
What we learned last time

• Value-function approximation by stochastic gradient descent 
enables RL to be applied to arbitrarily large state spaces 

• Most algorithms just carry over the Targets from the tabular case 

• With bootstrapping (TD), we don’t get true gradient descent methods 

• but the linear, on-policy case is still guaranteed convergent 

• and learning is faster with n-step methods (n>1), as before 

• For continuous state spaces, coarse/tile coding is a good strategy



On-policy Control with 
Approximation

Chapter 10:



Value function approximation (VFA) replaces the table 
with a general parameterized form

St ✓ q̂(St, At,✓)

Ut

At



On-policy Control with Approximation

• (Semi-)gradient methods carry over to control in the usual way 

• Mountain Car example 

• n-step methods carry over too, with the usual tradeoffs 

• A new average-reward setting,  
with differential value functions and differential algorithms 

• Queuing example (tabular)  

• The discounting setting is deprecated



(Semi-)gradient methods carry over to control  

update target, e.g., Ut = Gt Ut = Rt+1 + �q̂(St+1, At+1,✓t)(MC) (Sarsa)

Ut = Rt+1 + �
X

a

⇡(a|St+1)q̂(St+1, a,✓t)(Expected Sarsa) (DP)
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action-value prediction is

✓t+1
.
= ✓t + ↵

h
Ut � q̂(St, At, ✓t)

i
rq̂(St, At, ✓t). (10.1)

For example, the update for the one-step Sarsa method is

✓t+1
.
= ✓t + ↵

h
Rt+1 + �q̂(St+1, At+1, ✓t)� q̂(St, At, ✓t)

i
rq̂(St, At, ✓t). (10.2)

We call this method episodic semi-gradient one-step Sarsa. For a constant policy,
this method converges in the same way that TD(0) does, with the same kind of error
bound (9.14).

To form control methods, we need to couple such action-value prediction methods
with techniques for policy improvement and action selection. Suitable techniques
applicable to continuous actions, or to actions from large discrete sets, are a topic of
ongoing research with as yet no clear resolution. On the other hand, if the action set
is discrete and not too large, then we can use the techniques already developed in
previous chapters. That is, for each possible action a available in the current state St,
we can compute q̂(St, a, ✓t) and then find the greedy action A⇤

t = argmaxa q̂(St, a, ✓t).
Policy improvement is then done (in the on-policy case treated in this chapter) by
changing the estimation policy to a soft approximation of the greedy policy such as
the "-greedy policy. Actions are selected according to this same policy. Pseudocode
for the complete algorithm is given in the box.

Example 10.1: Mountain–Car Task Consider the task of driving an underpow-
ered car up a steep mountain road, as suggested by the diagram in the upper left
of Figure 10.1. The di�culty is that gravity is stronger than the car’s engine, and
even at full throttle the car cannot accelerate up the steep slope. The only solution
is to first move away from the goal and up the opposite slope on the left. Then, by

Episodic Semi-gradient Sarsa for Estimating q̂ ⇡ q⇤

Input: a di↵erentiable function q̂ : S⇥A⇥ Rn ! R

Initialize value-function weights ✓ 2 Rn arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

S, A initial state and action of episode (e.g., "-greedy)
Repeat (for each step of episode):

Take action A, observe R, S0

If S0 is terminal:
✓  ✓ + ↵

⇥
R� q̂(S, A, ✓)

⇤
rq̂(S, A, ✓)

Go to next episode
Choose A0 as a function of q̂(S0, ·, ✓) (e.g., "-greedy)
✓  ✓ + ↵

⇥
R + �q̂(S0, A0, ✓)� q̂(S, A, ✓)

⇤
rq̂(S, A, ✓)

S  S0

A A0

• Always learn the action-value function of the current policy  

• Always act near-greedily wrt the current action-value estimates 

• The learning rule is the same as in Chapter 9:

in the usual on-policy GPI way

Ut =
X

s0,r

p(s0, r|St, At)
h
r + �

X

a0

⇡(a0|s0)q̂(s0, a0,✓t)
i
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Example: The Mountain-Car problem

