
On-policy Prediction 
with Approximation

Chapter 9:





3 waves of neural networks
• First explored in the 1950-60s: Perceptron, Adaline… 

• only one learnable layer 

• Revived in the 1980-90s as Connectionism, Neural Networks 

• exciting multi-layer learning using backpropagation (SGD);  
many successful applications; remained popular in engineering 

• Revived again in ~2010 as Deep Learning 

• dramatically improved over state-of-the-art in speech recognition  
and visual object recognition, transforming these fields 

• the best algorithms were essentially the same as in the 1980s,  
except with faster computers and larger training sets

i.e., NNs won (eventually) because their performance scaled with 
Moore’s law, whereas competing methods did not



Deep learning 
≡ multi-layer neural networks with many layers

• Each line has a learned connection weight 
• Each node combines its weighted inputs, then applies a nonlinear transformation 
• For each image, the network produces class labels as output, and true class labels are provided by people (supervised learning) 
• Then each weight is incremented so as to reduce the squared error (stochastic gradient descent, backpropagation)

Image

Classes



Value function approximation (VFA) replaces the table 
with a general parameterized form

St v̂(St,✓)

Targett

✓



Stochastic Gradient Descent (SGD) is the idea 
behind most approximate learning

✓  ✓ � ↵r✓ Error

2
t

 ✓ � ↵r✓ [Targett � v̂(St,✓)]
2

 ✓ � 2↵ [Targett � v̂(St,✓)]r✓ [Targett � v̂(St,✓)]

 ✓ + ↵ [Targett � v̂(St,✓)]r✓ v̂(St,✓)

 ✓ + ↵ [Targett � v̂(St,✓)]�(St)

General SGD:
For VFA:

Chain rule:
Semi-gradient:

Linear case:

✓  ✓ + ↵ [Targett � q̂(St, At,✓)]�(St, At)Action-value form:



A natural objective in VFA 
is to minimize the Mean Square Value Error

where         is the fraction of time steps spent in state d(s) s

MSVE(✓)
.
=

X

s2S

d(s)
h
v⇡(s)� v̂(s,✓)

i2

True SGD will converge to a local minimum of the error objective 
In linear VFA, there is only one minimum: local=global
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Gradient Monte Carlo Algorithm for Approximating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S⇥ Rn ! R

Initialize value-function weights ✓ as appropriate (e.g., ✓ = 0)
Repeat forever:

Generate an episode S0, A0, R1, S1, A1, . . . , RT , ST using ⇡
For t = 0, 1, . . . , T � 1:

✓  ✓ + ↵
⇥
Gt � v̂(St,✓)

⇤
rv̂(St,✓)

If Ut is an unbiased estimate, that is, if E[Ut] = v⇡(St), for each t, then ✓t is guar-
anteed to converge to a local optimum under the usual stochastic approximation
conditions (2.7) for decreasing ↵.

For example, suppose the states in the examples are the states generated by in-
teraction (or simulated interaction) with the environment using policy ⇡. Because
the true value of a state is the expected value of the return following it, the Monte
Carlo target Ut

.
= Gt is by definition an unbiased estimate of v⇡(St). With this

choice, the general SGD method (9.7) converges to a locally optimal approximation
to v⇡(St). Thus, the gradient-descent version of Monte Carlo state-value prediction
is guaranteed to find a locally optimal solution. Pseudocode for a complete algorithm
is shown in the box.

One does not obtain the same guarantees if a bootstrapping estimate of v⇡(St)

is used as the target Ut in (9.7). Bootstrapping targets such as n-step returns G(n)
t

or the DP target
P

a,s0,r ⇡(a|St)p(s0, r|St, a)[r + �v̂(s0,✓t)] all depend on the current
value of the weight vector ✓t, which implies that they will be biased and that they
will not produce a true gradient-descent method. One way to look at this is that
the key step from (9.4) to (9.5) relies on the target being independent of ✓t. This
step would not be valid if a bootstrapping estimate was used in place of v⇡(St).
Bootstrapping methods are not in fact instances of true gradient descent (Barnard,
1993). They take into account the e↵ect of changing the weight vector ✓t on the
estimate, but ignore its e↵ect on the target. They include only a part of the gradient
and, accordingly, we call them semi-gradient methods.

Although semi-gradient (bootstrapping) methods do not converge as robustly as
gradient methods, they do converge reliably in important cases such as the linear
case discussed in the next section. Moreover, they o↵er important advantages which
makes them often clearly preferred. One reason for this is that they are typically
significantly faster to learn, as we have seen in Chapters 6 and 7. Another is that they
enable learning to be continual and online, without waiting for the end of an episode.
This enables them to be used on continuing problems and provides computational
advantages. A prototypical semi-gradient method is semi-gradient TD(0), which uses
Ut

.
= Rt+1 + �v̂(St+1,✓) as its target. Complete pseudocode for this method is given

in the box at the top of the next page.



