Chapter 11

Off-policy methods
with approximation



Recall off-policy learning involves two policies

e One policy w whose value function we are learning
e the target policy

« Another policy u that iIs used to select actions

e the behavior policy



Off-policy is much harder with Function Approximation

e Even linear FA

e Even for prediction (two fixed policies & and u)

* Even for Dynamic Programming
 The deadly triad: FA, TD, off-policy
 Any two are OK, but not all three

o With all three, we may get instabllity
(elements of @ may increase to +oo)




There are really 2 off-policy problems
One we know how to solve, one we are not sure
One about the future, one about the present

* [he easy problem is that of off-policy targets (future)
* \We have been correcting for that since Chapters 5 and 6
* Using importance sampling in the target

 The hard problem is that of the distribution of states to update (present);
we are no longer updating according to the on-policy distribution



Baird’'s counterexample illustrates the instability
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What causes the instability?

* |t has nothing to do with learning or sampling

 Even dynamic programming suffers from divergence with FA
* |t has nothing to do with exploration, greedification, or control

* Even prediction alone can diverge

* |t has nothing to do with local minima
or complex non-linear approximators

 Even simple linear approximators can produce instability



The deadly triad

Any 2 Ok

* The risk of divergence arises whenever

1. Function approximation

we combine three things:

e significantly generalizing from large numbers of examples

2. Bootstrapping

* |earning value estimates from other value estimates,
as in dynamic programming and temporal-difference learning

3. Off-policy learning  (Why is dynamic programming off-policy?)

* |earning about a policy from data not due to that policy,

as in Q-learning, where we learn about the greedy policy from
data with a necessarily more exploratory policy




TD(0) can diverge: A simple example

6 = r4+~0"'¢ —0'¢
= 04200
= 0
TD update: A0 = «adod
= af Diverges!
TD fixpoint: 0 = 0



Vg = @(7 9)

(Brv)(s) = ) (s, a)

ac A

as a glant vector & RIS

The space of all
value functions

r(s,a) +7y ) p(sls, a)v(s’)

s’'eS

VE

Value Error

(Geometric intuition

-0
N

/‘1—.[/117-(-5 min ||[VE]|

P
min | BE||




Can we do without bootstrapping?

e Bootstrapping is critical to the computational efficiency of DP
* Bootstrapping is critical to the data efficiency of TD methods

* On the other hand, bootstrapping introduces bias, which
harms the asymptotic performance of approximate methods

 The degree of bootstrapping can be finely controlled via the A
parameter, from A=0 (full bootstrapping) to A=1 (no
bootstrapping)



4 examples of the effect of bootstrapping

suggest that A=1 (no bootstrapping) is a very poor choice
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Desiderata: VWe want a I D algorithm that

® Bootstraps (genuine TD)

® Works with linear function approximation
(stable, reliably convergent)

® |s simple, like linear TD — O(n)
® | earns fast, like linear TD
® Can learn off-policy

® | earns from online causal trajectories
(no repeat sampling from the same state)



4 easy steps to stochastic gradient descent

|. Pick an objective function J(6),
a parameterized function to be minimized

2. Use calculus to analytically compute the gradient Vg.J(6)

3. Find a “sample gradient” Vy.J;(0) that you can sample on
every time step and whose expected value equals the gradient

4. Take small steps in 6 proportional to the sample gradient:

0 — 0 — aVeJ,(0)



Conventional TD is not the gradient of anything

TD(0) algorith e
(0) algorithm: S =1 +~0Td —07 ¢
Assume there is a | such that: gé] = 0¢;

Then look at the second derivative:
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A-split example (Dayan 1992)

Clearly, the true values are

V(A)=0.5
50% 50% V(B) =1
@ But if you minimize the naive
objective fn,
100% N
 / v J(Q) — ‘L[52]’
1 0 then you get the solution
V(A)=1/3
V(B)=2/3

Even in the tabular case (no FA)



Indistinguishable pairs of MDPs

0 These two have different Value Errors,

o X0) )2 o X0 o)) but the same Return Errors

(both errors have the same minima)
JRE(Q)Q — JVE(H)Q + I [(UW(St) — Gt)2 ‘ At:oo ~ W}

1 -1 These two have different Bellman Errors,

1 -1 )
/l, but the same Projected Bellman Errors

(the errors have different minima)




Not all objectives can be estimated from data
Not all minima can be found by learning

Data
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distribution
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No learning algorithm can find the minimum of the Bellman Error




The Gradient-TD Family of Algorithms

* [Jrue gradient-descent algorithms in the Projected Bellman Error
 GTD(A) and GQ(A), for learning V and Q
* Solve two open problems:

* convergent linear-complexity off-policy TD learning

* convergent non-linear 1D

 Extended to control variate, proximal forms by Mahadevan et al.