SITUATIONS:  
car's position and velocity

ACTIONS:  
three thrusts: forward, reverse, none

REWARDS:  
always –1 until car reaches the goal

Episodic, No Discounting,  𝜸=1
Minimum-Time-to-Goal Problem

Goal

Gravity wins



Values learned while solving Mountain-Car  
with tile coding function approximation
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Figure 10.1: The mountain–car task (upper left panel) and the cost-to-go function
(� maxa q̂(s, a, ✓)) learned during one run.

applying full throttle the car can build up enough inertia to carry it up the steep
slope even though it is slowing down the whole way. This is a simple example of a
continuous control task where things have to get worse in a sense (farther from the
goal) before they can get better. Many control methodologies have great di�culties
with tasks of this kind unless explicitly aided by a human designer.

The reward in this problem is �1 on all time steps until the car moves past its goal
position at the top of the mountain, which ends the episode. There are three possible
actions: full throttle forward (+1), full throttle reverse (�1), and zero throttle (0).
The car moves according to a simplified physics. Its position, xt, and velocity, ẋt,
are updated by

xt+1
.
= bound

⇥
xt + ẋt+1

⇤

ẋt+1
.
= bound

⇥
ẋt + 0.001At � 0.0025 cos(3xt)

⇤
,

where the bound operation enforces �1.2  xt+1  0.5 and �0.07  ẋt+1  0.07.
In addition, when xt+1 reached the left bound, ẋt+1 was reset to zero. When it
reached the right bound, the goal was reached and the episode was terminated.
Each episode started from a random position xt 2 [�0.6, �0.4) and zero velocity. To
convert the two continuous state variables to binary features, we used grid-tilings
as in Figure 9.9. We used 8 tilings, with each tile covering 1/8th of the bounded
distance in each dimension, and asymmetrical o↵sets as described in Section 9.5.4.1

1In particular, we used the tile-coding software, available on the web, version 3 (Python), with
iht=IHT(2048) and tiles(iht, 8, [8*x/(0.5+1.2), 8*xdot/(0.07+0.07)], A) to get the indices
of the ones in the feature vector for state (x, xdot) and action A.
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Learning curves  
for semi-gradient Sarsa with tile coding236 CHAPTER 10. ON-POLICY CONTROL WITH APPROXIMATION
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Figure 10.2: Learning curves for semi-gradient Sarsa with tile-coding function approxima-
tion on the Mountain Car example.

Figure 10.1 shows what typically happens while learning to solve this task with this
form of function approximation.2 Shown is the negative of the value function (the
cost-to-go function) learned on a single run. The initial action values were all zero,
which was optimistic (all true values are negative in this task), causing extensive
exploration to occur even though the exploration parameter, ", was 0. This can be
seen in the middle-top panel of the figure, labeled “Step 428”. At this time not even
one episode had been completed, but the car has oscillated back and forth in the
valley, following circular trajectories in state space. All the states visited frequently
are valued worse than unexplored states, because the actual rewards have been worse
than what was (unrealistically) expected. This continually drives the agent away
from wherever it has been, to explore new states, until a solution is found.

Figure 10.2 shows several learning curves for semi-gradient Sarsa on this problem,
with various step sizes.

Exercise 10.1 Why have we not considered Monte Carlo methods in this chapter?

10.2 n-step Semi-gradient Sarsa

We can obtain an n-step version of episodic semi-gradient Sarsa by using an n-
step return as the update target in the semi-gradient Sarsa update equation (10.1).
The n-step return immediately generalizes from its tabular form (7.5) to a function
approximation form:

G(n)
t

.
= Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nq̂(St+n, At+n, ✓t+n�1), n � 1, 0  t < T�n,

(10.3)

iht=IHT(2048) and tiles(iht, 8, [8*x/(0.5+1.2), 8*xdot/(0.07+0.07)], A) to get the indices
of the ones in the feature vector for state (x, xdot) and action A.

2This data is actually from the “semi-gradient Sarsa(�)” algorithm that we will not meet until
Chapter 12, but semi-gradient Sarsa behaves similarly.

