable subspace.
Figure 2 shows the geometric relationships; note that the Bellman operator is shown as
taking value functions inside the subspace outside to something that is not representable,
and that the that minimizes BE is in general di↵erent from that which minimizes VE.

The BE was first proposed as an objective function for DP by Schweitzer and Seidmann
(1985). Baird (1995, 1999) extended it to TDL based on stochastic gradient descent, and
Engel, Mannor, and Meir (2003) extended it to least squares (O(n2)) methods known as
Gaussian Process TDL. In the literature, BE minimization is often referred to as Bellman
residual minimization.

3.3 Projected Bellman error

The third goal for approximation is to approximately solve the projected Bellman equation:

v✓ = ⇧B⇡v✓. (17)

Unlike the original Bellman equation, the projected Bellman equation can be solved exactly
for linear function approximators. The original TDL methods (Sutton 1988, Dayan 1992)
converge to this solution, as does least-squares TDL (Bradke & Barto 1996, Boyan 1999).
The goal of achieving (17) exactly is common; less common is to consider approximating
it as an objective. The early work on gradient-TD (e.g., Sutton et al. 2009) appears to be
first to have explicitly proposed minimizing the d-weighted norm of the error in (17), which
we here call the projected Bellman error (PBE) objective:

J
PBE

(✓)
.
= kv✓ � ⇧B⇡v✓k =

��⇧�̄✓

�� . (18)

This objective is best understood by looking at the left side of Figure 2. Starting at v✓, the
Bellman operator takes us outside the subspace, and the projection operator takes us back
into it. The distance between where we end up and where we started is the PBE.

J
PBE

= 0 min J
BE
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1

✓
2

⇧v⇡ (min J
VE

) ⇧v⇡ ⌘ min J
VE

⌘ min kVEk min kBEk ✓
1

✓
2

⇧v⇡ (min J
VE

) ⇧v⇡ ⌘ min J
VE
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(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation, and in this sense the Bellman equation can
be viewed as an alternate way of defining v⇡. For any value function v✓ not equal to v⇡,
we can ask the Bellman equation to hold approximately, v✓ ⇡ B⇡v✓. The error between the
two sides of this equation we define as the Bellman error (BE):
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= B⇡v✓ � v✓. (15)

The Bellman error objective is to minimize the norm of this vector:
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Note that we cannot expect to drive �̄✓ to zero if v⇡ is outside the representable subspace.
Figure 2 shows the geometric relationships; note that the Bellman operator is shown as
taking value functions inside the subspace outside to something that is not representable,
and that the that minimizes BE is in general di↵erent from that which minimizes VE.

The BE was first proposed as an objective function for DP by Schweitzer and Seidmann
(1985). Baird (1995, 1999) extended it to TDL based on stochastic gradient descent, and
Engel, Mannor, and Meir (2003) extended it to least squares (O(n2)) methods known as
Gaussian Process TDL. In the literature, BE minimization is often referred to as Bellman
residual minimization.

3.3 Projected Bellman error

The third goal for approximation is to approximately solve the projected Bellman equation:

v✓ = ⇧B⇡v✓. (17)

Unlike the original Bellman equation, the projected Bellman equation can be solved exactly
for linear function approximators. The original TDL methods (Sutton 1988, Dayan 1992)
converge to this solution, as does least-squares TDL (Bradke & Barto 1996, Boyan 1999).
The goal of achieving (17) exactly is common; less common is to consider approximating
it as an objective. The early work on gradient-TD (e.g., Sutton et al. 2009) appears to be
first to have explicitly proposed minimizing the d-weighted norm of the error in (17), which
we here call the projected Bellman error (PBE) objective:
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�� . (18)

This objective is best understood by looking at the left side of Figure 2. Starting at v✓, the
Bellman operator takes us outside the subspace, and the projection operator takes us back
into it. The distance between where we end up and where we started is the PBE.
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where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s)
.
=

X

a2A
⇡(s, a)

"

r(s, a) + �
X

s02S
p(s0|s, a)v(s0)

#

, 8s 2 S, 8v : S ! R, (14)

which can also be written,

B⇡v = r⇡ + �P⇡v, 8v : S ! R, (15)

where r⇡ 2 R|S| is a vector whose entries give the expected immediate reward from each
state under ⇡, [r⇡]s =

P

a2A ⇡(s, a)r(s, a), and P⇡ 2 R|S| ⇥ R|S| is a state-transition matrix
for policy ⇡, with entries [P⇡]ji =

P

a2A ⇡(i, a)p(j|i, a). The true value function v⇡ is the
unique solution to the Bellman equation, and in this sense the Bellman equation can be
viewed as an alternate way of defining v⇡. For any value function v✓ not equal to v⇡, we
can ask the Bellman equation to hold approximately, v✓ ⇡ B⇡v✓. The error between the
two sides of this equation we define as the Bellman error (BE):

�̄✓
.
= B⇡v✓ � v✓. (16)

The Bellman error objective is to minimize the norm of this vector:

J
BE

(✓)
.
=

�

��̄✓

�

� , (17)

Note that we cannot expect to drive �̄✓ to zero if v⇡ is outside the representable subspace.
Figure 2 shows the geometric relationships; note that the Bellman operator is shown as
taking value functions inside the subspace outside to something that is not representable,
and that the ✓ that minimizes BE is in general di↵erent from that which minimizes VE.

The BE was first proposed as an objective function for DP by Schweitzer and Seidmann
(1985). Baird (1995, 1999) extended it to TDL based on stochastic gradient descent, and
Engel, Mannor, and Meir (2003) extended it to least squares (O(n2)) methods known as
Gaussian Process TDL. In the literature, BE minimization is often referred to as Bellman
residual minimization.