State aggregation is the simplest kind of VFA

• States are partitioned into disjoint subsets (groups) 

• One component of 𝜽 is allocated to each group

v̂(s,✓)
.
= ✓

group(s)

r✓ v̂(s,✓)
.
= [0, 0, . . . , 0, 1, 0, 0, . . . , 0]

✓  ✓ + ↵ [Targett � v̂(St,✓)]r✓ v̂(St,✓)Recall:



The 1000-state random walk example
• States are numbered 1 to 1000 

• Walks start in the near middle, at state 500 

• At each step, jump to one of the 100 states to the right,  
or to one of the 100 states to the left 

• If the jump goes beyond 1 or 1000, terminates with a reward of -1 or +1 
(otherwise Rt=0)

+1-1

state 1 state 500 state 1000

trajectory of 11 jumps

S0 = 500

S1 2 {400..499} [ {501..600}



State aggregation into 10 groups of 100

+1-1

state 1 state 500 state 1000

trajectory of 11 jumps

( ( ( ( ( ( ( ( ( (group 1 group 2 group 3 group 4 group 5 group 6 group 7 group 8 group 9 group 10

The whole value function over 1000 states will be approximated with 10 numbers!



Gradient MC works well  
on the 1000-state random walk using state aggregation
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1

Figure 9.1: Function approximation by state aggregation on the 1000-state random walk
task, using the gradient Monte Carlo algorithm (page 194).

close to the global minimum of the MSVE (9.1).

Some of the details of the approximate values are best appreciated by reference to
the state distribution d for this task, shown in the lower portion of the figure with
a right-side scale. State 500, in the center, is the first state of every episode, but
it is rarely visited again. On average, about 1.37% of the time steps are spent in
the start state. The states reachable in one step from the start state are the second
most visited, with about 0.17% of the time steps being spent in each of them. From
there d falls o↵ almost linearly, reaching about 0.0147% at the extreme states 1 and
1000. The most visible e↵ect of the distribution is on the leftmost groups, whose
values are clearly shifted higher than the unweighted average of the true values of
states within the group, and on the rightmost groups, whose values are clearly shifted
lower. This is due to the states in these areas having the greatest asymmetry in their
weightings by d. For example, in the leftmost group, state 99 is weighted more
than 3 times more strongly than state 0. Thus the estimate for the group is biased
toward the true value of state 99, which is higher than the true value of state 0.

9.4 Linear Methods

One of the most important special cases of function approximation is that in which
the approximate function, v̂(·,✓), is a linear function of the weight vector, ✓. Corre-
sponding to every state s, there is a real-valued vector of features �(s)

.
= (�1(s), �2(s), . . . , �n(s))>,

with the same number of components as ✓. The features may be constructed from
the states in many di↵erent ways; we cover a few possibilities in the next sections.
However the features are constructed, the approximate state-value function is given

• 10 groups of 100 states 
• after 100,000 episodes 

• α = 2 x 10-5 

• state distribution affects 
accuracy
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Semi-gradient TD(0) for estimating v̂ ⇡ v⇡

Input: the policy ⇡ to be evaluated
Input: a di↵erentiable function v̂ : S+ ⇥ Rn ! R such that v̂(terminal,·) = 0

Initialize value-function weights ✓ arbitrarily (e.g., ✓ = 0)
Repeat (for each episode):

Initialize S
Repeat (for each step of episode):

Choose A ⇠ ⇡(·|S)
Take action A, observe R, S0

✓  ✓ + ↵
⇥
R + �v̂(S0,✓)� v̂(S,✓)

⇤
rv̂(S,✓)

S  S0

until S0 is terminal

Example 9.1: State Aggregation on the 1000-state Random Walk State
aggregation is a simple form of generalizing function approximation in which states
are grouped together, with one estimated value (one component of the weight vector
✓) for each group. The value of a state is estimated as its group’s component, and
when the state is updated, that component alone is updated. State aggregation is
a special case of SGD (9.7) in which the gradient, rv̂(St,✓t), is 1 for St’s group’s
component and 0 for the other components.

Consider a 1000-state version of the random walk task (Examples 6.2 and 7.1).
The states are numbered from 1 to 1000, left to right, and all episodes begin near the
center, in state 500. State transitions are from the current state to one of the 100
neighboring states to its left, or to one of the 100 neighboring states to its right, all
with equal probability. Of course, if the current state is near an edge, then there may
be fewer than 100 neighbors on that side of it. In this case, all the probability that
would have gone into those missing neighbors goes into the probability of terminating
on that side (thus, state 1 has a 0.5 chance of terminating on the left, and state 950
has a 0.25 chance of terminating on the right). As usual, termination on the left
produces a reward of �1, and termination on the right produces a reward of +1.
All other transitions have a reward of zero. We use this task as a running example
throughout this section.