8 8x8 tilings 
tiles3.py



n-step semi-gradient Sarsa is better for n>1
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Figure 10.3: One-step vs multi-step performance of semi-gradient Sarsa on the Mountain
Car task. Good step sizes were used: ↵ = 0.5/8 for n = 1 and ↵ = 0.3/8 for n = 8.

with G(n)
t

.
= Gt if t + n � T , as usual. The n-step update equation is

✓t+n
.
= ✓t+n�1+↵

h
G(n)

t � q̂(St, At, ✓t+n�1)
i
rq̂(St, At, ✓t+n�1), 0  t < T. (10.4)

Complete pseudocode is given on the next page.

As we have seen before, performance is best if an intermediate level of bootstrap-
ping is used, corresponding to an n larger than 1. Figure 10.3 shows how this
algorithm tends to learn faster and obtain a better asymptotic performance at n=8
than at n = 1 on the Mountain Car task. Figure 10.4 shows the results of a more
detailed study of the e↵ect of the parameters ↵ and n on the rate of learning on this
task.

Exercise 10.2 Give pseudocode for semi-gradient one-step Expected Sarsa for con-
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Figure 10.4: E↵ect of the ↵ and n on early performance of n-step semi-gradient Sarsa and
tile-coding function approximation on the Mountain Car task. As usual, an intermediate
level of bootstrapping (n = 4) performed best. These results are for selected ↵ values, on a
log scale, and then connected by straight lines. The standard errors ranged from 0.5 (less
than the line width) for n = 1 to about 4 for n = 16 (why these results are more variable),
so the main e↵ects are all statistically significant.
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A new goal for continuing tasks:  
Maximizing average reward per time step

Maximize assuming that these limits exist 
is known as the ergodicity property

                       is the steady-state distribution under π,  
also known as the on-policy distribution:

10.3. AVERAGE REWARD: A NEWPROBLEM SETTING FOR CONTINUING TASKS239

In the average-reward setting, the quality of a policy ⇡ is defined as the average
rate of reward while following that policy, which we denote an ⌘(⇡):

⌘(⇡)
.
= lim

T!1

1

T

TX

t=1

E[Rt | A0:t�1 ⇠ ⇡]

= lim
t!1

E[Rt | A0:t�1 ⇠ ⇡] , (10.5)

=
X

s

d⇡(s)
X

a

⇡(a|s)
X

s0,r

p(s, r0|s, a)r,

where the expectations are conditioned on the prior actions, A0, A1, . . . , At�1, being
taken according to ⇡, and d⇡ is the steady-state distribution, d⇡(s)

.
= limt!1 Pr{St = s|A0:t�1 ⇠ ⇡},

which is assumed to exist and to be independent of S0. This property is known as
ergodicity. It means that where the MDP starts or any early decision made by the
agent can have only a temporary e↵ect; in the long run your expectation of being in
a state depends only on the policy and the MDP transition probabilities. Ergodicity
is su�cient to guarantee the existence of the limits in the equations above.

There are subtle distinctions that can be drawn between di↵erent kinds of optimal-
ity in the undiscounted continuing case. Nevertheless, for most practical purposes it
may be adequate simply to order policies according to their average reward per time
step, in other words, according to their ⌘(⇡). This quantity is essentially the average
reward under ⇡, as suggested by (10.5). In particular, we consider all policies that
attain the maximal value of ⌘(⇡) to be optimal.

Note that the steady state distribution is the special distribution under which, if
you select actions according to ⇡, you remain in the same distribution. That is, for
which

X

s

d⇡(s)
X

a

⇡(a|s, ✓)p(s0|s, a) = d⇡(s0). (10.6)

In the average-reward setting, returns are defined in terms of di↵erences between
rewards and the average reward:

Gt
.
= Rt+1�⌘(⇡) + Rt+2�⌘(⇡) + Rt+3�⌘(⇡) + · · · . (10.7)

This is known as the di↵erential return, and the corresponding value functions are
known as di↵erential value functions. They are defined in the same way and we
will use the same notation for them as we have all along: v⇡(s)