3.3 Projected Bellman error

The third goal for approximation is to approximately solve the projected Bellman equation:

v✓ = ⇧(B⇡v✓). (18)

Unlike the original Bellman equation, the projected Bellman equation can be solved exactly
for linear function approximators. The original TDL methods (Sutton 1988, Dayan 1992)
converge to this solution, as does least-squares TDL (Bradke & Barto 1996, Boyan 1999).
The goal of achieving (18) exactly is common; less common is to consider approximating it
as an objective. Early work on gradient-TD (e.g., Sutton et al. 2009) appears to have been
the first to explicitly propose minimizing the d-weighted norm of the error in (18), which
we here call the projected Bellman error (PBE) objective:

J
PBE

(✓)
.
=

�

�⇧�̄✓

�

� . (19)
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v✓
.
= v̂(·,✓) as a giant vector 2 R|S|

Va
lu

e 
Er

ro
r



Can we do without bootstrapping?

• Bootstrapping is critical to the computational efficiency of DP 
• Bootstrapping is critical to the data efficiency of TD methods 
• On the other hand, bootstrapping introduces bias, which 

harms the asymptotic performance of approximate methods 
• The degree of bootstrapping can be finely controlled via the λ 

parameter, from λ=0 (full bootstrapping) to λ=1 (no 
bootstrapping)



4 examples of the effect of bootstrapping  
suggest that λ=1 (no bootstrapping) is a very poor choice

Pure
bootstrapping

No
bootstrapping

In all cases 
lower is better

Red points are the cases 
of no bootstrapping

We need bootstrapping!



Desiderata: We want a TD algorithm that

• Bootstraps (genuine TD)

• Works with linear function approximation  
(stable, reliably convergent)

• Is simple, like linear TD — O(n)

• Learns fast, like linear TD

• Can learn off-policy

• Learns from online causal trajectories  
(no repeat sampling from the same state)



⇥ ⇥ ⇥ � �⇤�Jt(⇥)

1. Pick an objective function       ,  
a parameterized function to be minimized

2. Use calculus to analytically compute the gradient 

3. Find a “sample gradient”               that you can sample on 
every time step and whose expected value equals the gradient

4. Take small steps in    proportional to the sample gradient:

4 easy steps to stochastic gradient descent

J(�)

��J(�)

�

⇥ ⇥ ⇥ � �⇤�Jt(⇥)



⇥ = r + �⇤⇥⌅� � ⇤⇥⌅

Conventional TD is not the gradient of anything

�⇤ = �⇥⌅

⇧2J

⇧⇤j⇧⇤i
=

⇧(⇥⌅i)
⇧⇤j

= (�⌅�
j � ⌅j)⌅i

⇧2J

⇧⇤i⇧⇤j
=

⇧(⇥⌅j)
⇧⇤i

= (�⌅�
i � ⌅i)⌅j

⌅J

⌅⇥i
= �⇤iAssume there is a J such that:

Then look at the second derivative:

⇥2J

⇥�j⇥�i
�= ⇥2J

⇥�i⇥�j

TD(0) algorithm:

}
Real 2nd derivatives must be symmetric

Contradiction!

Etienne Barnard 1993



A-split example (Dayan 1992)

A

B

1 0

50%50%

100%

A1 A2

B

1 0

100%

100%

100%

Clearly, the true values are  
V (A) = 0.5
V (B) = 1

But if you minimize the naive
objective fn, 
                       , 
then you get the solution

Even in the tabular case (no FA)   

J(⇥) = E[�2]

V (B) = 2/3

V (A) = 1/3



Indistinguishable pairs of MDPs
VE and BE objectives are readily computed from the MDP as described in Section 3, but
they also are not identifiable and cannot be determined from Pµ(⇠) alone.

The possible dependency relationships among the data distribution, MDPs, and var-
ious objectives are summarized in Figure 4. The left side of the figure treats the non-
bootstrapping objective, J

VE

(12). It indicates that two di↵erent MDPs, MDP
1

and MDP
2

,
can produce the same data distribution, yet have di↵erent VEs. The simplest example of
this is the two MDPs shown below:

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"

r(s, a) + �
X

s02S
p(s0|s, a)v(s0)

#

, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ � B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :
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Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :
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Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not
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These are MDPs with only one action from each state, so they are in e↵ect Markov chains.
Where two edges leave a state, both possibilities are assumed to occur with equal probability.
The numbers indicate the reward received on each edge traversal. All the states appear the
same; they all produce the same feature vector � = 1 and have approximated value ✓, a
scalar. Thus, the only varying part of a data trajectory is the rewards. The left MDP stays
in the same state and emits an endless stream of 0s and 2s i.i.d. at random, each with 50-50
probability. The right MDP, on every step, either stays in its current state or switches to
the other, with 50-50 probability. The reward is deterministic in this MDP, always a 0 from
one state and always a 2 from the other, but because the state is i.i.d. 50-50, the observable
data is again an endless stream of 0s and 2s at random, identical to that produced by the
left MDP. Thus, two di↵erent MDPs can produce the same data distribution as shown in
the figure. This proves that the relationship between MDPs and data distributions is many-
to-one and not invertible. We say that the MDP is not identifiable, meaning that it is not
a function of the observable data distribution, and thus in principle cannot be determined
from data.

This pair of MDPs demonstrate that J
VE

is also not identifiable. Let � = 0 and ✓ = 1.
Then the true values of the three states are 1, 0, and 2, left to right, and the J

VE

of the
left MDP is 0 while the J

VE

of the right MDP is 1, for any d. Thus, the J
VE

is di↵erent for
two MDPs with the same data distribution and the J

VE

cannot be determined from data.
There is a saving grace, however. Even though the two J

VE

s can be di↵erent, the value
of ✓ that minimizes them is always the same and can always be determined by minimizing
another objective, based on the return error (RE), which is identifiable, as shown in the
figure. The RE objective is the mean-squared error between the approximate values and
what the returns would be under the target policy:

J
RE

(✓)2 = E
h

�

v✓(St) � Gt
�

2

�

�

�

At:1 ⇠ ⇡
i

. (46)