Figure 9.1 shows the true value function v⇡ for this task. It is nearly a straight
line, but tilted slightly toward the horizontal and curving further in this direction for
the last 100 states at each end. Also shown is the final approximate value function
learned by the gradient Monte-Carlo algorithm with state aggregation after 100,000
episodes with a step size of ↵ = 2⇥ 10�5. For the state aggregation, the 1000 states
were partitioned into 10 groups of 100 states each (i.e., states 1–100 were one group,
states 101-200 were another, and so on). The staircase e↵ect shown in the figure is
typical of state aggregation; within each group, the approximate value is constant,
and it changes abruptly from one group to the next. These approximate values are



TD converges to the TD fixedpoint,         ,   
a biased but interesting answer
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by the inner product between ✓ and �(s):

v̂(s,✓)
.
= ✓>�(s)

.
=

nX

i=1

✓i�i(s). (9.8)

In this case the approximate value function is said to be linear in the weights, or
simply linear. The individual functions �i : S ! R are called basis functions because
they form a linear basis for the set of approximate functions of this form. Construct-
ing n-dimensional feature vectors to represent states is the same as selecting a set of
n basis functions.

It is natural to use SGD updates with linear function approximation. The gradient
of the approximate value function with respect to ✓ in this case is

rv̂(s,✓) = �(s).

Thus, the general SGD update (9.7) reduces to a particularly simple form in the
linear case.

Because it is so simple, the linear SGD case is one of the most favorable for
mathematical analysis. Almost all useful convergence results for learning systems of
all kinds are for linear (or simpler) function approximation methods.

In particular, in the linear case there is only one optimum (or, in degenerate cases,
one set of equally good optima), and thus any method that is guaranteed to converge
to or near a local optimum is automatically guaranteed to converge to or near the
global optimum. For example, the gradient Monte Carlo algorithm presented in the
previous section converges to the global optimum of the MSVE under linear function
approximation if ↵ is reduced over time according to the usual conditions.

The semi-gradient TD(0) algorithm presented in the previous section also con-
verges under linear function approximation, but this does not follow from general
results on SGD; a separate theorem is necessary. The weight vector converged to is
also not the global optimum, but rather a point near the local optimum. It is useful
to consider this important case in more detail, specifically for the continuing case.
The update at each time t is

✓t+1
.
= ✓t + ↵

⇣
Rt+1 + �✓>

t �t+1 � ✓>
t �t

⌘
�t (9.9)

= ✓t + ↵
⇣
Rt+1�t � �t

�
�t � ��t+1

�>
✓t

⌘
,

where here we have used the notational shorthand �t = �(St). Once the system
has reached steady state, for any given ✓t, the expected next weight vector can be
written

E[✓t+1|✓t] = ✓t + ↵(b � A✓t), (9.10)

where

b
.
= E[Rt+1�t] 2 Rn and A

.
= E

h
�t

�
�t � ��t+1

�>
i

2 Rn ⇥ Rn (9.11)

9.4. LINEAR METHODS 197

by the inner product between ✓ and �(s):

v̂(s,✓)
.
= ✓>�(s)

.
=

nX

i=1

✓i�i(s). (9.8)

In this case the approximate value function is said to be linear in the weights, or
simply linear. The individual functions �i : S ! R are called basis functions because
they form a linear basis for the set of approximate functions of this form. Construct-
ing n-dimensional feature vectors to represent states is the same as selecting a set of
n basis functions.

It is natural to use SGD updates with linear function approximation. The gradient
of the approximate value function with respect to ✓ in this case is

rv̂(s,✓) = �(s).

Thus, the general SGD update (9.7) reduces to a particularly simple form in the
linear case.

Because it is so simple, the linear SGD case is one of the most favorable for
mathematical analysis. Almost all useful convergence results for learning systems of
all kinds are for linear (or simpler) function approximation methods.

In particular, in the linear case there is only one optimum (or, in degenerate cases,
one set of equally good optima), and thus any method that is guaranteed to converge
to or near a local optimum is automatically guaranteed to converge to or near the
global optimum. For example, the gradient Monte Carlo algorithm presented in the
previous section converges to the global optimum of the MSVE under linear function
approximation if ↵ is reduced over time according to the usual conditions.