.
= E⇡[Gt|St = s] and

q⇡(s, a)
.
= E⇡[Gt|St = s, At = a] (similarly for v⇤ and q⇤). Di↵erential value functions

also have Bellman equations, just slightly di↵erent from those we have seen earlier.
We simply remove all �s and replace all rewards by the di↵erence between the reward
and the true average reward:

v⇡(s) =
X

a

⇡(a|s)
X

r,s0

p(s0, r|s, a)
h
r � ⌘(⇡) + v⇡(s0)

i
,

q⇡(s, a) =
X

r,s0

p(s0, r|s, a)
h
r � ⌘(⇡) +

X

a0

⇡(a0|s0)q⇡(s0, a0),
i

        is the average amount of reward received per time step
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where the expectations are conditioned on the prior actions, A0, A1, . . . , At�1, being
taken according to ⇡, and d⇡ is the steady-state distribution, d⇡(s)

.
= limt!1 Pr{St = s|A0:t�1 ⇠ ⇡},

which is assumed to exist and to be independent of S0. This property is known as
ergodicity. It means that where the MDP starts or any early decision made by the
agent can have only a temporary e↵ect; in the long run your expectation of being in
a state depends only on the policy and the MDP transition probabilities. Ergodicity
is su�cient to guarantee the existence of the limits in the equations above.

There are subtle distinctions that can be drawn between di↵erent kinds of optimal-
ity in the undiscounted continuing case. Nevertheless, for most practical purposes it
may be adequate simply to order policies according to their average reward per time
step, in other words, according to their ⌘(⇡). This quantity is essentially the average
reward under ⇡, as suggested by (10.5). In particular, we consider all policies that
attain the maximal value of ⌘(⇡) to be optimal.

Note that the steady state distribution is the special distribution under which, if
you select actions according to ⇡, you remain in the same distribution. That is, for
which
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In the average-reward setting, returns are defined in terms of di↵erences between
rewards and the average reward:
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This is known as the di↵erential return, and the corresponding value functions are
known as di↵erential value functions. They are defined in the same way and we
will use the same notation for them as we have all along: v⇡(s)
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= E⇡[Gt|St = s] and

q⇡(s, a)
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= E⇡[Gt|St = s, At = a] (similarly for v⇤ and q⇤). Di↵erential value functions

also have Bellman equations, just slightly di↵erent from those we have seen earlier.
We simply remove all �s and replace all rewards by the di↵erence between the reward
and the true average reward:
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• Returns: 

• Bellman Eqs: 

• Update targets:

In the average reward setting, everything is new 

10.3. AVERAGE REWARD: A NEWPROBLEM SETTING FOR CONTINUING TASKS239
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taken according to ⇡, and d⇡ is the steady-state distribution, d⇡(s)
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which is assumed to exist and to be independent of S0. This property is known as
ergodicity. It means that where the MDP starts or any early decision made by the
agent can have only a temporary e↵ect; in the long run your expectation of being in
a state depends only on the policy and the MDP transition probabilities. Ergodicity
is su�cient to guarantee the existence of the limits in the equations above.
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reward under ⇡, as suggested by (10.5). In particular, we consider all policies that
attain the maximal value of ⌘(⇡) to be optimal.
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This is known as the di↵erential return, and the corresponding value functions are
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will use the same notation for them as we have all along: v⇡(s)
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(cf. Eqs. 3.14, 4.1, and 4.2).

There is also a di↵erential form of the two TD errors:

�t
.
= Rt+1�R̄t + v̂(St+1,✓)� v̂(St,✓), and (10.8)

�t
.
= Rt+1�R̄t + q̂(St+1, At+1, ✓)� q̂(St, At, ✓), (10.9)

where R̄ is an estimate of the average reward ⌘(⇡). With these alternate definitions,
most of our algorithms and many theoretical results carry through to the average-
reward setting.

For example, the average reward version of semi-gradient Sarsa is defined just as
in (10.2) except with the di↵erential version of the TD error. That is, by

✓t+1
.
= ✓t + ↵�trq̂(St, At, ✓t), (10.10)

with �t given by (10.9). The pseudocode for the complete algorithm is given in the
box.