It is not di�cult to show that

J
RE

(✓)2 = J
VE

(✓)2 + E
h

�

v⇡(St) � Gt
�

2

�

�

�

At:1 ⇠ ⇡
i

, (47)

where the second term does not depend on ✓, but only on characteristics of ⇡ and the MDP.
Thus, if one finds the minimal ✓ for J

RE

, then one will also have found the minimum for
J

VE

, even though J
VE

itself is not identifiable. The RE objective is identifiable as it is a
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policy together completely determine the probability distribution over data trajectories.
Assume for the moment that the state, action, and reward sets are all finite. Then,
for any finite sequence ⇠ = �
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, a
0

, r
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, . . . , rk, �k, there is a well defined probability (pos-
sibly zero) of it occuring as the initial portion of a trajectory, which we may denoted
P(⇠) = Pr{�(S

0

) = �
0
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0

= a
0

, R
1

= r
1

, . . . , Rk = rk, �(Sk) = �k}. The distribution P
then is a complete characterization of a source of data trajectories. To know P is to know
everything about the statistics of the data, but it is still less than knowing the MDP. In
particular, the VE and BE objectives are readily computed from the MDP as described in
Section 3, but these cannot be determined from P alone.
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The problem can be seen in very simple, POMDP-like examples, in which the observable

data produced by two di↵erent MDPs is identical in every respect, yet the BE is di↵erent.
In such a case the BE is literally not a function of the data, and thus there is no way to
estimate it from data. One of the simplest examples is the pair of MDPs shown below:

BA
1

0

-1
BA

0

-1 B�

0

1 -1

These MDPs have only one action (or, equivalently, no actions), so they are in e↵ect Markov
chains. Where two edges leave a state, both possibilities are assumed to occur with equal
probability. The numbers on the edges indicate the reward emitted if that edge is traversed.
The MDP on the left has two states that are represented distinctly; each has a separate
weight so that they can take on any value. The MDP on the right has three states, two
of which, B and B0, are represented identically and must be given the same approximate
value. We can imagine that the value of state A is given by the first component of ✓ and
the value of B and B0 is given by the second. Notice that the observable data is identical
for the two MDPs. In both cases the agent will see single occurrences of A followed by a
0, then some number of Bs each followed by a �1, except the last which is followed by a
1, then we start all over again with a single A and a 0, etc. All the details are the same
as well; in both MDPs, the probability of a string of k Bs is 2�k. Now consider the value
function v✓ = ~0. In the first MDP, this is an exact solution, and the overall BE is zero. In
the second MDP, this solution produces an error in both B and B0 of 1, for an overall BE
of

p

d(B) + d(B0), or
p

2/3 if the three states are equally weighted by d. The two MDPs,
which generate the same data, have di↵erent BEs. Thus, the BE cannot be estimated from
data alone; knowledge of the MDP beyond what is revealed in the data is required.

Moreover, the two MDPs have di↵erent minimal-BE value functions.2 For the first MDP,
the minimal-BE value function is the exact solution v✓ = ~0 for any �. For the second MDP,

2. This is a critical observation, as it is possible for an error function to be unobservable and yet still be
perfectly satisfactory for use in learning settings because the value that minimizes it can be determined
from data. For example, this is what happens with the VE. The VE is not observable from data, but its
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0, then some number of Bs each followed by a �1, except the last which is followed by a
1, then we start all over again with a single A and a 0, etc. All the details are the same
as well; in both MDPs, the probability of a string of k Bs is 2�k. Now consider the value
function v✓ = ~0. In the first MDP, this is an exact solution, and the overall BE is zero. In
the second MDP, this solution produces an error in both B and B0 of 1, for an overall BE
of

p

d(B) + d(B0), or
p

2/3 if the three states are equally weighted by d. The two MDPs,
which generate the same data, have di↵erent BEs. Thus, the BE cannot be estimated from
data alone; knowledge of the MDP beyond what is revealed in the data is required.

Moreover, the two MDPs have di↵erent minimal-BE value functions.2 For the first MDP,
the minimal-BE value function is the exact solution v✓ = ~0 for any �. For the second MDP,

2. This is a critical observation, as it is possible for an error function to be unobservable and yet still be
perfectly satisfactory for use in learning settings because the value that minimizes it can be determined
from data. For example, this is what happens with the VE. The VE is not observable from data, but its

20

Whereas earlier we considered planning (DP) objectives based on an arbitrary distribu-
tion d, in this section we consider learning objectives only for d = dµ. The di↵erence is that
in the planning case we have direct access to the states and can examine or sample them
arbitrarily, whereas in the learning case the states are hidden; all we know about the states
in the trajectory is that in the long run their proportion matches dµ, even though we have
no idea what dµ is. In a later section we examine some important generalizations, but for
now we assume d = dµ.

In o↵-policy learning we are often concerned with the ratio of taking an action under
the target and behavior policies, sometimes called the importance sampling ratio:

⇢(s, a) =
⇡(s, a)

µ(s, a)
. (41)

The expectation of this ratio on state–action pairs encountered in the trajectory is
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µ(s, a)
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⇡(s, a) = 1. (42)

Note that we have not explicitly conditioned on µ (or the MDP) because of our convention
for expectations that these are implicit. Next we follow this convention to express the key
components of the PBE objective, C, A, and b, as expectations. First, to further simplify
the notation, let us define ⇢t

.
= ⇢(St, At) and �t

.
= �(St). Then:
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�t | At ⇠ ⇡] .

(43)
Note that these expectations condition only on actions, which are assumed visible in the
trajectory, and not on states, which are not observed. As such, all of these expectations
can be estimated from the data trajectory by averaging observable quantities. Recall that
the PBE objective can be written in terms of C, A, and b, (eqn. 24) so the fact that these
can be estimated from data means that J

PBE

itself can be estimated from data. As we will
show later, the gradient of J

PBE

with respect to ✓ and the minimizing value of ✓ can also
be determined from the data trajectory. This might seem like a small thing, but it turns
out it is not true for either the VE or BE objectives we considered earlier. None of these
can be estimated, or identified, from data, as we show next.

