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Eligibility traces are 

Another way of interpolating between MC and TD methods

A way of implementing compound λ-return targets

A basic mechanistic idea — a short-term, fading memory

A new style of algorithm development/analysis

the forward-view ⇔ backward-view transformation

Forward view: 
conceptually simple — good for theory, intuition

Backward view: 
computationally congenial implementation of the f. view
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Recall n-step targets

For example, in the episodic case,  
with linear function approximation:

2-step target:

n-step target:
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state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt+1(St+2),

where now �2Vt+1(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 +
· · · + �T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step
return:

G(n)
t

.
= Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nVt+n�1(St+n), n � 1, 0  t < T �n. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt+n�1(St+n).
If t + n � T (if the n-step return extends to or beyond termination), then all the
missing terms are taken as zero and the n-step return defined to be equal to the

ordinary full return (G(n)
t

.
= Gt if t + n � T ).

Note that n-step returns for n > 1 involve future rewards and value functions that
are not available at the time of transition from t to t + 1. No real algorithm can use
the n-step return until after it had seen Rt+n and computed Vt+n�1. The first time
these are available to be used is t+n. The natural algorithm for using n-step returns
is thus

Vt+n(St)
.
= Vt+n�1(St) + ↵

h
G(n)

t � Vt+n�1(St)
i
, 0  t < T, (7.2)

while the values of all other states remain unchanged, Vt+n(s) = Vt+n�1(s), 8s 6= St.
We call this algorithm n-step TD. Note that no changes at all are made during the
first n � 1 steps of each episode. To make up for that, an equal number of addition
updates are made at the end of the episode, after termination and before starting
the next episode. Complete pseudocode is given in the box on the next page.

The n-step return uses the value function Vt+n�1 to correct for the missing rewards
beyond Rt+n. An important property of n-step returns is that their expectation is
guaranteed to be a better estimate of v⇡ than Vt+n�1 is, in a worst-state sense. That
is, the worst error of the expected n-step return is guaranteed to be less than or
equal to �n times the worst error under Vt+n�1:

max
s

���E⇡

h
G(n)

t

���St =s
i

� v⇡(s)
���  �n max

s

���Vt+n�1(s) � v⇡(s)
���, (7.3)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that all n-step TD methods

G(2)
t

.
= Rt+1 + �Rt+2 + �2✓>

t+1�t+2

G(n)
t

.
= Rt+1 + · · ·+ �n�1Rt+n + �n✓>

t+n�1�t+n

with



Any set of update targets can be averaged 
to produce new compound update targets

For example, half a 2-step plus half a 4-step

Called a compound backup

Draw each component

Label with the weights for that component

A compound backup
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⇤Exercise 7.3 In the lower part of Figure 7.2, notice that the plot for n = 3 is
di↵erent from the others, dropping to low performance at a much lower value of
↵ than similar methods. In fact, the same was observed for n = 5, n = 7, and
n = 9. Can you explain why this might have been so? In fact, we are not sure
ourselves. See http://www.cs.utexas.edu/~ikarpov/Classes/RL/RandomWalk/
for an attempt at a thorough answer by Igor Karpov.

7.2 The Forward View of TD(�)

Backups can be done not just toward any n-step return, but toward any average
of n-step returns. For example, a backup can be done toward a return that
is half of a two-step return and half of a four-step return: G

ave

t

= 1
2G

(2)
t

+
1
2G

(4)
t

. Any set of returns can be averaged in this way, even an infinite set,
as long as the weights on the component returns are positive and sum to
1. The overall return possesses an error reduction property similar to that of
individual n-step returns (7.2) and thus can be used to construct backups with
guaranteed convergence properties. Averaging produces a substantial new
range of algorithms. For example, one could average one-step and infinite-
step backups to obtain another way of interrelating TD and Monte Carlo
methods. In principle, one could even average experience-based backups with
DP backups to get a simple combination of experience-based and model-based
methods (see Chapter 8).

A backup that averages simpler component backups in this way is called
a complex backup. The backup diagram for a complex backup consists of the
backup diagrams for each of the component backups with a horizontal line
above them and the weighting fractions below. For example, the complex
backup mentioned above, mixing half of a two-step backup and half of a four-
step backup, has the diagram:

1

2

1

2

Ut =
1

2
G(2)

t +
1

2
G(4)

t



The λ-return is a compound update target

The λ-return a target that  
averages all n-step targets 

each weighted by λn-1
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Figure 7.3: The backup digram for TD(�). If � = 0, then the overall backup
reduces to its first component, the one-step TD backup, whereas if � = 1, then
the overall backup reduces to its last component, the Monte Carlo backup.

The TD(�) algorithm can be understood as one particular way of averaging
n-step backups. This average contains all the n-step backups, each weighted
proportional to �

n�1, where 0  �  1 (Figure 7.3). A normalization factor
of 1 � � ensures that the weights sum to 1. The resulting backup is toward a
return, called the �-return, defined by

G

�

t

= (1 � �)
1X

n=1

�

n�1
G

(n)
t

.