Example 10.2: An Access-Control Queuing Task This is a decision task
involving access control to a set of k servers. Customers of four di↵erent priorities
arrive at a single queue. If given access to a server, the customers pay a reward of 1,
2, 4, or 8 to the server, depending on their priority, with higher priority customers
paying more. In each time step, the customer at the head of the queue is either
accepted (assigned to one of the servers) or rejected (removed from the queue, with

Di↵erential Semi-gradient Sarsa for Control

Input: a di↵erentiable function q̂ : S⇥A⇥ Rn ! R
Parameters: step sizes ↵, � > 0

Initialize value-function weights ✓ 2 Rn arbitrarily (e.g., ✓ = 0)
Initialize average reward estimate R̄ arbitrarily (e.g., R̄ = 0)
Initialize state S, and action A

Repeat (for each step):
Take action A, observe R, S0

Choose A0 as a function of q̂(S0, ·, ✓) (e.g., "-greedy)
�  R� R̄ + q̂(S0, A0, ✓)� q̂(S, A, ✓)
R̄ R̄ + ��
✓  ✓ + ↵�rq̂(S, A, ✓)
S  S0

A A0
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In the average-reward setting, the quality of a policy ⇡ is defined as the average
rate of reward while following that policy, which we denote an ⌘(⇡):

⌘(⇡)
.
= lim

T!1

1

T

TX

t=1

E[Rt | A0:t�1 ⇠ ⇡]

= lim
t!1

E[Rt | A0:t�1 ⇠ ⇡] , (10.5)

=
X

s

d⇡(s)
X

a

⇡(a|s)
X

s0,r

p(s, r0|s, a)r,

where the expectations are conditioned on the prior actions, A0, A1, . . . , At�1, being
taken according to ⇡, and d⇡ is the steady-state distribution, d⇡(s)
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which is assumed to exist and to be independent of S0. This property is known as
ergodicity. It means that where the MDP starts or any early decision made by the
agent can have only a temporary e↵ect; in the long run your expectation of being in
a state depends only on the policy and the MDP transition probabilities. Ergodicity
is su�cient to guarantee the existence of the limits in the equations above.

There are subtle distinctions that can be drawn between di↵erent kinds of optimal-
ity in the undiscounted continuing case. Nevertheless, for most practical purposes it
may be adequate simply to order policies according to their average reward per time
step, in other words, according to their ⌘(⇡). This quantity is essentially the average
reward under ⇡, as suggested by (10.5). In particular, we consider all policies that
attain the maximal value of ⌘(⇡) to be optimal.

Note that the steady state distribution is the special distribution under which, if
you select actions according to ⇡, you remain in the same distribution. That is, for
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This is known as the di↵erential return, and the corresponding value functions are
known as di↵erential value functions. They are defined in the same way and we
will use the same notation for them as we have all along: v⇡(s)
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(cf. Eqs. 3.14, 4.1, and 4.2).

There is also a di↵erential form of the two TD errors:
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= Rt+1�R̄t + q̂(St+1, At+1, ✓)� q̂(St, At, ✓), (10.9)

where R̄ is an estimate of the average reward ⌘(⇡). With these alternate definitions,
most of our algorithms and many theoretical results carry through to the average-
reward setting.

For example, the average reward version of semi-gradient Sarsa is defined just as
in (10.2) except with the di↵erential version of the TD error. That is, by

✓t+1
.
= ✓t + ↵�trq̂(St, At, ✓t), (10.10)

with �t given by (10.9). The pseudocode for the complete algorithm is given in the
box.

Example 10.2: An Access-Control Queuing Task This is a decision task
involving access control to a set of k servers. Customers of four di↵erent priorities
arrive at a single queue. If given access to a server, the customers pay a reward of 1,
2, 4, or 8 to the server, depending on their priority, with higher priority customers
paying more. In each time step, the customer at the head of the queue is either
accepted (assigned to one of the servers) or rejected (removed from the queue, with

Di↵erential semi-gradient Sarsa for estimating q̂ ⇡ q⇤

Input: a di↵erentiable function q̂ : S⇥A⇥ Rn ! R
Parameters: step sizes ↵, � > 0

Initialize value-function weights ✓ 2 Rn arbitrarily (e.g., ✓ = 0)
Initialize average reward estimate R̄ arbitrarily (e.g., R̄ = 0)
Initialize state S, and action A