5.1 Identifiability

Let us consider more carefully the relationship between the MDP, the possible data tra-
jectories, and the objectives of learning. As already described, the MDP and behav-
ior policy together completely determine the probability distribution over data trajec-
tories. Assume for the moment that the state, action, and reward sets are all finite.
Then, for any finite sequence ⇠ = �

0

, a
0

, r
1

, . . . , rk, �k, there is a well defined probabil-
ity (possibly zero) of it occuring as the initial portion of a trajectory, which we may
denoted Pµ(⇠) = Pr{�(S

0

) = �
0

, A
0

= a
0

, R
1

= r
1

, . . . , Rk = rk, �(Sk) = �k}. The distri-
bution Pµ(⇠) then is a complete characterization of a source of data trajectories. To know
Pµ(⇠) is to know everything about the statistics of the data, but it is still less than knowing
the MDP. In particular it is not enough to reconstruct or identify the MDP. Further, the
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Figure 4: Causal relationships among the data distribution, MDPs, and errors for non-
bootstrapping (left) and bootstrapping (right) objectives. In both cases, two
di↵erent MDPs can produce the same data distribution. For non-bootstrapping
objectives, the VE can be di↵erent for the two MDPs, and thus is not identifiable,
but the optimal weights are the same and can be determined by optimizing the
RE objective, which is identifiable. For bootstrapping objectives, both the BE
and its optimum can be di↵erent for the two MDPs, and they have no coincidence
with the identifiable errors, PBE and TDE, or their optima. Thus, minimizing
J

BE

is not a feasible objective for learning.

function only of the data distribution and the two policies. In the on-policy case at least,
the RE objective can also be estimated easily from the data (the o↵-policy case is probably
also possible using importance sampling techniques (e.g., Precup & Sutton 2000)).

But let us return to the bootstrapping objectives, J
BE

and particularly J
PBE

, which are
of primary interest in this article. The dependencies here are summarized in the right half
of Figure 4. To show the full range of possibilities we need a slightly more complex example
than that considered above. Consider the following two MDPs:

BA
1

0

-1
BA

0

-1 B�

0

1 -1

The MDP on the left has two states that are represented distinctly; each has a separate
weight so that they can take on any value. The MDP on the right has three states, two of
which, B and B0, are represented identically and must be given the same approximate value.
We can imagine that ✓ has two components and that the value of state A is given by the
first component and the value of B and B0 is given by the second. Notice that the observable
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These two have different Value Errors,  
but the same Return Errors 
(both errors have the same minima)

VE and BE objectives are readily computed from the MDP as described in Section 3, but
they also are not identifiable and cannot be determined from Pµ(⇠) alone.

The possible dependency relationships among the data distribution, MDPs, and var-
ious objectives are summarized in Figure 4. The left side of the figure treats the non-
bootstrapping objective, J

VE

(12). It indicates that two di↵erent MDPs, MDP
1

and MDP
2

,
can produce the same data distribution, yet have di↵erent VEs. The simplest example of
this is the two MDPs shown below:

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"

r(s, a) + �
X

s02S
p(s0|s, a)v(s0)

#

, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ � B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥

(B⇡v✓)(s) � v✓(s)
⇤

2

. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥

(⇧(B⇡v✓ � v✓))(s)
⇤

2

. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥

(B⇡v✓)(s) � v✓(s)
⇤

r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓
1

✓
2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not
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These are MDPs with only one action from each state, so they are in e↵ect Markov chains.
Where two edges leave a state, both possibilities are assumed to occur with equal probability.
The numbers indicate the reward received on each edge traversal. All the states appear the
same; they all produce the same feature vector � = 1 and have approximated value ✓, a
scalar. Thus, the only varying part of a data trajectory is the rewards. The left MDP stays
in the same state and emits an endless stream of 0s and 2s i.i.d. at random, each with 50-50
probability. The right MDP, on every step, either stays in its current state or switches to
the other, with 50-50 probability. The reward is deterministic in this MDP, always a 0 from
one state and always a 2 from the other, but because the state is i.i.d. 50-50, the observable
data is again an endless stream of 0s and 2s at random, identical to that produced by the
left MDP. Thus, two di↵erent MDPs can produce the same data distribution as shown in
the figure. This proves that the relationship between MDPs and data distributions is many-
to-one and not invertible. We say that the MDP is not identifiable, meaning that it is not
a function of the observable data distribution, and thus in principle cannot be determined
from data.

This pair of MDPs demonstrate that J
VE

is also not identifiable. Let � = 0 and ✓ = 1.
Then the true values of the three states are 1, 0, and 2, left to right, and the J

VE

of the
left MDP is 0 while the J

VE

of the right MDP is 1, for any d. Thus, the J
VE

is di↵erent for
two MDPs with the same data distribution and the J

VE

cannot be determined from data.
There is a saving grace, however. Even though the two J

VE

s can be di↵erent, the value
of ✓ that minimizes them is always the same and can always be determined by minimizing
another objective, based on the return error (RE), which is identifiable, as shown in the
figure. The RE objective is the mean-squared error between the approximate values and
what the returns would be under the target policy:

J
RE

(✓)2 = E
h

�

v✓(St) � Gt
�

2

�

�

�

At:1 ⇠ ⇡
i

. (46)

It is not di�cult to show that

J
RE

(✓)2 = J
VE

(✓)2 + E
h

�

v⇡(St) � Gt
�

2

�

�

�

At:1 ⇠ ⇡
i

, (47)

where the second term does not depend on ✓, but only on characteristics of ⇡ and the MDP.
Thus, if one finds the minimal ✓ for J

