What we learned last time

* \alue-function approximation by stochastic gradient descent
enables RL to be applied to arbitrarily large state spaces

 Most algorithms just carry over the Targets from the tabular case

o With bootstrapping (TD), we don't get true gradient descent methods
* put the linear, on-policy case Is still guaranteed convergent
* and learning is faster with n-step methods (n>1), as before

* For continuous state spaces, coarse/tile coding is a good strategy

Chapter 10:

On-policy Control with
Approximation

Value function approximation (VFA) replaces the table
with a general parameterized form

Q\(Sta At7 9)

On-policy Control with Approximation

* (Semi-)gradient methods carry over to control in the usual way
 Mountain Car example
e n-step methods carry over too, with the usual tradeoffs

A new average-reward setting,
with differential value tunctions and differential algorithms

e Queuing example (tabular)

e [he discounting setting Is deprecatead

(Semi-)gradient methods carry over to control
N the usual on-policy GPI way

* Always learn the action-value function of the current policy

* Always act near-greedily wrt the current action-value estimates

* [he learning rule is the same as in Chapter 9:

Ht—l—l = Ht + Ut T Q\(Stv At7 Ht)

VC](St, At7 Ht)

(Semi-)gradient methods carry over to control
0ri1 = 0, + a|Us — 4(S, Ar, 0:)| VA(S;, A, 6,)

Episodic Semi-gradient Sarsa for Estimating q =~ g,

Input: a differentiable function ¢ : & X A X R" — R

Initialize value-function weights 8 € R" arbitrarily (e.g., 8 = 0)
Repeat (for each episode):
S, A < initial state and action of episode (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
If S’ is terminal:
6«0+ alR—q(S,A,0)|Vi(Ss, A,b)
Go to next episode
Choose A" as a function of ¢(S5’,-,80) (e.g., e-greedy)
0+ 0+ a[R+~4(S,A,0) —4(S, A,0)]V§(S, A, 6)
S« 5
A+ A

Example: The Mountain-Car problem

Goal SITUATIONS:
car's position and velocity

ACTIONS:
three thrusts: forward, reverse, none

REWARDS:
always —1 until car reaches the goal

J Gravity wins

Episodic, No Discounting, y=1
Minimum-Time-to-Goal Problem

Values learned while solving Mountain-Car
with tile coding function approximation

MOUNTAIN CAR Goal

Step 428

AT N

Episode 12

o %' L] .
g
L

104 120

Demo

L earning curves
for semi-gradient Sarsa with tile coding

1000 8 8X3 tilings
tiles3.py

Mountain Car 40y

Steps per episode a=0.1/8
log scale a=0.2/8
averaged over 100 runs 200 f- {MM%WV
a=0.5/8 ‘ o P
100 |- |
0 500

Episode

n-step semi-gradient Sarsa is better for n>1

Orin = Orin_14+a |G —G(S, A, Orin1)| VG(Si, Ap, Orin_1), 0<t<T

300 n=1

280 -

1000 Mountain Car
Steps per episode 260}
averaged over n=2
first 50 episodes
and 100 runs 240 |
. — /
Mountain Car 4% | 3 =

220 |, n=4

Steps per episode

log scale
averaged over 100 runs 200

0 05 1' 1.5
Q. x number of tilings (8)

IR W 1 AN

100 |-, |
0 500
Episode

On-policy Control with Approximation

* (Semi-)gradient methods carry over to control in the usual way
 Mountain Car example

e n-step methods carry over too, with the usual tradeofts

On-policy Control with Approximation

A new average-reward setting,
with differential value functions and differential algorithms

e Queuing example (tabular)

e [he discounting setting Is deprecatead

A new goal for continuing tasks:
Maximizing average reward per time step

T

.] ﬂ
Maximize n(r) = Tlgréo L Z IRy | Agip—1 ~ 7]

-

— lim “l[Rt A():t—l ~ 7'('],
t—00

= de(s) Y w(als) Y p(s,r]s,a)r

d. : 8 — [0,1] Is the steady-state distribution under ,
also known as the on-policy distribution:

dW(S) — hmt_mo Pr{St — S‘AO:t—l ~ 7'('}

n(m) is the average amount of reward received per time step

N the average reward setting, everything Is new

® ¢ RGTUI’HS Gt — Rt_|_1—77(7T) -+ Rt_|_2—77(7'(') —+ Rt_|_3—77(7'() + ..