First relate the geometry to the lid statistics
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Derivation of the TDC algorithm
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I'D with gradient correction (1DC) algorithm
aka GTD(0)

® on each transition §—S

® update two parameters with gradient
.~ correction

0 T ED
W «— W + ﬁ( estimate of the

® where, as usual TD error (9) for
the current state ¢
b=r+~0'¢/ —0'¢



Convergence theorems

o All algorithms converge w.p.1 to the TD fix-point:

L0¢p| — 0

e GID, GTD-2 converges at one time scale

a=p0-—0

 [D-C converges in a two-time-scale sense
@7

o, 3 — 0 > 0
o




Off-policy result: Baird’s counter-example
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Gradient algorithms converge. TD diverges.



Computer Go experiment

® | earn a linear value
function (probability of
winning) for 9x9 Go
from self play

0.6

® One million features, >4

each corresponding to a

template on a part of >
the Go board

0 : : : : : |
.000001 .000003 .00001 .00003 .0001 .0003 .001

® An established x
experimental testbed



ALGORITHM
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INn conclusion

Off-policy RL with FA and TD remains challenging;
there are multiple ideas, plus combinations

e Gradient TD, proximal gradient TD, and hybrids

 Emphatic 1D

| | More work needed
* Higher A (less TD) on these novel algs!

|

» Better state rep'ns (less FA)

* Recognizers (less off-policy)

e LSTD (O(n2) methods)
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State weightings are important,

powerful, even magical,

when using “genuine function approximation”
(i.e., when the optimal solution can’t be approached)

* [hey are the difference between convergence and divergence
In on-policy and off-policy TD learning

 [hey are needed to make the problem well-defined

 We can change the weighting by emphasizing some steps
more than others in learning




Often some time steps are more important

o Early time steps of an episode may be more important
* Because of discounting

 Because the control objective Is to maximize the
value of the starting state

* |n general, function approximation resources are limited
* Not all states can be accurately valued
 The accuracy of different state must be traded off!

* You may want to control the tradeotft



Bootstrapping interacts with
state Importance

* |n the Monte Carlo case (A=1) the values of different
states (or time steps) are estimated independently,

iINndependently

and thelr importances can be assigned

o But with bootstrapping (A<1) each state’s value is
estimated based on the estimated values of |later

states; If the state is impor

mportant to accurate
they are not importan

ant, then it becomes

V va

ue the later states even if

- on thelr own



Two kinds of importance

e |ntrinsic and derived, primary and secondary

 [he one you specify, and the one that follows from
It because of bootstrapping

R .

o Ourterms: Interest and Emphasis

e Your Intrinsic interest in valuing accurately on a
time step

e [he total resultant emphasis that you place on
each time step



e Data ¢o:S—R"
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Emphasis algorithm

(Sutton, Mahmood & White 2015)

* Derived from analysis of general bootstrapping
re‘atiOﬂShipS (Sutton, Mahmood, Precup & van Hasselt 2014)

* Emphasis is a scalar signal M; > 0
Mt — )\t Z(St) —|— (]. — )\t)Ft
e Defined from a new scalar followon trace F; > 0

Fiy = pr1v Fr—1 + 1(S)



Off-

policy Implications

The emphasis weighting is stable under off-policy TD(A)
(like the on-policy weighting) (Sutton, Mahmood & White 2015)

* |t is the followon weighting, from the interest weighted behavior
distribution (d,(s)i(s)), under the target policy

Learnir

g Is convergent (tho

under t

ne emphasis weighti

ugh not necessarily of finite variance)

19

for arbitrary target and behavior policies (with coverage) (vu 2015)

There are error bounds analogous to those for on-policy TD(A) (Munos)

Emphatic T

D Is the simplest convergent off-policy TD algorithm

(one parameter, one learning rate)