RE

, then one will also have found the minimum for
J

VE

, even though J
VE

itself is not identifiable. The RE objective is identifiable as it is a
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Not all objectives can be estimated from data
Not all minima can be found by learning
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policy together completely determine the probability distribution over data trajectories.
Assume for the moment that the state, action, and reward sets are all finite. Then,
for any finite sequence ⇠ = �
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then is a complete characterization of a source of data trajectories. To know P is to know
everything about the statistics of the data, but it is still less than knowing the MDP. In
particular, the VE and BE objectives are readily computed from the MDP as described in
Section 3, but these cannot be determined from P alone.
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The problem can be seen in very simple, POMDP-like examples, in which the observable

data produced by two di↵erent MDPs is identical in every respect, yet the BE is di↵erent.
In such a case the BE is literally not a function of the data, and thus there is no way to
estimate it from data. One of the simplest examples is the pair of MDPs shown below:

BA
1

0

-1
BA

0

-1 B�

0

1 -1

These MDPs have only one action (or, equivalently, no actions), so they are in e↵ect Markov
chains. Where two edges leave a state, both possibilities are assumed to occur with equal
probability. The numbers on the edges indicate the reward emitted if that edge is traversed.
The MDP on the left has two states that are represented distinctly; each has a separate
weight so that they can take on any value. The MDP on the right has three states, two
of which, B and B0, are represented identically and must be given the same approximate
value. We can imagine that the value of state A is given by the first component of ✓ and
the value of B and B0 is given by the second. Notice that the observable data is identical
for the two MDPs. In both cases the agent will see single occurrences of A followed by a
0, then some number of Bs each followed by a �1, except the last which is followed by a
1, then we start all over again with a single A and a 0, etc. All the details are the same
as well; in both MDPs, the probability of a string of k Bs is 2�k. Now consider the value
function v✓ = ~0. In the first MDP, this is an exact solution, and the overall BE is zero. In
the second MDP, this solution produces an error in both B and B0 of 1, for an overall BE
of

p

d(B) + d(B0), or
p

2/3 if the three states are equally weighted by d. The two MDPs,
which generate the same data, have di↵erent BEs. Thus, the BE cannot be estimated from
data alone; knowledge of the MDP beyond what is revealed in the data is required.

Moreover, the two MDPs have di↵erent minimal-BE value functions.2 For the first MDP,
the minimal-BE value function is the exact solution v✓ = ~0 for any �. For the second MDP,

2. This is a critical observation, as it is possible for an error function to be unobservable and yet still be
perfectly satisfactory for use in learning settings because the value that minimizes it can be determined
from data. For example, this is what happens with the VE. The VE is not observable from data, but its
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value. We can imagine that the value of state A is given by the first component of ✓ and
the value of B and B0 is given by the second. Notice that the observable data is identical
for the two MDPs. In both cases the agent will see single occurrences of A followed by a
0, then some number of Bs each followed by a �1, except the last which is followed by a
1, then we start all over again with a single A and a 0, etc. All the details are the same
as well; in both MDPs, the probability of a string of k Bs is 2�k. Now consider the value
function v✓ = ~0. In the first MDP, this is an exact solution, and the overall BE is zero. In
the second MDP, this solution produces an error in both B and B0 of 1, for an overall BE
of

p

d(B) + d(B0), or
p

2/3 if the three states are equally weighted by d. The two MDPs,
which generate the same data, have di↵erent BEs. Thus, the BE cannot be estimated from
data alone; knowledge of the MDP beyond what is revealed in the data is required.

Moreover, the two MDPs have di↵erent minimal-BE value functions.2 For the first MDP,
the minimal-BE value function is the exact solution v✓ = ~0 for any �. For the second MDP,

2. This is a critical observation, as it is possible for an error function to be unobservable and yet still be
perfectly satisfactory for use in learning settings because the value that minimizes it can be determined
from data. For example, this is what happens with the VE. The VE is not observable from data, but its
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particular, the VE and BE objectives are readily computed from the MDP as described in
Section 3, but these cannot be determined from P alone.
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Whereas earlier we considered planning (DP) objectives based on an arbitrary distribu-
tion d, in this section we consider learning objectives only for d = dµ. The di↵erence is that
in the planning case we have direct access to the states and can examine or sample them
arbitrarily, whereas in the learning case the states are hidden; all we know about the states
in the trajectory is that in the long run their proportion matches dµ, even though we have
no idea what dµ is. In a later section we examine some important generalizations, but for
now we assume d = dµ.

In o↵-policy learning we are often concerned with the ratio of taking an action under
the target and behavior policies, sometimes called the importance sampling ratio:

⇢(s, a) =
⇡(s, a)

µ(s, a)
. (41)

The expectation of this ratio on state–action pairs encountered in the trajectory is
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Note that we have not explicitly conditioned on µ (or the MDP) because of our convention
for expectations that these are implicit. Next we follow this convention to express the key
components of the PBE objective, C, A, and b, as expectations. First, to further simplify
the notation, let us define ⇢t

.
= ⇢(St, At) and �t

.
= �(St). Then:
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(43)
Note that these expectations condition only on actions, which are assumed visible in the
trajectory, and not on states, which are not observed. As such, all of these expectations
can be estimated from the data trajectory by averaging observable quantities. Recall that
the PBE objective can be written in terms of C, A, and b, (eqn. 24) so the fact that these
can be estimated from data means that J

PBE

itself can be estimated from data. As we will
show later, the gradient of J

PBE

with respect to ✓ and the minimizing value of ✓ can also
be determined from the data trajectory. This might seem like a small thing, but it turns
out it is not true for either the VE or BE objectives we considered earlier. None of these
can be estimated, or identified, from data, as we show next.