» Bellman Egs: wv«(s) = > _wl(als) > p(s,r]s,a) [r—n(ﬂ)ﬂw(s’)},

Qr(S,a) = Zp(s’, r|s,a) {r —n(m) + Z m(a'|s) g (s, a')} ,

Vi(S) = mngp(s', r|s,a) [r —n(m) + v*(s’)} , and

-(s,0) = > (s, rls, @) | = n(m) + maxg.(s',)|

a

 Update targets:
U = Riy1 — Ry + G(Si41, Ai41,0) or Up = Ry — Ry +0(S;41,0)

Differential semi-gradient Sarsa for estimating ¢ ~ g.

Input: a differentiable function ¢ : o x A x R" — R
Parameters: step sizes a, 5 > 0

Initialize value-function weights 8 € R" arbitrarily (e.g., 8 = 0)
Initialize average reward estimate R arbitrarily (e.g., R = 0)

Initialize state S, and action A

Repeat (for each step):
Take action A, observe R, S’
Choose A" as a function of ¢(S5’,-,0) (e.g., e-greedy)
b« R—R+q(S,A,0)—q(S,A,0)
R+ R+)
0« 0+ adVq(S, A,o)
S+ 5
A+ A

Example: Ihe access-control gueuing problem
solved by tabular differential Sarsa

o (Customers wait in line to be served by one of
k=10 servers

 (Customers pay rewards of 1, 2, 4, or 8
(depending on their priority) for being served

* On each step, the customer at the front of
the queue is accepted (served), or rejected

 [he gqueue never empties;
new customers have random priorities

 Busy servers become free
with probability p=0.06 on each step

'l REJECT
o 2
Priority - POLICY
4 ACCEPT
8
1 2 3 4 5 6 7 8 9 10
Number of free servers
priority 8
10
priority 4
5F _—
Differential g pmk v
Value Of O oo o e r Iorlt1 --------------------------- ALUE
best action . Profy FUNCTION
-5
-10

| | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Number of free servers

t = 2,000,000, a =B =.01,e=.1, Ry =~ 2.31

Discounting is futile in continuing control settings
with function approximation

 [he problem statement is broken! The goal is broken!
* \We can not longer give a useful ordering on policies

* we can only order a few policies,
those that dominate others in all states

* |t would be OK if we could say what states we care about,
but In the control case we cant

e Suppose we cared about states according to how often they
occur? Surprisingly, discounting then becomes irrelevant!

The Futility of Discounting in Continuing Problems

Perhaps discounting can be saved by choosing an objective that sums dis-
counted values over the distribution with which states occur under the policy:

= Z dr(s)v)(s) (where v} is the discounted value function)

= Zd ZT{' a\s (3’ rls,a) [r+yv)(s")| (Bellman Eq.)
ZTF a| > > (s',7|s,a)yv)(s") (from (10.5))
= n(m) + VZUV Zd Zﬂ' al|s)p(s'|s, a) (from (3.8))

— () +WZU77(S')CZW(8’) (from (10.6))

| |
|
i?

||
=

N
i}

The proposed discounted objective orders policies identically to the undis-
counted (average reward) objective. We have failed to save discounting!

Conclusions

o Control is straightforward in the on-policy, episodic, linear case
* [or the continuing case, we need the average-reward setting
e which is a lot like just replacing R; with R; - n(m) everywhere
* where n(m) Is the average reward per step, or its estimate
* \We should probably never use discounting as a control objective
 Formal results (bounds) exist for the linear, on-policy case

* we get chattering near a good solution, not convergence