Figure 7.4 illustrates this weighting sequence. The one-step return is given
the largest weight, 1 � �; the two-step return is given the next largest weight,
(1 � �)�; the three-step return is given the weight (1 � �)�2; and so on. The
weight fades by � with each additional step. After a terminal state has been
reached, all subsequent n-step returns are equal to G

t

. If we want, we can
separate these terms from the main sum, yielding

G

�

t

= (1 � �)
T�t�1X

n=1

�

n�1
G

(n)
t

+ �

T�t�1
G

t

. (7.3)

This equation makes it clearer what happens when � = 1. In this case the
main sum goes to zero, and the remaining term reduces to the conventional
return, G

t

. Thus, for � = 1, backing up according to the �-return is the
same as the Monte Carlo algorithm that we called constant-↵ MC (6.1) in
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7.2 The Forward View of TD(�)

Backups can be done not just toward any n-step return, but toward any average of
n-step returns. For example, a backup can be done toward a target that is half of a

two-step return and half of a four-step return: 1
2G(2)

t + 1
2G(4)

t . Any set of returns can
be averaged in this way, even an infinite set, as long as the weights on the component
returns are positive and sum to 1. The composite return possesses an error reduction
property similar to that of individual n-step returns (7.5) and thus can be used to
construct backups with guaranteed convergence properties. Averaging produces a
substantial new range of algorithms. For example, one could average one-step and
infinite-step returns to obtain another way of interrelating TD and Monte Carlo
methods. In principle, one could even average experience-based backups with DP
backups to get a simple combination of experience-based and model-based methods
(see Chapter 8).

A backup that averages simpler component backups is called a complex backup.
The backup diagram for a complex backup consists of the backup diagrams for each of
the component backups with a horizontal line above them and the weighting fractions
below. For example, the complex backup for the case mentioned at the start of this
section, mixing half of a two-step backup and half of a four-step backup, has the
diagram:

1

2

1

2

The TD(�) algorithm can be understood as one particular way of averaging n-step
backups. This average contains all the n-step backups, each weighted proportional
to �n�1, where � 2 [0, 1], and normalized by a factor of 1 � � to ensure that the
weights sum to 1 (see Figure 7.3). The resulting backup is toward a return, called
the �-return, defined by

G�
t

.
= (1 � �)

1X

n=1

�n�1G(n)
t .

Figure 7.4 further illustrates the weighting on the sequence of n-step returns in the
�-return. The one-step return is given the largest weight, 1 � �; the two-step return
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λ-return Weighting Function

Until termination After termination

160 CHAPTER 7. ELIGIBILITY TRACES

1!"

(1!") "

(1!") "
2

# = 1

TD("), "-return

"
T-t-1

Figure 7.3: The backup digram for TD(�). If � = 0, then the overall backup
reduces to its first component, the one-step TD backup, whereas if � = 1, then
the overall backup reduces to its last component, the Monte Carlo backup.

The TD(�) algorithm can be understood as one particular way of averaging
n-step backups. This average contains all the n-step backups, each weighted
proportional to �

n�1, where 0  �  1 (Figure 7.3). A normalization factor
of 1 � � ensures that the weights sum to 1. The resulting backup is toward a
return, called the �-return, defined by

G

�

t

= (1 � �)
1X

n=1

�

n�1
G

(n)
t

.

Figure 7.4 illustrates this weighting sequence. The one-step return is given
the largest weight, 1 � �; the two-step return is given the next largest weight,
(1 � �)�; the three-step return is given the weight (1 � �)�2; and so on. The
weight fades by � with each additional step. After a terminal state has been
reached, all subsequent n-step returns are equal to G

t

. If we want, we can
separate these terms from the main sum, yielding

G

�

t

= (1 � �)
T�t�1X

n=1

�

n�1
G

(n)
t

+ �

T�t�1
G

t

. (7.3)

This equation makes it clearer what happens when � = 1. In this case the
main sum goes to zero, and the remaining term reduces to the conventional
return, G

t

. Thus, for � = 1, backing up according to the �-return is the
same as the Monte Carlo algorithm that we called constant-↵ MC (6.1) in

260 CHAPTER 12. ELIGIBILITY TRACES

1!"

weight given to

the 3-step return

decay by "

weight given to

actual, final return

t T

Time

Weight

total area = 1

is (1 � �)�2

is �T�t�1

Figure 12.2: Weighting given in the �-return to each of the n-step returns.

want, we can separate these post-termination terms from the main sum, yielding

G�
t = (1 � �)

T�t�1X

n=1

�n�1G(n)
t + �T�t�1Gt, (12.3)

as indicated in the figures. This equation makes it clearer what happens when
� = 1. In this case the main sum goes to zero, and the remaining term reduces to
the conventional return, Gt. Thus, for � = 1, backing up according to the �-return
is a Monte Carlo algorithm. On the other hand, if � = 0, then the �-return reduces

to G(1)
t , the one-step return. Thus, for � = 0, backing up according to the �-return

is a one-step TD method.

Exercise 12.1 The parameter � characterizes how fast the exponential weighting
in Figure 12.2 falls o↵, and thus how far into the future the �-return algorithm looks
in determining its backup. But a rate factor such as � is sometimes an awkward way
of characterizing the speed of the decay. For some purposes it is better to specify a
time constant, or half-life. What is the equation relating � and the half-life, ⌧�, the
time by which the weighting sequence will have fallen to half of its initial value?