5.1 Identifiability

Let us consider more carefully the relationship between the MDP, the possible data tra-
jectories, and the objectives of learning. As already described, the MDP and behav-
ior policy together completely determine the probability distribution over data trajec-
tories. Assume for the moment that the state, action, and reward sets are all finite.
Then, for any finite sequence ⇠ = �
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, . . . , rk, �k, there is a well defined probabil-
ity (possibly zero) of it occuring as the initial portion of a trajectory, which we may
denoted Pµ(⇠) = Pr{�(S
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, . . . , Rk = rk, �(Sk) = �k}. The distri-
bution Pµ(⇠) then is a complete characterization of a source of data trajectories. To know
Pµ(⇠) is to know everything about the statistics of the data, but it is still less than knowing
the MDP. In particular it is not enough to reconstruct or identify the MDP. Further, the
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Figure 4: Causal relationships among the data distribution, MDPs, and errors for non-
bootstrapping (left) and bootstrapping (right) objectives. In both cases, two
di↵erent MDPs can produce the same data distribution. For non-bootstrapping
objectives, the VE can be di↵erent for the two MDPs, and thus is not identifiable,
but the optimal weights are the same and can be determined by optimizing the
RE objective, which is identifiable. For bootstrapping objectives, both the BE
and its optimum can be di↵erent for the two MDPs, and they have no coincidence
with the identifiable errors, PBE and TDE, or their optima. Thus, minimizing
J

BE

is not a feasible objective for learning.

function only of the data distribution and the two policies. In the on-policy case at least,
the RE objective can also be estimated easily from the data (the o↵-policy case is probably
also possible using importance sampling techniques (e.g., Precup & Sutton 2000)).

But let us return to the bootstrapping objectives, J
BE

and particularly J
PBE

, which are
of primary interest in this article. The dependencies here are summarized in the right half
of Figure 4. To show the full range of possibilities we need a slightly more complex example
than that considered above. Consider the following two MDPs:

BA
1

0

-1
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0

-1 B�

0

1 -1

The MDP on the left has two states that are represented distinctly; each has a separate
weight so that they can take on any value. The MDP on the right has three states, two of
which, B and B0, are represented identically and must be given the same approximate value.
We can imagine that ✓ has two components and that the value of state A is given by the
first component and the value of B and B0 is given by the second. Notice that the observable
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No learning algorithm can find the minimum of the Bellman Error



The Gradient-TD Family of Algorithms

• True gradient-descent algorithms in the Projected Bellman Error 

• GTD(λ) and GQ(λ), for learning V and Q 

• Solve two open problems: 

• convergent linear-complexity off-policy TD learning 

• convergent non-linear TD 

• Extended to control variate, proximal forms by Mahadevan et al.



First relate the geometry to the iid statistics
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Figure 1. Geometric relationships between (the square root of) the
two Bellman-error objective functions.

point. That is, we use as our objective function the mean-
square projected Bellman error:

MSPBE(⇤) = ⇥ V� ��TV� ⇥2
D . (5)

Figure 1 shows the relationship between this and the
MSBE objective function geometrically.

Further insight can be gained by considering the episodic
examples in Figure 2. In the system on the left, trajectories
start in state A and then either terminate immediately with
a reward of zero, or transition to state B with a reward of
zero and then terminate with a reward of 1. The two choices
occur each with 50% probability, and � = 1, so the right
values for states A and B are clearly 0.5 and 1 respectively
(these values minimize both MSBE and MSPBE). Dayan
(1992) used this example to show that a naive gradient-
descent approach (based on gradient descent in the mean-
squared TD error, E

�
⇥2

⇥
) works poorly in that it ends up as-

signing values of 1/3 and 2/3 to A and B even in the tabular
case. The example also illustrates the need for two inde-
pendent samples in the residual-gradient algorithm (Baird
1995) as, with a single example, that algorithm finds the
1/3, 2/3 solution. With two samples, residual gradient cor-
rectly finds the 0.5, 1 solution. However, consider now the
example in the right panel. Here function approximation is
in play, in that we have two states, A1 and A2, that share the
same feature representation; they look the same and must
be given the same approximate value. Trajectories start in
each of the two A states with 50% probability; one leads de-
terministically to B and 1, while the other leads determinis-
tically to 0. From the observed feature vectors, this exam-
ple looks like the previous, except that here taking multiple
samples is no help as the system is deterministic and they
will all be the same. Because of this, the residual-gradient
algorithm will find the 1/3, 2/3 solution here. However,
the problem is not with the algorithm, but with the objec-
tive. The 1/3, 2/3 solution is in fact the minimum-MSBE
solution on this problem; only the MSPBE criterion puts
the minimum at 0.5, 1 on this problem. The MSBE ob-
jective causes function approximation resources to be ex-
pended trying to reduce the Bellman error associated with
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1 0
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Figure 2. The A-split (left) and split-A (right) examples.

A1 and A2, whereas the MSPBE objective takes into ac-
count that their approximated values will ultimately be pro-
jected onto the same point.

Finally, we close this discussion of objective functions by
giving the function used to derive the original GTD algo-
rithm. This objective function does not seem to have a
ready geometric interpretation. Here we call it the norm
of the expected TD update:

NEU(⇤) = E[⇥⌅]⇤ E[⇥⌅] . (6)

4. Derivation of the new algorithms
In this section we derive two new algorithms as stochastic
gradient descent in the projected Bellman error objective
(5). We first establish some relationships between the rele-
vant expectations and vector-matrix quantities:

E
�
⌅⌅⇤

⇥
=

⇧

s

ds⌅s⌅
⇤
s = ⇥⇤D⇥,
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⇧

s

ds⌅s

⇤
Rs + �

⇧

s�

Pss�V�(s⇥)� V�(s)

⌅

= ⇥⇤D(TV� � V�),

and note that

�⇤D� = (⇥(⇥⇤D⇥)�1⇥⇤D)⇤D(⇥(⇥⇤D⇥)�1⇥⇤D)
= D⇤⇥(⇥⇤D⇥)�1⇥⇤D⇥(⇥⇤D⇥)�1⇥⇤D

= D⇤⇥(⇥⇤D⇥)�1⇥⇤D.

