Eligibility Traces

Chapter 12

Eligibility traces are

@ Another way of interpolating between MC and TD methods
e A way of implementing compound A-return targets
@ A basic mechanistic idea — a short-term, fading memory
@ A new style of algorithm development/analysis
@ the forward-view < backward-view transformation

e Forward view:
conceptually simple — good for theory, intuition

e Backward view:
computationally congenial implementation of the f. view

Unified View

width

of backup ’ D .
Temporal- ynamic
difference programming
learning

Exhaustive

Monte ., search

Carlo

Recall n-step targets

@ For example, in the episodic case,
with linear function approximation:

@ 2-step target:

Gi? = Ryy1 + YReva + 720, 1o

@ n-step target:
(n) . n—1 neT
Gy =R+ 7" Rgn 770 1Pt4n

with G\ =G, ift+n>T

Any set of update targets can be averaged
to produce new compound update targets

A compound backup

e For example, half a 2-step plus half a 4-step

L o 1

—_—

e Called a compound backup

@ Draw each component

N[

e Label with the weights for that component

The A-return is a compound update target

TD(A), A-return

@ The A-return a target that O
averages all n-step targets E &
O
e each weighted by Al - .
O

(1=1) A

Gr=(1-2)) Aiay
n=1

M

O

(1=\

Q
Q

&
O

)

}\2

A-return Weighting Function

weight given to

el the 3-step return total area = 1
\ is (1 —A)\?

decay by A

weight given to
actual, final return
is \NT—t1

Time —

T—t—1
Gy = (1-N) a6+ AT,

n=1

- ~ / -

Until termination After termination

Relation to TD(0) and MC

@ The A-return can be rewritten as:

T—t—1
GY = (1-X2)) alar 4+ TG,
n=1
N\ ~ / \ _J
Until termination After termination

e If A =1, you get the MC target:

T—t—1
Gy = (1-1) Y 1"'aY + 176, = G

n=1

e If A =0, you get the TD(0) target:

T—t—1

Gy = (1-0 > olgM + o7 lG, = GyY
n=1

The off-line A-return “algorithm”

@ Wait until the end of the episode (offline)

@ Then go back over the time steps, updating

Ori1 = 6+ 0 |G — 9(5,0) | V(S1.6,), t=0,...

The A-return alg performs similarly to n-step algs
on the 19-state random walk (Tabular)

n-step TD methods
(from Chapter 7)

Off-line A-return algorithm
0.55 ,

05F

RMS error
at the end
of the episode o4l
over the first
10 episodes o035t

045

03F

025 1 1 1 1 1 J
0 0.2 04 06 0.8 1

Intermediate A is best (just like intermediate 7 is best)
A-return slightly better than n-step

The forward view looks forward from the state being updated
to future states and rewards

The backward view looks back
to the recently visited states (marked by eligibility traces)

@ Shout the TD error backwards

@ The traces fade with temporal distance by yA

Here we are marking state-action pairs with a replacing eligibility trace

Eligibility traces (mechanism)

@ The forward view was for theory

@ The backward view 1s for mechanism same shape as 0

/

e New memory vector called eligibility trace e; € R" >0

@ On each step, decay each component by YA and
increment the trace for the current state by 1

® Accumulating trace

€y = 0,
€ = V@(St,gt) + 7)\et_1

accumulating eligibility trace

times of visits to a state

14

The Semi-gradient TD(A) algorithm

Oi11 = 0; + adiey
0t = Riv1 4+ v0(St4+1,0¢) — 0(S,0¢)

€0 = 0,
e = V0U(5:,0:) + e

TD(A) performs similarly to offline A-return alg.
but slightly worse, particularly at high «

Tabular 19-state random walk task

TD(V) Off-line A-return algorithm

(from the previous section)

0.55-_‘ i

05F Il °

RMS error sl
at the end
of the episode o4+
over the first
10 episodes 93°|

03 F

0.25 [1 1 1 1] 1 1 1 1 1 J
0 0.2 04 06 0.8 1 0 0.2 04 06 0.8 1

Can we do better? Can we update online?

The online A-return algorithm performs best of all

Tabular 19-state random walk task

On-line A-return algorithm Off-line A-return algorithm

0.55 ~ = true online TD(A)

\ /=1

05k iV

045

RMS error
over first 4L

10 episodes
035 F

0.3

025}, _ ’=.8

The online A-return alg uses a truncated A-return
as 1ts target

horizon h = t+3

There 1s a separate

Oh - Hh |:G)\|h oA S ,Oh i| v'\ S 70h
i1 =0 + o |G —0(54,07) | VO(5i.07) 0 sequence for each /!

The online A-return algorithm

There is a separate
0 sequence for each h!

0, = 0 + o |G — 0(5,.00)| Vi(s.0f)

h=1: 6l =6l+a[G)" —0(50.60)] Vi(So.6h),

h=2: 6} =68 +a[G)” —0(50.6%)] Vi(So.68),

03 = 67 + o [— 5(51.69)] Vi (51.6%),

h=3: 6} =03+alG)" —0(5.68)] Vo(So.08).
: P N IRV
03 =0} + o |G} — U(Sl’e%)_ Vo(51,67), True online TD(A)
. [N] ~ .
05 =03 +a _G2|3 — 9(82,03)| V(S2,65). computes just the
diagonal, cheaply

(for linear FA)

True online TD(A)

(9t+1 = 0; + aorer i+ o (HtTCbt — 9tT—1¢t) (et — @)

e = YA e + (1 — 047)\93_1@) o dutch trace

Accumulating, Dutch, and Replacing Traces

@ All traces fade the same:

@ But increment differently!

| | | | | times of state visits

J\ J\l\\ accumulating traces
\\ K dutch traces

VW¥ replacing traces

[[

21

The simplest example of deriving a backward view
from a forward view

@ Monte Carlo learning of a final target
e Will derive dutch traces
@ Showing the dutch traces really are not about TD

@ They are about efficiently implementing online algs

The Problem:
Predict final target Z with linear function approximation

episode

Time 0 1 2 s T-1 T

Data qb() ¢1 Cbz R QbT—l /

Weights HO 00 90 s 90 HT
Precfi\iJc%ons 0,0 031 O.ps ... 65 br_

MC: Ht_|_1ﬁ0t/—|—04t(z—¢2—9t)¢t, t:O,,T—l

step size

all done attime T

Computational goals

Computation per step (including memory) must be
1. Constant. (non-increasing with number of episodes)
2. Proportionate. (proportional to number of weights, or O(n))

3. Independent of span. (not increasing with episode length) In
general, the predictive span is the number of steps between
making a prediction and observing the outcome

MC: 6,1 =60+ (Z—¢6,) ¢y, t=0,....,T—1
— What is the span? T

step size all done attime T |
Is MC indep of span? No

Computational goals

Computation per step (including memory) must be

1. Constant. (non-increasing with number of episodes)

2. Proportionate. (proportional to number of weights, or O(n))

3. Independent of span. (not increasing with episode length) In
general, the predictive span is the number of steps between
making a prediction and observing the outcome

MC: Ht—l—l = Ht/"—Oét (Z — Qsz_gt) ¢t7

step size

all done attime T

t=0,....T—1

Computation and memory needed
at step T increases with T'= not |0S

Final Result

Given:

0y @0, P1, P2, ..., 071 4
MC algorithm:

01 =0+, (2~ 0) b, t=0,....,T—1

Equivalent independent-of-span algorithm:

HT = ar_q + ZGT_l, a; © an’ e € K"

aoieo, then atiat_l—othbtqb;rat_l, t = 17,T—1

ey = ap¢o, then e; = e;_1 — oztcbtqbfet_l +aipy, t=1,...,T—1
Proved:

Or = 0

MC: 6t+1i6t‘|‘(1t(z—¢2—9t)¢t, tZO,,T—l

Or = O0r_1 +ar_1 (Z — ¢dp_107-1) b1
=0r_ 1 +ar_1¢71 (—¢;_19T—1) +ar 1 Zér
= (I — CYT—1¢T—1¢;_1) Or_1 + Zap_197r_4
=Fr_10r_1 + Zar_19r_ (where Fy =1 — au¢p0,)
=Fr_ 1 (Fr_207_2 + Zar_ospr_s) + Zap_1¢p7_4
=Fr 1 Fr 2009+ Z (Froiar_apr_o + ar_1¢p7_1)
=Fr_ 1 Fr_o (Fr_30r_3+ Zar_spr_3) + Z (Fr_iar_a¢pr_o + ar_1¢pr_1)
=Fr 1\ Fr_oF7 307 5+ Z (FroFr_sar_s¢pr_3 + Fr_jar_o¢pr_o + ar_1¢r_1)

T-1
= FT_lFT_Q R FOHQ _|_ Z Z FT—lFT—Q T Fk+1@k¢k
a;r—l & d

€11

=ar_1+ Zep_ "
=1 =1 auxiliary short-term-memory vectors a; € R", e; € R"

T-1

— FT—lFT—2 .. FOHQ + 7 Z FT—lFT_2 ce Fk—l—l&kz(bkﬁ
hd k=0

ar_q

J/

-~

€11

=ar_1+ Zer_;

t
etiZFtFt—l"'Fk+1@k¢k, t=0,...,7—1
k=0

t—1
= Z FiFi 1 Froiopgp +
k=0

t—1
= F, Z Fi 1 Fio- Frpioug, + oy
k=0

:Ftet_1+0ét¢t, tzl,,T—l
= €;_q _atqbt(b;ret—l + i@y, t=1,...,7T—1

. T
a = F,F; - "F090 = F.a;, 1 = a; 4 —Oét¢t¢t a1,

t=1,...

Final Result

Given:

00 G0, D1, P2, ..., 071 4
MC:

01 =0+, (2~ 0) b, t=0,....,T—1

Equivalent independent-of-span algorithm:

HT = ar_q + ZGT_l, a; © an’ e € K"

aoieo, then atiat_l—othbtqb;rat_l, t = 17,T—1

ey = ap¢o, then e; = e;_1 — oztcbtqbfet_l +aipy, t=1,...,T—1
Proved:

Or = 0

Conclusions from the forward-backward derivation

@ We have derived dutch eligibility traces from an MC update,
without any TD learning

@ Dutch traces, and in fact all eligibility traces, are not about TD;
they are about efficient multi-step learning

@ We can derive new non-obvious algorithms that are equivalent
to obvious algorithms but have better computational properties

@ This is a different type of machine-learning result,
an algorithm equivalence

Conclusions regarding Eligibility Traces

@ Provide an efficient, incremental way to combine MC and TD
@ Includes advantages of MC (better when non-Markov)
@ Includes advantages of TD (faster, comp. congenial)

@ True online TD(M) is new and best
e Is exactly equivalent to online A-return algorithm

e Three varieties of traces: accumulating, dutch, (replacing)

@ Traces to control in on-policy and off-policy forms

@ Traces do have a small cost in computation (=X2)

51