The semi-gradient TD(0) algorithm presented in the previous section also con-
verges under linear function approximation, but this does not follow from general
results on SGD; a separate theorem is necessary. The weight vector converged to is
also not the global optimum, but rather a point near the local optimum. It is useful
to consider this important case in more detail, specifically for the continuing case.
The update at each time t is

✓t+1
.
= ✓t + ↵

⇣
Rt+1 + �✓>

t �t+1 � ✓>
t �t

⌘
�t (9.9)

= ✓t + ↵
⇣
Rt+1�t � �t

�
�t � ��t+1

�>
✓t

⌘
,

where here we have used the notational shorthand �t = �(St). Once the system
has reached steady state, for any given ✓t, the expected next weight vector can be
written

E[✓t+1|✓t] = ✓t + ↵(b � A✓t), (9.10)

where

b
.
= E[Rt+1�t] 2 Rn and A

.
= E

h
�t

�
�t � ��t+1

�>
i

2 Rn ⇥ Rn (9.11)

198 CHAPTER 9. ON-POLICY PREDICTION WITH APPROXIMATION

From (9.10) it is clear that, if the system converges, it must converge to the weight
vector ✓TD at which

b � A✓TD = 0

) b = A✓TD

) ✓TD
.
= A�1b. (9.12)

This quantity is called the TD fixpoint. In fact linear semi-gradient TD(0) converges
to this point. Some of the theory proving its convergence, and the existence of the
inverse above, is given in the box.

Proof of Convergence of Linear TD(0)

What properties assure convergence of the linear TD(0) algorithm (9.9)? Some
insight can be gained by rewriting (9.10) as

E[✓t+1|✓t] = (I � ↵A)✓t + ↵b. (9.13)

Note that the matrix A multiplies the weight vector ✓t and not b; only A is
important to convergence. To develop intuition, consider the special case in
which A is a diagonal matrix. If any of the diagonal elements are negative,
then the corresponding diagonal element of I � ↵A will be greater than one,
and the corresponding component of ✓t will be amplified, which will lead to
divergence if continued. On the other hand, if the diagonal elements of A
are all positive, then ↵ can be chosen smaller than one over the largest of
them, such that I � ↵A is diagonal with all diagonal elements between 0 and
1. In this case the first term of the update tends to shrink ✓t, and stability
is assured. In general case, ✓t will be reduced toward zero whenever A is
positive definite, meaning y>Ay > 0 for real vector y. Positive definiteness
also ensures that the inverse A�1 exists.

For linear TD(0), in the continuing case with � < 1, the A matrix (9.11)
can be written

A =
X

s

d(s)
X

a

⇡(a|s)
X

r,s0

p(r, s0|s, a)�(s)
�
�(s) � ��(s0)

�>

=
X

s

d(s)
X

s0

p(s0|s)�(s)
�
�(s) � ��(s0)

�>

=
X

s

d(s)�(s)

✓
�(s) � �

X

s0

p(s0|s)�(s0)

◆>

= �>D(I � �P)�,

where d(s) is the stationary distribution under ⇡, p(s0|s) is the probability
of transition from s to s0 under policy ⇡, P is the |S| ⇥ |S| matrix of these
probabilities, D is the |S| ⇥ |S| diagonal matrix with the d(s) on its diagonal,
and � is the |S| ⇥ n matrix with �(s) as its rows. From here it is clear that
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TD(0) update:

In expectation:

Fixedpoint analysis:
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the inner matrix D(I � �P) is key to determining the positive definiteness of
A.

For a key matrix of this type, positive definiteness is assured if all of its
columns sum to a nonnegative number. This was shown by Sutton (1988, p. 27)
based on two previously established theorems. One theorem says that any
matrix M is positive definite if and only if the symmetric matrix S = M+M>

is positive definite (Sutton 1988, appendix). The second theorem says that
any symmetric real matrix S is positive definite if all of its diagonal entries
are positive and greater than the sum of the corresponding o↵-diagonal entries
(Varga 1962, p. 23). For our key matrix, D(I � �P), the diagonal entries are
positive and the o↵-diagonal entries are negative, so all we have to show is
that each row sum plus the corresponding column sum is positive. The row
sums are all positive because P is a stochastic matrix and � < 1. Thus it only
remains to show that the column sums are nonnegative. Note that the row
vector of the column sums of any matrix M can be written as 1>M, where 1 is
the column vector with all components equal to 1. Let d denote the |S|-vector
of the d(s), where d = P>d by virtue of d being the stationary distribution.
The column sums of our key matrix, then, are:

1>D(I � �P) = d>(I � �P)

= d> � �d>P

= d> � �d> (because d is the stationary distribution)

= (1 � �)d,

all components of which are positive. Thus, the key matrix and its A matrix
are positive definite, and on-policy TD(0) is stable. (Additional conditions
and a schedule for reducing ↵ over time are needed to prove convergence with
probability one.)

