What we learned last time

|. Intelligence is the computational part of the ability to achieve goals

* looking deeper: |) its a continuum, 2) its an appearance, 3) it varies
with observer and purpose

2. We will (probably) figure out how to make intelligent systems in
our lifetimes; it will change everything

3. But prior to that it will probably change our careers

* as companies gear up to take advantage of the economic
opportunities

4. This course has a demanding workload

Multi-arm Bandits

Sutton and Barto, Chapter 2

The simplest
reinforcement learning
problem

You are the algorithm! (banditl)

* Action | — Reward is always 8

* value of action | is q«(1) =
e Action 2 — 88% chance of 0, 12% chance of 100!
 value of action 2 is g«(2) = .88 x 0+ .12 x 100 =

* Action 3 — Randomly between -10 and 35, equiprobable

10 0 ! 35 q+(3) =
* Action 4 — a third 0, a third 20, and a third from {8,9,..., 18}

0 q*l(4 20

q«(4) =

The k-armed Bandit Problem

* On each of an infinite sequence of time steps, t=1, 2, 3, ...,
you choose an action A; from k possibilities, and receive a real-
valued reward R;

* The reward depends only on the action taken;
it is indentically, independently distributed (i.i.d.):

q«(a) = E[R:|A; = a], Yae{l,... k} true values
* These true values are unknown. The distribution is unknown
* Nevertheless, you must maximize your total reward

* You must both try actions to learn their values (explore),
and prefer those that appear best (exploit)

The Exploration/Exploitation Dilemma

e Suppose you form estimates

Qt(a) ~ (« (a), Ya action-value estimates

* Define the greedy action at time t as

A; = argmax Q¢(a)

« If A, = A} then you are exploiting
If A:# A then you are exploring

* You can’t do both, but you need to do both

* You can never stop exploring, but maybe you should explore
less with time. Or maybe not.

Action-Value Methods

* Methods that learn action-value estimates and nothing else

* For example, estimate action values as sample averages:

sum of rewards when a taken prior to ¢t Zf:i Ri-14,—q

Qi(a) = = T —i—1

number of times a taken prior to ¢ Zi:l 14,—¢

* The sample-average estimates converge to the true values
If the action is taken an infinite number of times

lim Qi(a) = q.(a)

Ni(a)—o0

The number of times action a
has been taken by time ¢

¢-Greedy Action Selection

* In greedy action selection, you always exploit

* In e-greedy, you are usually greedy, but with probability £ you

instead pick an action at random (possibly the greedy action
again)

* This is perhaps the simplest way to balance exploration and
exploitation

A simple bandit algorithm

Initialize, for a = 1 to k:

Q(a) <0
N(a) «+ 0

Repeat forever:
A | argmax, Q(a) with probability 1 — ¢
a random action with probability e
R < bandit(A)
N(A)«+ N(A)+1
Q(A) + Q(A) + x(ay [R — Q(A)]

(breaking ties randomly)

What we learned last time

|. Multi-armed bandits are a simplification of the real problem

|. they have action and reward (a goal), but no input or sequentiality
2. A fundamental exploitation-exploration tradeoff arises in bandits

|. e-greedy action selection is the simplest way of trading off

3. Learning action values is a key part of solution methods

4. The |0-armed testbed illustrates all

One Bandit Task from

The 10-armed Testbed

4

; R; ~N(g«(a),1)
q+(3)
2 Q*(5)
1 q+(9)
qx(4)
Reward , _o-«Wh [~ ol A W

distribution 6(7) ¢.(10)

1 +(2) qx(8)
q+(6)

2 Run for 1000 steps
-3 Repeat the whole

thing 2000 times
with different bandit
-4 I i i tasks

I I é I I I I
1 2 3 4 5 7 8 9 10

Action

¢-Greedy Methods on the 10-Armed Testbed

L P
£=00]
l B
¢ =) (greedy)
Average 0
reward
05
0
| | 1 1 L}
L) 250 00 750 LU
Steps
100% _
80% | L v mtaatad s ae sl
e
% W4 £=001
Optimal L Wpms—
action 0% .
¢ = () (greedy)
20% |
0%
| 1 L) L)
0 S0 S00 750 1000

What we learned last time

5. Learning as averaging — a fundamental learning rule

Averaging — learning rule

To simplify notation, let us focus on one action

* We consider only its rewards, and its estimate after n+1 rewards:

;R1+R2+---+Rn_1
B n—1

@n

How can we do this incrementally (without storing all the rewards)!?
Could store a running sum and count (and divide), or equivalently:
1
Qn—I—l — Qn + E [Rn — Qn]

This is a standard form for learning/update rules:

NewEstimate < OldEstimate 4+ StepSize [Target — OldEstimate

Derivation of incremental update

0, = BitRat-t R

Qn+1 = %ZRz

Averaging — learning rule

To simplify notation, let us focus on one action

* We consider only its rewards, and its estimate after n+1 rewards:

;R1+R2+---+Rn_1
B n—1

@n

How can we do this incrementally (without storing all the rewards)!?
Could store a running sum and count (and divide), or equivalently:
1
Qn—I—l — Qn + E [Rn — Qn]

This is a standard form for learning/update rules:

NewEstimate < OldEstimate 4+ StepSize [Target — OldEstimate

Tracking a Non-stationary Problem

* Suppose the true action values change slowly over time

» then we say that the problem is nonstationary
* In this case, sample averages are not a good idea (Why?)
* Better is an “exponential, recency-weighted average”:
Qni1 = Qn + @ [Rn — Qn}

n
=(1—a)"Q1+ Z a(l —)" "R,
i=1
where « is a constant, step-size parameter, 0 < a <1