We are now ready to define our first learning algorithm based on the �-return:
the o↵-line �-return algorithm. As an o↵-line algorithm, it makes no changes to the
weight vector during the episode. Then, at the end of the episode, a whole sequence
of o↵-line updates are made according to our usual semi-gradient rule, using the
�-return as the target:

✓t+1
.
= ✓t + ↵

h
G�

t � v̂(St,✓t)
i
rv̂(St,✓t), t = 0, . . . , T � 1. (12.4)

The �-return gives us an alternative way of moving smoothly between Monte
Carlo and one-step TD methods that can be compared with the n-step TD way of
Chapter 7. There we assessed e↵ectiveness on a 19-state random walk task (Example
7.1). Figure 12.3 shows the performance of the o↵-line �-return algorithm on this task
alongside that of the n-step methods (repeated from Figure 7.2). The experiment was
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Relation to TD(0) and MC

The λ-return can be rewritten as:

If λ = 1, you get the MC target:

If λ = 0, you get the TD(0) target:

Until termination After termination
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Figure 7.3: The backup digram for TD(�). If � = 0, then the overall backup
reduces to its first component, the one-step TD backup, whereas if � = 1, then
the overall backup reduces to its last component, the Monte Carlo backup.

The TD(�) algorithm can be understood as one particular way of averaging
n-step backups. This average contains all the n-step backups, each weighted
proportional to �

n�1, where 0  �  1 (Figure 7.3). A normalization factor
of 1 � � ensures that the weights sum to 1. The resulting backup is toward a
return, called the �-return, defined by

G

�

t

= (1 � �)
1X

n=1

�
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G

(n)
t

.

Figure 7.4 illustrates this weighting sequence. The one-step return is given
the largest weight, 1 � �; the two-step return is given the next largest weight,
(1 � �)�; the three-step return is given the weight (1 � �)�2; and so on. The
weight fades by � with each additional step. After a terminal state has been
reached, all subsequent n-step returns are equal to G

t

. If we want, we can
separate these terms from the main sum, yielding

G

�

t

= (1 � �)
T�t�1X

n=1

�

n�1
G

(n)
t

+ �

T�t�1
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t

. (7.3)

This equation makes it clearer what happens when � = 1. In this case the
main sum goes to zero, and the remaining term reduces to the conventional
return, G

t

. Thus, for � = 1, backing up according to the �-return is the
same as the Monte Carlo algorithm that we called constant-↵ MC (6.1) in

G�
t = (1� �)

T�t�1X

n=1

�n�1G(n)
t + �T�t�1Gt (1)

G�
t = (1� 1)

T�t�1X
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1
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t + 1

T�t�1Gt = Gt (2)

G�
t = (1� 0)

T�t�1X

n=1

0

n�1G(n)
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The off-line λ-return “algorithm”

Wait until the end of the episode (offline)

Then go back over the time steps, updating
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Figure 12.2: Weighting given in the �-return to each of the n-step returns.

want, we can separate these post-termination terms from the main sum, yielding

G�
t = (1 � �)

T�t�1X

n=1

�n�1G(n)
t + �T�t�1Gt, (12.3)

as indicated in the figures. This equation makes it clearer what happens when
� = 1. In this case the main sum goes to zero, and the remaining term reduces to
the conventional return, Gt. Thus, for � = 1, backing up according to the �-return
is a Monte Carlo algorithm. On the other hand, if � = 0, then the �-return reduces

to G(1)
t , the one-step return. Thus, for � = 0, backing up according to the �-return

is a one-step TD method.

Exercise 12.1 The parameter � characterizes how fast the exponential weighting
in Figure 12.2 falls o↵, and thus how far into the future the �-return algorithm looks
in determining its backup. But a rate factor such as � is sometimes an awkward way
of characterizing the speed of the decay. For some purposes it is better to specify a
time constant, or half-life. What is the equation relating � and the half-life, ⌧�, the
time by which the weighting sequence will have fallen to half of its initial value?

We are now ready to define our first learning algorithm based on the �-return:
the o↵-line �-return algorithm. As an o↵-line algorithm, it makes no changes to the
weight vector during the episode. Then, at the end of the episode, a whole sequence
of o↵-line updates are made according to our usual semi-gradient rule, using the
�-return as the target:

✓t+1
.
= ✓t + ↵

h
G�

t � v̂(St,✓t)
i
rv̂(St,✓t), t = 0, . . . , T � 1. (12.4)

The �-return gives us an alternative way of moving smoothly between Monte
Carlo and one-step TD methods that can be compared with the n-step TD way of
Chapter 7. There we assessed e↵ectiveness on a 19-state random walk task (Example
7.1). Figure 12.3 shows the performance of the o↵-line �-return algorithm on this task
alongside that of the n-step methods (repeated from Figure 7.2). The experiment was



The λ-return alg performs similarly to n-step algs  
on the 19-state random walk (Tabular)
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Figure 12.3: 19-state Random walk results (Example 7.1): Performance of the o✏ine �-
return algorithm alongside that of the n-step TD methods. In both case, intermediate values
of the bootstrapping parameter (� or n) performed best. The results with the o↵-line �-return
algorithm are slighly better at the best values of ↵ and �, and at high ↵.

just as described earlier except that for the �-return algorithm we varied � instead of
n. The performance measure used is the estimated root-mean-squared error between
the correct and estimated values of each state measured at the end of the episode,
averaged over the first 10 episodes and the 19 states. Note that overall performance
of the o↵-line �-return algorithms is comparable to that of the n-step algorithms. In
both cases we get best performance with an intermediate value of the bootstrapping
parameter, n for n-step methods and � for the o✏ine �-return algorithm.