At the TD fixpoint, it has also been proven (in the continuing case) that the MSVE
is within a bounded expansion of the lowest possible error:

MSVE(✓TD)  1

1 � �
min
✓

MSVE(✓). (9.14)

That is, the asymptotic error of the TD method is no more than 1
1�� times the small-

est possible error, that attained in the limit by the Monte Carlo method. Because
� is often near one, this expansion factor can be quite large, so there is substantial
potential loss in asymptotic performance with the TD method. On the other hand,
recall that the TD methods are often of vastly reduced variance compared to Monte
Carlo methods, and thus faster, as we saw in Chapters 6 and 7. Which method will
be best depends on the nature of the approximation and problem, and on how long
learning contiunues.

A bound analogous to (9.14) applies to other on-policy bootstrapping methods
as well. For example, linear semi-gradient DP (Eq. 9.7 with Ut

.
=

P
a ⇡(a|St)

P
s0,r

Guarantee:



Gradient TD is less accurate than MC  
on the 1000-state random walk using state aggregation
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p(s0, r|St, a)[r + �v̂(s0,✓t)]) with backups according to the on-policy distribution will
also converge to the TD fixpoint. One-step semi-gradient action-value methods,
such as semi-gradient Sarsa(0) covered in the next chapter converge to an analogous
fixpoint and an analogous bound. For episodic tasks, there is a slightly di↵erent but
related bound (see Bertsekas and Tsitsiklis, 1996). There are also a few technical
conditions on the rewards, features, and decrease in the step-size parameter, which
we have omitted here. The full details can be found in the original paper (Tsitsiklis
and Van Roy, 1997).

Critical to the these convergence results is that states are backed up according to
the on-policy distribution. For other backup distributions, bootstrapping methods
using function approximation may actually diverge to infinity. Examples of this and
a discussion of possible solution methods are given in Chapter 11.

Example 9.2: Bootstrapping on the 1000-state Random Walk State aggre-
gation is a special case of linear function approximation, so let’s return to the 1000-
state random walk to illustrate some of the observations made in this chapter. The
left panel of Figure 9.2 shows the final value function learned by the semi-gradient
TD(0) algorithm (page 195) using the same state aggregation as in Example 9.1.
We see that the near-asymptotic TD approximation is indeed farther from the true
values than the Monte Carlo approximation shown in Figure 9.1.

Nevertheless, TD methods retain large potential advantages in learning rate, and
generalize MC methods, as we investigated fully with the multi-step TD methods
of Chapter 7. The right panel of Figure 9.2 shows results with an n-step semi-
gradient TD method using state aggregation and the 1000-state random walk that are
strikingly similar to those we obtained earlier with tabular methods and the 19-state
random walk. To obtain such quantitatively similar results we switched the state
aggregation to 20 groups of 50 states each. The 20 groups are then quantitatively
close to the 19 states of the tabular problem. In particular, the state transitions

↵

Average
RMS error

over 1000 states
and first 10 
episodes

n=1

n=2
n=4n=8

n=16

n=32
n=64

128512
256

State

    True 
value v⇡

    Approximate 
TD value v̂

1

0

-1

1

1000

Figure 9.2: Bootstrapping with state aggregation on the 1000-state random walk task.
Left: Asymptotic values of semi-gradient TD are worse than the asymptotic MC values
in Figure 9.1. Right: Performance of n-step methods with state-aggregation are strikingly
similar to those with tabular representations (cf. Figure 7.2).

• 10 groups of 100 states 
• after 100,000 episodes 

• α = 2 x 10-5

Relative values are 
still pretty accurate



Bootstrapping still greatly speeds learning 
very much like the tabular 19-state walk
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and Van Roy, 1997).

Critical to the these convergence results is that states are backed up according to
the on-policy distribution. For other backup distributions, bootstrapping methods
using function approximation may actually diverge to infinity. Examples of this and
a discussion of possible solution methods are given in Chapter 11.

Example 9.2: Bootstrapping on the 1000-state Random Walk State aggre-
gation is a special case of linear function approximation, so let’s return to the 1000-
state random walk to illustrate some of the observations made in this chapter. The
left panel of Figure 9.2 shows the final value function learned by the semi-gradient
TD(0) algorithm (page 195) using the same state aggregation as in Example 9.1.
We see that the near-asymptotic TD approximation is indeed farther from the true
values than the Monte Carlo approximation shown in Figure 9.1.