Using these relationships, the projected objective can be
written in terms of expectations as

MSPBE(⇤)
= ⇥ V� ��TV� ⇥2

D
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D
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Fast gradient-descent methods for temporal-difference learning with linear function approximation

2. Linear value-function approximation
We consider a prototypical case of temporal-difference
learning, that of learning a linear approximation to the
state-value function for a given policy and Markov deci-
sion process (MDP) from sample transitions. We take both
the MDP and the policy to be stationary, so their combina-
tion determines the stochastic dynamics of a Markov chain.
The state of the chain at each time t is a random variable,
denoted st ⇧ {1, 2, ..., N}, and the state-transition proba-
bilities are given by a matrix P . On each transition from
st to st+1, there is also a reward, rt+1, whose distribution
depends on both states. We seek to learn the parameter
⌅ ⇧ ⌃n of an approximate value function V� : S ⌅ ⌃ such
that

V�(s) = ⌅⇧⌃s ⇥ V (s) = E

� ⌅⇤

t=0

⇥trt+1 | s0 = s

⇥
, (1)

where ⌃s ⇧ ⌃n is a feature vector characterizing state s,
and ⇥ ⇧ [0, 1) is a constant called the discount rate.

In this paper we consider one-step temporal-difference
learning (corresponding to ⇧ = 0 in TD(⇧)), in which
there is one independent update to ⌅ for each state tran-
sition and associated reward. There are several settings
corresponding to how the state transitions are generated.
In the on-policy setting, for example, the state transitions
come directly from the continuing evolution of the Markov
chain. We assume that the Markov chain is ergodic and
uni-chain, so there exists a limiting distribution d such that
ds = limt⇥⌅ P(st = s).1 In the on-policy case, d is linked
to the transition probabilities (in particular, we know that
P⇧d = d) and this linkage is critical to the convergence
of algorithms such as conventional TD. In this paper, we
consider a general setting (introduced in Sutton, Szepesvári
& Maei 2009) in which the first state of each transition is
chosen i.i.d. according to an arbitrary distribution d that
may be unrelated to P (this corresponds to off-policy learn-
ing). This setting defines a probability over independent
triples of state, next state, and reward random variables,
denoted (sk, s⇤k, rk), with associated feature-vector random
variables ⌃k = ⌃sk and ⌃⇤k = ⌃s0

k
. From these we can de-

fine, for example, the temporal-difference error,

⇤k = rk + ⇥⌅⇧k ⌃⇤k � ⌅⇧k ⌃k,

used in the conventional linear TD algorithm (Sutton
1988):

⌅k+1 ⇤ ⌅k + �k⇤k⌃k, (2)

where �k is a sequence of positive step-size parameters.
1Our results apply also to the episodic case if ds is taken to be

the proportion of time steps in state s. In this case, the sum in (1)
is only over a finite number of time steps, the rows of P may sum
to less than 1, and � may be equal to 1 (as long as (�P )� = 0).

3. Objective functions
An objective function is some function of the modifiable
parameter ⌅ that we seek to minimize by updating ⌅. In
gradient descent, the updates to ⌅ are proportional to the
gradient or sample gradient of the objective function with
respect to ⌅. The first question then, is what to use for the
objective function? For example, one natural choice might
be the mean squared error (MSE) between the approximate
value function V� and the true value function V , averaged
over the state space according to how often each state oc-
curs. The MSE objective function is

MSE(⌅) =
⇤

s

ds (V�(s)� V (s))2

def= ↵ V� � V ↵2D .

In the second equation, V� and V are viewed as vectors with
one element for each state, and the norm ↵ v ↵2D = v⇧Dv
is weighted by the matrix D that has the ds on its diagonal.

In temporal-difference methods, the idea is instead to use
an objective function representing how closely the approx-
imate value function satisfies the Bellman equation. The
true value function V satisfies the Bellman equation ex-
actly:

V = R + ⇥PV
def= TV,

where R is the vector with components E{rt+1 | st = s}
and T is known as the Bellman operator. A seemingly nat-
ural measure of how closely the approximation V� satisfies
the Bellman equation is the mean-square Bellman error:

MSBE(⌅) = ↵ V� � TV� ↵2D . (3)

This is the objective function used by the most important
prior effort to develop gradient-descent algorithms, that by
Baird (1995, 1999). However, most temporal-difference al-
gorithms, including TD, LSTD, and GTD, do not converge
to the minimum of the MSBE. To understand this, note that
the Bellman operator follows the underlying state dynam-
ics of the Markov chain, irrespective of the structure of the
function approximator. As a result, TV� will typically not
be representable as V� for any ⌅. Consider the projection
operator � which takes any value function v and projects it
to the nearest value function representable by the function
approximator:

�v = V� where ⌅ = arg min
�
↵ V� � v ↵2D .

In a linear architecture, in which V� = ⇥⌅ (where ⇥ is the
matrix whose rows are the ⌃s), the projection operator is
linear and independent of ⌅:

� = ⇥(⇥⇧D⇥)�1⇥⇧D

matrix of the feature vectors for all states



Derivation of the TDC algorithm
s

r�⇥s�

� ��
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            is a second 
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• on each transition

• update two parameters

• where, as usual

TD with gradient correction (TDC) algorithm

⌅ ⇥ ⌅ + �⇤⇧� �⇥⇧�
�
⇧⇥w

⇥

w ⇥ w + �(⇥ � ⇤�w)⇤

⇥ = r + �⇤⇥⌅� � ⇤⇥⌅

s
r�⇥s�

� ��

TD(0) with gradient
correction

estimate of the 
TD error (  ) for
the current state   

�
�

aka GTD(0)



Convergence theorems

• All algorithms converge w.p.1 to the TD fix-point: 

• GTD, GTD-2 converges at one time scale 

• TD-C converges in a two-time-scale sense

�,⇥ �⇥ 0
�

⇥
�⇥ 0

� = ⇥ �⇥ 0

E[�⇥] �⇥ 0



Off-policy result: Baird’s counter-example
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Computer Go experiment

• Learn a linear value 
function (probability of 
winning) for 9x9 Go 
from self play

• One million features, 
each corresponding to a 
template on a part of 
the Go board

• An established 
experimental testbed

0

0.2

0.4

0.6

0.8

.000001 .000003 .00001 .00003 .0001 .0003 .001

!