The approach that we have been taking so far is what we call the theoretical, or
forward, view of a learning algorithm. For each state visited, we look forward in time
to all the future rewards and decide how best to combine them. We might imagine
ourselves riding the stream of states, looking forward from each state to determine
its update, as suggested by Figure 12.4. After looking forward from and updating
one state, we move on to the next and never have to work with the preceding state
again. Future states, on the other hand, are viewed and processed repeatedly, once
from each vantage point preceding them.
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Figure 12.4: The forward view. We decide how to update each state by looking forward to
future rewards and states.

Intermediate λ is best (just like intermediate n is best)
λ-return slightly better than n-step



The forward view looks forward from the state being updated 
to future states and rewards
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Figure 7.5: The forward or theoretical view. We decide how to update each
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Figure 7.6: Performance of the o↵-line �-return algorithm on a 19-state random
walk task.

way of mixing n-step backups is that there is a simple algorithm—TD(�)—for
achieving it. This is a mechanism issue rather than a theoretical one. In the
next few sections we develop the mechanistic, or backward, view of eligibility
traces as used in TD(�).

Example 7.2: �-return on the Random Walk Task Figure 7.6 shows
the performance of the o↵-line �-return algorithm on the 19-state random walk
task used with the n-step methods in Example 7.1. The experiment was just
as in the n-step case except that here we varied � instead of n. Note that we
get best performance with an intermediate value of �.

Exercise 7.4 The parameter � characterizes how fast the exponential weight-
ing in Figure 7.4 falls o↵, and thus how far into the future the �-return algo-
rithm looks in determining its backup. But a rate factor such as � is sometimes
an awkward way of characterizing the speed of the decay. For some purposes it



The backward view looks back
to the recently visited states (marked by eligibility traces)

Shout the TD error backwards

The traces fade with temporal distance by γλ
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Semi-gradient TD(�) for estimating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S+ ⇥ Rn ! R such that v̂(terminal,·) = 0

Initialize value-function weights ✓ arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

Initialize S
e 0 (An n-dimensional vector)
Repeat (for each step of episode):
. Choose A ⇠ ⇡(·|S)
. Take action A, observe R, S0

. e ��e +rv̂(S,✓)

. �  R + �v̂(S0,✓)� v̂(S,✓)

. ✓  ✓ + ↵�e

. S  S0

until S0 is terminal

riding along the stream of states, computing TD errors, and shouting them back to
the previously visited states, as suggested by Figure 12.5. Where the TD error and
traces come together, we get the update given by (12.7).

To better understand the backward view, consider what happens at various values
of �. If � = 0, then by (12.5) the trace at t is exactly the value gradient corresponding
to St. Thus the TD(�) update (12.7) reduces to the one-step semi-gradient TD
update treated in Chapter 9 (and, in the tabular case, to the simple TD rule (6.2)).
This is why that algorithm was called TD(0). In terms of Figure 12.5, TD(0) is
the case in which only the one state preceding the current one is changed by the
TD error. For larger values of �, but still � < 1, more of the preceding states
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Figure 12.5: The backward or mechanistic view. Each update depends on the current TD
error combined with eligibility traces of past events.
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is better to specify a time constant, or half-life. What is the equation relating
� and the half-life, ⌧

�

, the time by which the weighting sequence will have
fallen to half of its initial value?

7.3 The Backward View of TD(�)

In the previous section we presented the forward or theoretical view of the tab-
ular TD(�) algorithm as a way of mixing backups that parametrically shifts
from a TD method to a Monte Carlo method. In this section we instead define
TD(�) mechanistically, and in the next section we show that this mechanism
correctly implements the forward view. The mechanistic, or backward , view
of TD(�) is useful because it is simple conceptually and computationally. In
particular, the forward view itself is not directly implementable because it is
acausal, using at each step knowledge of what will happen many steps later.
The backward view provides a causal, incremental mechanism for approximat-
ing the forward view and, in the o↵-line case, for achieving it exactly.

In the backward view of TD(�), there is an additional memory variable
associated with each state, its eligibility trace. The eligibility trace for state
s at time t is a random variable denoted Z

t

(s) 2 R+. On each step, the
eligibility traces for all states decay by ��, and the eligibility trace for the one
state visited on the step is incremented by 1:

Z

t

(s) =

⇢
��Z

t�1(s) if s 6=S

t

;
��Z

t�1(s) + 1 if s=S

t

,

(7.5)

for all nonterminal states s, where � is the discount rate and � is the parameter
introduced in the previous section. Henceforth we refer to � as the trace-decay
parameter. This kind of eligibility trace is called an accumulating trace because
it accumulates each time the state is visited, then fades away gradually when
the state is not visited, as illustrated below:

accumulating eligibility trace

times of visits to a state

At any time, the traces record which states have recently been visited,
where “recently” is defined in terms of ��. The traces are said to indicate the
degree to which each state is eligible for undergoing learning changes should
a reinforcing event occur. The reinforcing events we are concerned with are
the moment-by-moment one-step TD errors. For example, the TD error for

et 2 Rn � 0
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12.2 TD(�)

TD(�) is one of the oldest and most widely used algorithms in reinforcement learning.
It was the first algorithm for which a formal relationship was shown between a more
theoretical forward view and a more computational congenial backward view using
eligibility traces. Here we will show empirically that it approximates the o↵-line
�-return algorithm presented in the previous section.