Nevertheless, TD methods retain large potential advantages in learning rate, and
generalize MC methods, as we investigated fully with the multi-step TD methods
of Chapter 7. The right panel of Figure 9.2 shows results with an n-step semi-
gradient TD method using state aggregation and the 1000-state random walk that are
strikingly similar to those we obtained earlier with tabular methods and the 19-state
random walk. To obtain such quantitatively similar results we switched the state
aggregation to 20 groups of 50 states each. The 20 groups are then quantitatively
close to the 19 states of the tabular problem. In particular, the state transitions
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Figure 9.2: Bootstrapping with state aggregation on the 1000-state random walk task.
Left: Asymptotic values of semi-gradient TD are worse than the asymptotic MC values
in Figure 9.1. Right: Performance of n-step methods with state-aggregation are strikingly
similar to those with tabular representations (cf. Figure 7.2).
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Bootstrapping still greatly speeds learning 
very much like the tabular 19-state walk
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Figure 7.2: Performance of n-step TD methods as a function of ↵, for various values of n,
on a 19-state random walk task (Example 7.1).

parameter settings). Note that methods with an intermediate value of n worked best.
This illustrates how the generalization of TD and Monte Carlo methods to n-step
methods can potentially perform better than either of the two extreme methods.

Exercise 7.1 Why do you think a larger random walk task (19 states instead of
5) was used in the examples of this chapter? Would a smaller walk have shifted the
advantage to a di↵erent value of n? How about the change in left-side outcome from
0 to �1 made in the larger walk? Do you think that made any di↵erence in the best
value of n?

7.2 n-step Sarsa

How can n-step methods be used not just for prediction, but for control? In this
section we show how n-step methods can be combined with Sarsa in a straightforward
way to produce an on-policy TD control method. The n-step version of Sarsa we
call n-step Sarsa(�), and the original version presented in the previous chapter we
henceforth call one-step Sarsa, or Sarsa(0).

The main idea is to simply switch states for actions (state–action pairs) and then
use an "-greedy policy. The backup diagrams for n-step Sarsa, shown in Figure 7.3
are like those of n-step TD (Figure 7.1), strings of alternating states and actions,
except that the Sarsa ones all start and end with an action rather a state. We redefine
n-step returns in terms of estimated action values:

G(n)
t

.
= Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nQt+n�1(St+n, At+n), n � 1, 0  t < T �n,

(7.4)

19 states tabular 
(from Chapter 7)



With binary features, a continuous state space 
can be coarsely coded, adding generalization
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s0

s

Figure 9.6: Coarse coding. Generalization from state s to state s0 depends on the number
of their features whose receptive fields (in this case, circles) overlap. These states have one
feature in common, so there will be slight generalization between them.

component of ✓) that is a↵ected by learning. If we train at one state, a point in the
space, then the weights of all circles intersecting that state will be a↵ected. Thus, by
(9.8), the approximate value function will be a↵ected at all states within the union
of the circles, with a greater e↵ect the more circles a point has “in common” with
the state, as shown in Figure 9.6. If the circles are small, then the generalization will
be over a short distance, as in Figure 9.7a, whereas if they are large, it will be over a
large distance, as in Figure 9.7b. Moreover, the shape of the features will determine
the nature of the generalization. For example, if they are not strictly circular, but
are elongated in one direction, then generalization will be similarly a↵ected, as in
Figure 9.7c.

Features with large receptive fields give broad generalization, but might also seem
to limit the learned function to a coarse approximation, unable to make discrimina-
tions much finer than the width of the receptive fields. Happily, this is not the case.
Initial generalization from one point to another is indeed controlled by the size and
shape of the receptive fields, but acuity, the finest discrimination ultimately possible,

a) Narrow generalization b) Broad generalization c) Asymmetric generalization

Figure 9.7: Generalization in linear function approximation methods is determined by the
sizes and shapes of the features’ receptive fields. All three of these cases have roughly the
same number and density of features.
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The width of the receptive fields 
determines breadth of generalization
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is controlled more by the total number of features.

Example 9.3: Coarseness of Coarse Coding This example illustrates the
e↵ect on learning of the size of the receptive fields in coarse coding. Linear function
approximation based on coarse coding and (9.7) was used to learn a one-dimensional
square-wave function (shown at the top of Figure 9.8). The values of this function
were used as the targets, Ut. With just one dimension, the receptive fields were
intervals rather than circles. Learning was repeated with three di↵erent sizes of the
intervals: narrow, medium, and broad, as shown at the bottom of the figure. All
three cases had the same density of features, about 50 over the extent of the function
being learned. Training examples were generated uniformly at random over this
extent. The step-size parameter was ↵ = 0.2

m , where m is the number of features
that were present at one time. Figure 9.8 shows the functions learned in all three
cases over the course of learning. Note that the width of the features had a strong
e↵ect early in learning. With broad features, the generalization tended to be broad;
with narrow features, only the close neighbors of each trained point were changed,
causing the function learned to be more bumpy. However, the final function learned
was a↵ected only slightly by the width of the features. Receptive field shape tends to
have a strong e↵ect on generalization but little e↵ect on asymptotic solution quality.
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10240
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#Examples
approx-
imation

feature
width

Figure 9.8: Example of feature width’s strong e↵ect on initial generalization (first row) and
weak e↵ect on asymptotic accuracy (last row).