 There is bias due to (); that becomes smaller over time

Standard stochastic approximation
convergence conditions

* To assure convergence with probability |:
Z an(a) = oo and Z o2 (a) < oo
n=1 n=1

* e.g, Oy =
|f Oy = ,n/—p, pc <O7 1)

then convergence is
at the optimal rate:

O(1/v/n)

* not o, =

Optimistic Initial Values

 All methods so far depend on (Q1(a), i.e., they are biased.
So far we have used Q1(a) =0

 Suppose we initialize the action values optimistically (Q)1(a) =5),
e.g.,on the |0-armed testbed (with a = 0.1)

100% -
optimistic, greedy
80% - 0,=5, €=0
% 60% = realistic, e-greedy
Optimal 0,=0,€=0.1

action 40% -

20% —

0% — I | T T 1
0 200 400 600 800 1000

Upper Confidence Bound (UCB) action selection

A clever way of reducing exploration over time
* Estimate an upper bound on the true action values

* Select the action with the largest (estimated) upper bound

1
Ay = argmax [Qt(a) +c ogt]

Ni(a)
15} :V'ij,i nﬁﬁ’&im,4rwp'n('nvWW#bMf\pwr.n;u«rmwﬂw‘hvp'ﬁvfh\‘.fVW-lq'vd)m‘-Mh
, w.‘; i |
Nﬂ%‘f‘ g-greedy € =0.1

1F
i
Average | ¢

reward

05+

1 1 1 J
0 250 500 750 1000

Steps

Gradient-Bandit Algorithms

e Let H:(a) be a learned preference for taking action a

th(a) .
Z'g_l WA = m(a)

I)I"{z4¢3::CL} =

Hii1(a) = He(a) + oz(Rt — Rt) (H{At:a} — Wt(a)), YVa

t 100% 1

_ 1
hy = Z e a=0.1 e
tis 0% We
a =04
% 60%
Optimal a=01___

action 40%¢ prad without baseline
e T a=04
20% f
0% _1 1 1 1 J
0 250 500 750 1000

Steps

Derivation of gradient-bandit algorithm

In exact gradient ascent:

OE [Ri]

Ht-i-l(a) = Ht(a) + 8Ht(a)) (1)

where:

E[R:] = Z m¢(b)q«(b),
b

OE[R] O
aHt(a) — 6Ht(a Zﬂ't(b)q*(b)]
87Tt b)
= Zq* (O

= > (ax(b) —Xt)g%g,

b

where X; does not depend on b, because Zb gﬁ%@ = 0.

OE[R:] 0 m(b)
OH,(3) ; (g+(b) — Xt) OH,(2)

I N O me(b)
_; ¢(b) q*(b))aHt()/ m(b)

— 5| (000 - X) et (o)

~ B[(R R) G ma)|.

where here we have chosen X; = R; and substituted R; for g, (A;),
which is permitted because E[R;:|A¢] = g«(A¢).

For now assume: aHtEbg = m¢(b)(1o=p — m(a)). Then:

[(Rt)Wt t)(a=A; — 7Tt(c?’))/Wt(At)]
(Rt — Rt)(a=A; — 7Tt(a))]

E[
Her1(a) = He(a) + a(Re — Re) (1a=a, — m(a)), (from (1), QED)

Thus it remains only to show that

0 7(b)
OH:(a)

— Wt(b)(la:b - Wt(a)).

Recall the standard quotient rule for derivatives:

0[] 7D e () — F(x) %5
Ox | g(x) |

Using this, we can write...

Quotient Rule: 0 [

ome(b) O

OH(3) ~ OH(a) m¢(b)
. he(b)
 OHy(a) Zk_l eht(c)

eht(b) B he (c)
: ZC 1ehf(c) ht(b) Zc 1€

aHt(a) 8Ht(a)
(21221 eht(C))2
1,_peht(@) STk ehi(e) _ ght(b)ght(a)
(Zé:l eht(c))z
1, e (®) oht(b) ght(a)
Zlgzl eh:(c) (2521 eht(C))2

= 1,—pm(b) — me(b)me(a)
= T¢(b) (la:b — 7Tt(a)).

(Q.E.D.)

Summary Comparison of Bandit Algorithms

b UCB greedy with
optimistic
initialization

o =0.1

14+

Average 131 e-greedy — > .;
rewe;_rd gradient\
over first | bandit
1000 steps
1.1}
1-

1/128 1/64 1/32 1/16 1/8 1/4 172 1 2 4

a /c/ Qo

Conclusions

* These are all simple methods
* but they are complicated enough—we will build on them
* we should understand them completely
* there are still open questions

* Our first algorithms that learn from evaluative feedback
 and thus must balance exploration and exploitation

* Our first algorithms that appear to have a goal
—that learn to maximize reward by trial and error

Our first dimensions!

 Problems vs Solution Methods

Bandits?
 Evaluative vs Instructive

Problem or Solution?

e Associative vs Non-associative

Problem space

Single State Associative

Instructive
feedback

Evaluative
feedback

Problem space

Single State Associative

Instructive
feedback

Evaluative Bandits
1{==le0fzl04.¢ | (Function optimization)

Problem space

Single State Associative

Instructive Supervised
feedback learning

Evaluative Bandits
1{==le0fzl04.¢ | (Function optimization)

Problem space

Single State Associative

Instructive Averagin Supervised
feedback Jng learning

Evaluative Bandits
1{==le0fzl04.¢ | (Function optimization)

Problem space

Single State Associative

Instructive . Supervised
Averaging

feedback learning
Evaluative Bandits Associative
Search

1{==le0fzl04.¢ | (Function optimization)

(Contextual bandits)