TD(�) improves over the o↵-line �-return algorithm in three ways. First it updates
the weight vector on every step of an episode rather than only at the end, and thus
its estimates may be better sooner. Second, its computations are equally distributed
in time rather that all at the end of the episode. And third, it can be applied to
continuing problems rather than just episodic problems. In this section we present
the semi-gradient version of TD(�) with function approximation.

With function approximation, the eligibility trace is a vector et 2 Rn with the
same number of components as the weight vector ✓t. Whereas the weight vector is a
long-term memory, accumulating over the lifetime of the system, the eligibility trace
is a short-term memory, typically lasting less time than the length of an episode.
Eligibility traces assist in the learning process; their only consequence is that they
a↵ect the weight vector, and then the weight vector determines the estimated value.

In TD(�), the eligibility trace vector is initialized to zero at the beginning of the
episode, is incremented on each time step by the value gradient, and then fades away
by ��:

e0
.
= 0,

et
.
= rv̂(St,✓t) + ��et�1,

(12.5)

where � is the discount rate and � is the parameter introduced in the previous
section. The eligibility trace keeps track of which components of the weight vector
have contributed, positively or negatively, to recent state valuations, where “recent”
is defined in terms ��. The trace is said to indicate the eligibility of each component
of the weight vector for undergoing learning changes should a reinforcing event occur.
The reinforcing events we are concerned with are the moment-by-moment one-step
TD errors. The TD error for state-value prediction is

�t
.
= Rt+1 + �v̂(St+1,✓t) � v̂(St,✓t). (12.6)

In TD(�), the weight vector is updated on each step proportional to the scalar TD
error and the vector eligibility trace:

✓t+1
.
= ✓t + ↵�tet, (12.7)

On the next page, complete pseudocode for TD(�) is given in the box, and a picture
of its operation is suggested by Figure 12.5.

TD(�) is oriented backward in time. At each moment we look at the current TD
error and assign it backward to each prior state according to how much that state
contributed to the current eligibility trace at that time. We might imagine ourselves

same shape as !
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but slightly worse, particularly at high α
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are changed, but each more temporally distant state is changed less because the
corresponding eligibility trace is smaller, as suggested by the figure. We say that the
earlier states are given less credit for the TD error.

If � = 1, then the credit given to earlier states falls only by � per step. This
turns out to be just the right thing to do to achieve Monte Carlo behavior. For
example, remember that the TD error, �t, includes an undiscounted term of Rt+1.
In passing this back k steps it needs to be discounted, like any reward in a return,
by �k, which is just what the falling eligibility trace achieves. If � = 1 and � = 1,
then the eligibility traces do not decay at all with time. In this case the method
behaves like a Monte Carlo method for an undiscounted, episodic task. If � = 1, the
algorithm is also known as TD(1).

TD(1) is a way of implementing Monte Carlo algorithms that is more general than
those presented earlier and that significantly increases their range of applicability.
Whereas the earlier Monte Carlo methods were limited to episodic tasks, TD(1)
can be applied to discounted continuing tasks as well. Moreover, TD(1) can be
performed incrementally and on-line. One disadvantage of Monte Carlo methods is
that they learn nothing from an episode until it is over. For example, if a Monte
Carlo control method takes an action that produces a very poor reward but does not
end the episode, then the agent’s tendency to repeat the action will be undiminished
during the episode. On-line TD(1), on the other hand, learns in an n-step TD way
from the incomplete ongoing episode, where the n steps are all the way up to the
current step. If something unusually good or bad happens during an episode, control
methods based on TD(1) can learn immediately and alter their behavior on that
same episode.

It is revealing to revisit the 19-state random walk example (Example 7.1) to see
how well TD(�) does in approximating the o↵-line �-return algorithm. The results
for both algorithms are shown in Figure 12.6. For each � value, if ↵ is selected

Off-line λ-return algorithm
(from the previous section)

↵

λ=0

λ=.4
λ=.8

λ=.9

λ=.95

λ=.975
λ=.99

λ=1

λ=.95

λ=0

λ=.4

λ=.8
λ=.9

λ=.95.975.991
TD(λ)

↵

λ=.8
λ=.9

RMS error
at the end 

of the episode
over the first
10 episodes

Figure 12.6: 19-state Random walk results (Example 7.1): Performance of TD(�) alongside
that of the o↵-line �-return algorithm. The two algorithms performed virtually identically
at low (less than optimal) ↵ values, but TD(�) was worse at high ↵ values.Can we do better? Can we update online?

Tabular 19-state random walk task
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RMS error
over first

10 episodes

Off-line λ-return algorithm

↵

λ=0

λ=.4
λ=.8

λ=.9

λ=.95

λ=.975
λ=.99

λ=1

λ=.95

On-line λ-return algorithm
= true online TD(λ)

↵

λ=0

λ=.4
λ=.8

λ=.9

λ=.95

λ=.975

λ=.99

λ=1

λ=.95

Figure 12.7: 19-state Random walk results (Example 7.1): Performance of online and o↵-
line �-return algorithms. The performance measure here is the MSVE at the end of the
episode, which should be the best case for the o↵-line algorithm. Nevertheless, the on-line
algorithm performs subtlely better. For comparison, the � = 0 line is the same for both
methods.

algorithm because it is “truer” to the idea of the online TD(�) algorithm, truer even
than the TD(�) algorithm itself.