Repeat (for each step):
Take action A, observe R, S0

Choose A0 as a function of q̂(S0, ·, ✓) (e.g., "-greedy)
�  R� R̄ + q̂(S0, A0, ✓)� q̂(S, A, ✓)
R̄ R̄ + ��
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Example: The access-control queuing problem  
solved by tabular differential Sarsa
• Customers wait in line to be served by one of 

k=10 servers 

• Customers pay rewards of 1, 2, 4, or 8 
(depending on their priority) for being served 

• On each step, the customer at the front of 
the queue is accepted (served), or rejected 

• The queue never empties;  
new customers have random priorities 

• Busy servers become free  
with probability p=0.06 on each step
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a reward of zero). In either case, on the next time step the next customer in the
queue is considered. The queue never empties, and the priorities of the customers
in the queue are equally randomly distributed. Of course a customer can not be
served if there is no free server; the customer is always rejected in this case. Each
busy server becomes free with probability p on each time step. Although we have just
described them for definiteness, let us assume the statistics of arrivals and departures
are unknown. The task is to decide on each step whether to accept or reject the next
customer, on the basis of his priority and the number of free servers, so as to maximize
long-term reward without discounting.

In this example we consider a tabular solution to this problem. Although there
is no generalization between states, we can still consider it in the general function
approximation setting as this setting generalizes the tabular setting. Thus we have
a di↵erential action-value estimate for each pair of state (number of free servers and
priority of the customer at the head of the queue) and action (accept or reject).
Figure 10.5 shows the solution found by di↵erential semi-gradient Sarsa for this task
with k = 10 and p = 0.06. The algorithm parameters were ↵ = 0.01, � = 0.01, and
✏ = 0.1. The initial action values and R̄ were zero.
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Figure 10.5: The policy and value function found by di↵erential semi-gradient one-step
Sarsa on the access-control queuing task after 2 million steps. The drop on the right of the
graph is probably due to insu�cient data; many of these states were never experienced. The
value learned for R̄ was about 2.31.

t = 2,000,000, ↵ = � = .01, ✏ = .1, R̄t ⇡ 2.31



Discounting is futile in continuing control settings 
with function approximation

• The problem statement is broken! The goal is broken! 

• We can not longer give a useful ordering on policies 

• we can only order a few policies,  
those that dominate others in all states 

• It would be OK if we could say what states we care about,  
but in the control case we can’t 

• Suppose we cared about states according to how often they 
occur?  Surprisingly, discounting then becomes irrelevant!
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The Futility of Discounting in Continuing Problems

Perhaps discounting can be saved by choosing an objective that sums dis-
counted values over the distribution with which states occur under the policy:
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⇡ is the discounted value function)
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(Bellman Eq.)
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1
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The proposed discounted objective orders policies identically to the undis-
counted (average reward) objective. We have failed to save discounting!

10.5 n-step Di↵erential Semi-gradient Sarsa

In order to generalize to n-step bootstrapping, we need an n-step version of the TD
error. We begin by generalizing the n-step return (7.4) to its di↵erential form, with
function approximation:

G(n)
t

.
= Rt+1 � R̄ + Rt+2 � R̄ + · · · + Rt+n � R̄ + q̂(St+n, At+n, ✓), (10.11)

where R̄ is an estimate of ⌘(⇡), n � 1, and t + n < T . If t + n � T , then we define

G(n)
t

.
= Gt as usual. The n-step TD error is then

�t
.
= G(n)

t � q̂(St, At, ✓), (10.12)

after which we can apply our usual semi-gradient Sarsa update (10.10). Pseudocode
for the complete algorithm is given in the box.



Conclusions

• Control is straightforward in the on-policy, episodic, linear case 

• For the continuing case, we need the average-reward setting 

• which is a lot like just replacing Rt with Rt - η(π) everywhere 

• where η(π) is the average reward per step, or its estimate 

• We should probably never use discounting as a control objective 

• Formal results (bounds) exist for the linear, on-policy case 

• we get chattering near a good solution, not convergence