9.5.4 Tile Coding

Tile coding is a form of coarse coding for multi-dimensional continuous spaces that
is flexible and computationally e�cient. It may be the most practical feature repre-
sentation for modern sequential digital computers. Open-source software is available
for many kinds of tile coding.

1D example,  
supervised training



Tile coding is coarse coding for digital computers,  
with rectangular receptive fields, controlled overlap

9.5. FEATURE CONSTRUCTION FOR LINEAR METHODS 209

In tile coding the receptive fields of the features are grouped into partitions of the
input space. Each such partition is called a tiling, and each element of the partition
is called a tile. For example, the simplest tiling of a two-dimensional state space is a
uniform grid such as that shown on the left side of Figure 9.9. The tiles or receptive
field here are squares rather than the circles in Figure 9.6. If just this single tiling
were used, then the state indicated by the white spot would be represented by the
single feature whose tile it falls within; generalization would be complete to all states
within the same tile and nonexistent to states outside it. With just one tiling, we
would not have coarse coding by just a case of state aggregation.

To get the strengths of coarse coding requires overlapping receptive fields, and by
definition the tiles of a partition do not overlap. To get true coarse coding with
tile coding, multiple tilings are used, each o↵set by a fraction of a tile width. A
simple case with four tilings is shown on the right side of Figure 9.9. Every state,
such as that indicated by the white spot, falls in exactly one tile in each of the four
tilings. These four tiles correspond to four features that become active when the
state occurs. Specifically, the feature vector �(s) has one component for each tile in
each tiling. In this example there are 4 ⇥ 4 ⇥ 4 = 64 components, all of which will
be 0 except for the four corresponding to the tiles that s falls within. Figure 9.10
shows the advantage of multiple o↵set tilings (coarse coding) over a single tiling on
the 1000-state random walk example.

An immediate practical advantage of tile coding is that, because it works with
partitions, the overall number of features that are active at one time is the same
for any state. Exactly one feature is present in each tiling, so the total number of
features present is always the same as the number of tilings. This allows the step-
size parameter, ↵, to be set in an easy, intuitive way. For example, choosing ↵ = 1

m ,
where m is the number of tilings, results in exact one-trial learning. If the example
s 7! v is trained on, then whatever the prior estimate, v̂(s,✓t), the new estimate will
be v̂(s,✓t+1) = v. Usually one wishes to change more slowly than this, to allow for
generalization and stochastic variation in target outputs. For example, one might
choose ↵ = 1

10m , in which case the estimate for the trained state would move one-

Point in 
state space

to be
represented

Tiling 1
Tiling 2

Tiling 3
Tiling 4Continuous 

2D state 
space

Four active
tiles/features 

overlap the point
and are used to 

represent it

Figure 9.9: Multiple, overlapping grid-tilings on a limited two-dimensional space. These
tilings are o↵set from one another by a uniform amount in each dimension.

2D example



Nevertheless, tile coding is very flexible
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the first four tilings would be o↵set in total from a base position by (0, 0, 0), (1, 3, 5),
(2, 6, 10), and (3, 9, 15). Open-source software that can e�ciently make tilings like
this for any d is readily available.

In choosing a tiling strategy, one has to pick the number of the tilings and the shape
of the tiles. The number of tilings, along with the size of the tiles, determines the
resolution or fineness of the asymptotic approximation, as in general coarse coding
and illustrated in Figure 9.8. The shape of the tiles will determine the nature of
generalization as in Figure 9.7. Square tiles will generalize roughly equally in each
dimension as indicated in Figure 9.11 (lower). Tiles that are elongated along one
dimension, such as the stripe tilings in Figure 9.12 b, will promote generalization
along that dimension. The tilings in Figure 9.12 b are also denser and thinner on the
left, promoting discrimination along the horizonal dimension at lower values along
that dimension. The diagonal stripe tiling in Figure 9.12c will promote generalization
along one diagonal. In higher dimensions, axis-aligned stripes correspond to ignoring
some of the dimensions in some of the tilings, that is, to hyperplanar slices. Irregular
tilings such as shown in Figure 9.12 a are also possible, though rare in practice and
beyond the standard software.

In practice, it is often desirable to use di↵erent shaped tiles in di↵erent tilings. For
example, one might use some vertical stripe tilings and some horizontal stripe tilings.
This would encourage generalization along either dimension. However, with stripe
tilings alone it is not possible to learn that a particular conjunction of horizontal and
vertical coordinates has a distinctive value (whatever is learned for it will bleed into
states with the same horizontal and vertical coordinates). For this one needs the
conjunctive rectangular tiles such as originally shown in Figure 9.9. With multiple
tilings—some horizontal, same vertical, and some conjunctive—one can get every-
thing: a preference for generalizing along each dimension, yet the ability to learn
specific values for conjunctions (see Section 16.3 for a case study using this). The
choice of tilings determines generalization, and until this choice can be e↵ectively
automated, it is important that tile coding enables the choice to be made flexibly
and in a way that makes sense to people.

a) Irregular b) Log stripes c) Diagonal stripes

Figure 9.12: Tilings need not be grids. They can be arbitrarily shaped and non-uniform,
while still in many cases being computationally e�cient to compute.