The derivation of true on-line TD(�) is a little too complex to present here (see
the next section and the appendix to the paper by van Seijen et al., in press) but its
strategy is simple. The sequence of weight vectors produce by the on-line �-return
algorithm can be arranged in a triangle:

✓0
0

✓1
0 ✓1

1

✓2
0 ✓2

1 ✓2
2

✓3
0 ✓3

1 ✓3
2 ✓3

3
...

...
...

...
. . .

✓T
0 ✓T

1 ✓T
2 ✓T

3 · · · ✓T
T

(12.10)

One row of this triangle is produced on each time step. Really only the weight vectors
on the diagonal, the ✓t

t, need to be produced by the algorithm. The first, ✓0
0, is the

input, the last, ✓T
T , is the output, and each weight vector along the way, ✓t

t, plays a
role in bootstrapping in the n-step returns of the updates. In the final algorithm the
diagonal weight vectors are renamed without a superscript, ✓t

.
= ✓t

t. The strategy
then is to find a compact, e�cient way of computing each ✓t

t from the one before. If
this is done, for the linear case in which v̂(s,✓) = ✓>�(s), then we arrive at the true
online TD(�) algorithm:

✓t+1
.
= ✓t + ↵�tet + ↵

⇣
✓>

t �t � ✓>
t�1�t

⌘
(et � �t), (12.11)

where we have used the shorthand �t
.
= �(St), �t is defined as in TD(�) (12.6), and

Tabular 19-state random walk task
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optimally for it or smaller, then the two algorithms perform virtually identically. If
↵ is chosen larger, however, then the �-return algorithm is only a little worse whereas
TD(�) is much worse and may even be unstable. This is not a terrible problem for
TD(�), as these higher parameter values are not what one would want to use anyway,
but it is a weakness of the method.

12.3 An On-line Forward View

The primary weakness of the o↵-line �-return algorithm is that it is o↵-line: it learns
nothing until the episode is finished. This is due to its forward view, which defines
a target only when the episode is complete. In order to actually change the weights
partway through the episode, only information up to that time can be used. What
then is a reasonable update target to use for the online case? Let us consider this
carefully for a moment, without concern for computational complexity, to develop
an ideal online forward view algorithm.

We seek a �-return-style target to update the value estimate at time t, given data
up to some horizon h, where the horizon is earlier than the time at which the episode
terminates, i.e., h < T . We have the n-step returns up to the horizon (i.e., for
1  n < h � t) but beyond the horizon there as yet is no data. Thus, one can form a
h-truncated �-return, like (12.3) but truncated not at the time of termination but at
the horizon, and using the n-step return at the horizon in place of the missing tail
of the return:

G�|h
t

.
= (1 � �)

h�t�1X

n=1

�n�1G(n)
t + �h�t�1G(h�t)

t , 0  t < h  T. (12.8)

Let us step through how this target is used in practice. The episode begins with
an estimate at time 0 using the weights ✓0 from the end of the previous episode.
Learning begins when the data horizon is extended to time step 1. The target for
the estimate at step 0, given the data up to horizon 1, could only be the one-step

return G(1)
0 , which includes R1 and bootstraps from the estimate v̂(S1,✓0). In (12.8),

this is exactly what G�|1
0 is, taking the last part of the equation. Using this update

target, we construct ✓1. Then, after advancing the data horizon to step 2, what do
we do? We have new data in the form of R2 and S2, as well as the new ✓1, so now

we can construct a better update target G�|2
0 for the first update from S0 as well

as a better update target G�|2
1 for the second update from S1. We perform both of

these updates in sequence to produce ✓2. Now we advance the horizon to step 3 and
repeat, going all the way back to produce three new updates and finally ✓3, and so
on.

This conceptual algorithm involves multiple passes over the episode, one at each
horizon, each generating a di↵erent sequence of weight vectors. To describe it clearly
we have to distinguish between the weight vectors computed at the di↵erent horizons.
Let us use ✓h

t to denote the weights used to generate the value at time t in the
sequence at horizon h. The first weight vector in each sequence is that inherited
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Figure 7.6: Performance of the o↵-line �-return algorithm on a 19-state random
walk task.

way of mixing n-step backups is that there is a simple algorithm—TD(�)—for
achieving it. This is a mechanism issue rather than a theoretical one. In the
next few sections we develop the mechanistic, or backward, view of eligibility
traces as used in TD(�).

Example 7.2: �-return on the Random Walk Task Figure 7.6 shows
the performance of the o↵-line �-return algorithm on the 19-state random walk
task used with the n-step methods in Example 7.1. The experiment was just
as in the n-step case except that here we varied � instead of n. Note that we
get best performance with an intermediate value of �.

Exercise 7.4 The parameter � characterizes how fast the exponential weight-
ing in Figure 7.4 falls o↵, and thus how far into the future the �-return algo-
rithm looks in determining its backup. But a rate factor such as � is sometimes
an awkward way of characterizing the speed of the decay. For some purposes it
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from the previous episode, ✓h
0