RNEU

TD

GTD2

GTD

TDC

GTD2

TDC

� E[��TD] �



per second using thousands of features, with linear-complexity methods we were able to
predict almost ten thousand di↵erent sensory events, whereas with quadratic complexity
methods we could predict only one. It is clear to us that there are already cases where
computational costs are critical and the advantage of linear methods is decisive. As the
power of modern computers increases, we can expect to have more learned parameters and
the advantage to linear-complexity methods can be expected only to increase.

Having explained the choices underlying our approach, we can now outline our main
results, as summarized in the table in Figure 1. The table has seven columns, two corre-
sponding to DP algorithms and five to TDL algorithms. The first column, for example,
corresponds to the classical algorithm TD(�) (and Sarsa(�), the analogous algorithm for
learning state–action values). The last two rows correspond to the new gradient-TD family
of algorithms presented in this article. The rows correspond to five issues or properties
that we would like the algorithms to have. First, as discussed just above, we would like the
algorithms to have linear computational complexity, and most do, with LSTD(�) being one
of the listed exceptions. Another row corresponds to whether the algorithm will work with
general nonlinear function approximators (subject to smoothness conditions, as described
below). We see that TD(�) is linear complexity, but is not guaranteed to converge with
nonlinear function approximation. In fact, counterexamples are known. We will show that
gradient-TD algorithms converge on any MDP, and in particular on these counterexamples.
TD(�) is also not guaranteed to converge under o↵-policy training (third row). Again,
counterexamples are known, and we show that gradient-TD methods converge on them.
Note that according to four of the five properties listed here, TD(�) and approximate DP

A L G O R I T H MA L G O R I T H MA L G O R I T H MA L G O R I T H MA L G O R I T H MA L G O R I T H MA L G O R I T H M

TD(λ),
Sarsa(λ)

Approx.
DP

LSTD(λ),
LSPE(λ)

Fitted-Q
Residual
gradient

GDP GTD(λ),
GQ(λ)

Linear 
computation

Nonlinear
convergent

Off-policy 
convergent

Model-free, 
online

Converges to 
PBE = 0

✓ ✓ ✖ ✖ ✓ ✓ ✓
✖ ✖ ✖ ✓ ✓ ✓ ✓
✖ ✖ ✓ ✖ ✓ ✓ ✓
✓ ✖ ✓ ✖ ✓ ✖ ✓
✓ ✓ ✓ ✓ ✖ ✓ ✓

Issues with bootstrapping algorithms
for approximate parametric policy evaluation

I
S

S
U

E

Figure 1: Issues with bootstrapping algorithms for approximate parametric policy evalua-
tion. There are many aspects of each symbol that deserve further remarks and
clarifications, which will go here.
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Off-policy RL with FA and TD remains challenging;
there are multiple ideas, plus combinations

• Gradient TD, proximal gradient TD, and hybrids 

• Emphatic TD 

• Higher λ (less TD) 

• Better state rep’ns (less FA) 

• Recognizers (less off-policy) 

• LSTD (O(n2) methods)

In conclusion

More work needed  
on these novel algs!



Emphatic temporal-
difference learning

Rupam Mahmood, Huizhen (Janey) Yu, Martha White, Rich Sutton

Reinforcement Learning and Artificial Intelligence Laboratory
Department of Computing Science

University of Alberta
Canada

R
A I
L

&



State weightings are important,  
powerful, even magical,  

when using “genuine function approximation”  
(i.e., when the optimal solution can’t be approached)

• They are the difference between convergence and divergence 
in on-policy and off-policy TD learning 

• They are needed to make the problem well-defined 

• We can change the weighting by emphasizing some steps 
more than others in learning



Often some time steps are more important 
• Early time steps of an episode may be more important 

• Because of discounting 

• Because the control objective is to maximize the 
value of the starting state 

• In general, function approximation resources are limited  

• Not all states can be accurately valued  

• The accuracy of different state must be traded off! 

• You may want to control the tradeoff 



Bootstrapping interacts with 
state importance

• In the Monte Carlo case (λ=1) the values of different 
states (or time steps) are estimated independently,  
and their importances can be assigned 
independently 

• But with bootstrapping (λ<1) each state’s value is 
estimated based on the estimated values of later 
states; if the state is important, then it becomes 
important to accurately value the later states even if 
they are not important on their own



Two kinds of importance
• Intrinsic and derived, primary and secondary 

• The one you specify, and the one that follows from 
it because of bootstrapping  

• Our terms: Interest and Emphasis 

• Your intrinsic interest in valuing accurately on a 
time step 

• The total resultant emphasis that you place on 
each time step



• Data 

• State distribution 

• Objective to minimize 

• Emphatic TD(0) 

• Emphatic LSTD(0)

· · · �(St) At Rt+1 �(St+1) At+1 Rt+2 · · ·
feature function
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• State distribution 

• Objective to minimize 

• Emphatic TD(0) 

• Emphatic LSTD(0)
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• Derived from analysis of general bootstrapping 
relationships (Sutton, Mahmood, Precup & van Hasselt 2014) 

• Emphasis is a scalar signal 

• Defined from a new scalar followon trace Ft � 0, F�1 = 0

Mt � 0

Emphasis algorithm 
(Sutton, Mahmood & White 2015)

Ft = ⇢t�1�tFt�1 + i(St)

Mt = �t i(St) + (1� �t)Ft



Off-policy implications
• The emphasis weighting is stable under off-policy TD(λ)  

(like the on-policy weighting) (Sutton, Mahmood & White 2015) 

• It is the followon weighting, from the interest weighted behavior 
distribution (              ), under the target policy 

• Learning is convergent (though not necessarily of finite variance) 
under the emphasis weighting  
for arbitrary target and behavior policies (with coverage) (Yu 2015) 

• There are error bounds analogous to those for on-policy TD(λ) (Munos) 

• Emphatic TD is the simplest convergent off-policy TD algorithm  
(one parameter, one learning rate)  

dµ(s)i(s)