.
= ✓0, and the last weight vector in each sequence

defines the ultimate weight-vector sequence of the algorithm ✓h
.
= ✓h

h. At the final
horizon h = T we obtain the final weights ✓T

.
= ✓T

T which will be passed on to form
the initial weights ✓0 of the next episode. With these conventions, the three first
sequences described in the previous paragraph can be given explicitly:

h = 1 : ✓1
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.
= ✓1

0 + ↵
h
G�|1

0 � v̂(S0,✓
1
0)

i
rv̂(S0,✓

1
0),

h = 2 : ✓2
1

.
= ✓2

0 + ↵
h
G�|2

0 � v̂(S0,✓
2
0)

i
rv̂(S0,✓

2
0),

✓2
2

.
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1 + ↵
h
G�|2

1 � v̂(S1,✓
2
1)

i
rv̂(S1,✓

2
1),

h = 3 : ✓3
1

.
= ✓3

0 + ↵
h
G�|3

0 � v̂(S0,✓
3
0)

i
rv̂(S0,✓

3
0),

✓3
2

.
= ✓3

1 + ↵
h
G�|3

1 � v̂(S1,✓
3
1)

i
rv̂(S1,✓

3
1),

✓3
3

.
= ✓3

2 + ↵
h
G�|3

2 � v̂(S2,✓
3
2)

i
rv̂(S2,✓

3
2).

The general form for the update is

✓h
t+1

.
= ✓h

t + ↵
h
G�|h

t � v̂(St,✓
h
t )

i
rv̂(St,✓

h
t ), 80  t < h  T. (12.9)

This update, together with ✓t
.
= ✓t

t defines the online �-return algorithm.

The online �-return algorithm is fully online, determining a new weight vector ✓t

at each step t during an episode, using only information available at time t. It’s main
drawback is that it is computationally complex, passing over the entire episode so
far on every step. Note that it is strictly more complex than the o↵-line �-return
algorithm, which passes through all the steps at the time of termination but does
not make any updates during the episode. In return, the online algorithm can be
expected to perform better than the o↵-line one, not only during the episode when it
makes an update while the o↵-line algorithm makes none, but also at the end of the

episode because the weight vector used in bootstrapping (in G�|h
t ) has had a greater

number of informative updates. This e↵ect can be seen if one looks carefully at
Figure 12.7, which compares the two algorithms on the 19-state random walk task.

12.4 True Online TD(�)

The on-line �-return algorithm just presented is currently the best performing temporal-
di↵erence algorithm. As presented, however, it is very complex. Is there a way to
invert this forward-view algorithm to produce an e�cient backward-view algorithm
using eligibility traces? It turns out that there is indeed an exact computationally
congenial implementation of the on-line �-return algorithm for the case of linear
function approximation. This implementation is known as the true online TD(�)

horizon h = t +3

There is a separate
! sequence for each h!



The online λ-return algorithm
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This update, together with ✓t
.
= ✓t

t defines the online �-return algorithm.

The online �-return algorithm is fully online, determining a new weight vector ✓t

at each step t during an episode, using only information available at time t. It’s main
drawback is that it is computationally complex, passing over the entire episode so
far on every step. Note that it is strictly more complex than the o↵-line �-return
algorithm, which passes through all the steps at the time of termination but does
not make any updates during the episode. In return, the online algorithm can be
expected to perform better than the o↵-line one, not only during the episode when it
makes an update while the o↵-line algorithm makes none, but also at the end of the

episode because the weight vector used in bootstrapping (in G�|h
t ) has had a greater

number of informative updates. This e↵ect can be seen if one looks carefully at
Figure 12.7, which compares the two algorithms on the 19-state random walk task.

12.4 True Online TD(�)

The on-line �-return algorithm just presented is currently the best performing temporal-
di↵erence algorithm. As presented, however, it is very complex. Is there a way to
invert this forward-view algorithm to produce an e�cient backward-view algorithm
using eligibility traces? It turns out that there is indeed an exact computationally
congenial implementation of the on-line �-return algorithm for the case of linear
function approximation. This implementation is known as the true online TD(�)
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Figure 12.7: 19-state Random walk results (Example 7.1): Performance of online and o↵-
line �-return algorithms. The performance measure here is the MSVE at the end of the
episode, which should be the best case for the o↵-line algorithm. Nevertheless, the on-line
algorithm performs subtlely better. For comparison, the � = 0 line is the same for both
methods.

algorithm because it is “truer” to the idea of the online TD(�) algorithm, truer even
than the TD(�) algorithm itself.

The derivation of true on-line TD(�) is a little too complex to present here (see
the next section and the appendix to the paper by van Seijen et al., in press) but its
strategy is simple. The sequence of weight vectors produce by the on-line �-return
algorithm can be arranged in a triangle:
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One row of this triangle is produced on each time step. Really only the weight vectors
on the diagonal, the ✓t

t, need to be produced by the algorithm. The first, ✓0
0, is the

input, the last, ✓T
T , is the output, and each weight vector along the way, ✓t

t, plays a
role in bootstrapping in the n-step returns of the updates. In the final algorithm the
diagonal weight vectors are renamed without a superscript, ✓t

.
= ✓t

t. The strategy
then is to find a compact, e�cient way of computing each ✓t

t from the one before. If
this is done, for the linear case in which v̂(s,✓) = ✓>�(s), then we arrive at the true
online TD(�) algorithm:

✓t+1
.
= ✓t + ↵�tet + ↵

⇣
✓>

t �t � ✓>
t�1�t

⌘
(et � �t), (12.11)

where we have used the shorthand �t
.
= �(St), �t is defined as in TD(�) (12.6), and
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far on every step. Note that it is strictly more complex than the o↵-line �-return
algorithm, which passes through all the steps at the time of termination but does
not make any updates during the episode. In return, the online algorithm can be
expected to perform better than the o↵-line one, not only during the episode when it
makes an update while the o↵-line algorithm makes none, but also at the end of the
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12.4 True Online TD(�)

The on-line �-return algorithm just presented is currently the best performing temporal-
di↵erence algorithm. As presented, however, it is very complex. Is there a way to
invert this forward-view algorithm to produce an e�cient backward-view algorithm
using eligibility traces? It turns out that there is indeed an exact computationally
congenial implementation of the on-line �-return algorithm for the case of linear
function approximation. This implementation is known as the true online TD(�)
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et is defined by

et
.
= ��et�1 +

⇣
1� ↵��e>

t�1�t

⌘
�t. (12.12)

This algorithm has been proven to produce exactly the same sequence of weight vec-
tors, ✓t, 80  t  T , as the on-line �-return algorithm (van Siejen et al. 2016). Thus
the results on the random walk task on the left of Figure 12.7 are also its results on
that task. Now, however, the algorithm is much less expensive. The memory require-
ments of true online TD(�) are identical to those of conventional TD(�), while the
per-step computation is increased by about 50% (there is one more inner product in
the eligibility-trace update). Overall, the per-step computational complexity remains
of O(n), the same as TD(�). Pseudocode for the complete algorithm is given in the
box.

The eligibility trace (12.12) used in true online TD(�) is called a dutch trace to
distinguish it from the trace (12.5) used in TD(�), which is called an accumulating
trace. Earlier work often used a third kind of trace called the replacing trace, defined
only for the tabular case or binary feature vectors such as are produced by tile coding.
The replacing trace is defined on a component-by-component basis depending on
whether the component of the feature vector was 1 or 0:

ei,t
.
=

⇢
1 if �i,t = 1
��ei,t�1 otherwise.

(12.13)

Now, however, use of the replacing trace it deprecated; a dutch trace should almost
always be used instead.

True Online TD(�) for estimating ✓>� ⇡ v⇡

Input: the policy ⇡ to be evaluated

Initialize value-function weights ✓ arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

Initialize state and obtain initial feature vector �
e 0 (an n-dimensional vector)
Vold  0 (a scalar temporary variable)
Repeat (for each step of episode):
. Choose A ⇠ ⇡
. Take action A, observe R, �0 (feature vector of the next state)
. V  ✓>�
. V 0  ✓>�0

. e ��e +
�
1� ↵��e>�

�
�

. �  R + �V 0 � V

. ✓  ✓ + ↵(� + V � Vold)e� ↵(V � Vold)�

. Vold  V 0

. � �0

until �0 = 0 (signaling arrival a terminal state)

dutch trace
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All traces fade the same: 

But increment differently!
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and we see now for TD(�) (Figure 7.9).

In the on-line case, the performance of TD(�) with accumulating traces (Figure 7.9,
left) is indeed much better and closer to that of the on-line �-return algorithm (Fig-
ure 7.5, left). If � = 0, then in fact it is the identical algorithm at all ↵, and if ↵
is small, then for all � it is a close approximation to the �-return algorithm by the
end of each episode. However, if both parameters are larger, for example � > 0.9
and ↵ > 0.5, then the algorithms perform substantially di↵erently: the �-return
algorithm performs a little less well whereas TD(�) is likely to be unstable. This is
not a terrible problem, as these parameter values are higher than one would want to
use anyway, but it is a weakness of the method.

7.4 Replacing and Dutch Traces

Two alternative types of eligibility traces have been proposed to address the limita-
tions of accumulating traces. All three types decay the traces of non-visited states
in the same way, that is, according to (7.8), but they di↵er in how the visited state
is incremented. The first alternative type is the replacing trace. Suppose a state is
visited and then revisited before the trace due to the first visit has fully decayed to
zero. With accumulating traces the revisit causes a further increment in the trace
(7.9), driving it greater than 1, whereas, with replacing traces, the trace is simply
reset to 1:

Et(St)
.
= 1. (7.12)

In the special case of � = 1, TD(�) with replacing traces is closely related to first-visit
Monte Carlo methods.

The second alternative type of eligibility trace, called the dutch trace, can be
viewed as intermediate between accumulating and replacing traces, depending on

times of state visits

accumulating traces

dutch traces (α = 0.5)

replacing traces

Figure 7.10: The three di↵erent kinds of traces. Accumulating traces add up each time
a state is visited, whereas replacing traces are reset to one, and dutch traces do something
in-between, depending on ↵ (here we show them for ↵ = 0.5). In all cases the traces decay
at a rate of �� per step; here we show �� = 0.8 such that the traces have a time constant
of approximately 5 steps. For a sense of step length, note that the last four visits are on
successive steps.
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Conclusions from the forward-backward derivation

We have derived dutch eligibility traces from an MC update, 
without any TD learning

Dutch traces, and in fact all eligibility traces, are not about TD; 
they are about efficient multi-step learning

We can derive new non-obvious algorithms that are equivalent 
to obvious algorithms but have better computational properties

This is a different type of machine-learning result,  
an algorithm equivalence
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Conclusions regarding Eligibility Traces

Provide an efficient, incremental way to combine MC and TD
Includes advantages of MC (better when non-Markov)
Includes advantages of TD (faster, comp. congenial)

True online TD(λ) is new and best
Is exactly equivalent to online λ-return algorithm

Three varieties of traces: accumulating, dutch, (replacing)
Traces to control in on-policy and off-policy forms
Traces do have a small cost in computation (≈x2)