Non-traditional tilings:9.5. FEATURE CONSTRUCTION FOR LINEAR METHODS 213

one

tile

Another useful trick for reducing memory requirements is
hashing—a consistent pseudo-random collapsing of a large
tiling into a much smaller set of tiles. Hashing produces tiles
consisting of noncontiguous, disjoint regions randomly spread
throughout the state space, but that still form an exhaustive
partition. For example, one tile might consist of the four
subtiles shown to the right. Through hashing, memory re-
quirements are often reduced by large factors with little loss
of performance. This is possible because high resolution is
needed in only a small fraction of the state space. Hashing frees us from the curse of
dimensionality in the sense that memory requirements need not be exponential in the
number of dimensions, but need merely match the real demands of the task. Good
open-source implementations of tile coding, including hashing, are widely available.

Exercise 9.4 Suppose we believe that one of two state dimensions is more likely to
have an e↵ect on the value function than is the other, that generalization should be
primarily across this dimension rather than along it. What kind of tilings could be
used to take advantage of this prior knowledge?

9.5.5 Radial Basis Functions

Radial basis functions (RBFs) are the natural generalization of coarse coding to
continuous-valued features. Rather than each feature being either 0 or 1, it can
be anything in the interval [0, 1], reflecting various degrees to which the feature
is present. A typical RBF feature, i, has a Gaussian (bell-shaped) response �i(s)
dependent only on the distance between the state, s, and the feature’s prototypical
or center state, ci, and relative to the feature’s width, �i:

�i(s)
.
= exp

✓
� ||s � ci||2

2�2
i

◆
.

The norm or distance metric of course can be chosen in whatever way seems most
appropriate to the states and task at hand. Figure 9.13 shows a one-dimensional
example with a Euclidean distance metric.

The primary advantage of RBFs over binary features is that they produce approxi-
mate functions that vary smoothly and are di↵erentiable. Although this is appealing,
in most cases it has no practical significance. Nevertheless, extensive studies have
been made of graded response functions such as RBFs in the context of tile coding
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Figure 9.13: One-dimensional radial basis functions.
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Tile coding works better than state aggregation  
on the 1000-state random walk
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Figure 9.10: Why we use coarse coding. Shown are learning curves on the 1000-state
random walk example for the gradient MC algorithm with a single tiling and with multiple
tilings. The space of 1000 states was treated as a single continuous dimension, covered with
tiles each 200 states wide. The multiple tilings were o↵set from each other by 4 states. The
step-size parameter was set so that the initial learning rate in the two cases was the same,
↵ = 0.0001 for the single tiling and ↵ = 0.0001/50 for the 50 tilings.

tenth of the way to the target in one update, and neighboring states will be moved
less, proportional to the number of tiles they have in common.

Tile coding also gains computational advantages from its use of binary feature
vectors. Because each component is either 0 or 1, the weighted sum making up
the approximate value function (9.8) is almost trivial to compute. Rather than
performing n multiplications and additions, one simply computes the indices of the
m ⌧ n active features and then adds up the m corresponding components of the
weight vector.

Generalization occurs to states other than the one trained if the those states fall
within any of the same tiles, proportional to the number of tiles in common. Even
the choice of how to o↵set the tilings from each other a↵ects generalization. If they
are o↵set uniformly in each dimension, as they were in Figure 9.9, then di↵erent
states can generalize in qualitatively di↵erent ways, as shown below in the upper
half of Figure 9.11. Each of the eight subfigures show the pattern of generalization
from a trained state to nearby points. In this example their are eight tilings, thus
64 subregions within a tile that generalize distinctly, but all according to one of
these eight patterns. Note how uniform o↵sets result in a strong e↵ect along the
diagonal in many patterns. These artifacts can be avoided if the tilings are o↵set
asymmetrically, as shown in the lower half of the figure. These lower generalization
patterns are better because they are all well centered on the trained state with no
obvious asymmetries.

Tilings in all cases are o↵set from each other by a fraction of a tile width in each
dimension. If w denotes the tile width and k the number of tilings, then w

k is a
fundamental unit. Within small squares w

k on a side, all states activate the same
tiles, have the same feature representation, and the same approximated value. If a
state is moved by w

k in any cartesian direction, the feature representation changes

• groups/tiles of 200 states 

• α set so that initial learning rate  
is the same for both methods
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example with a Euclidean distance metric.

The primary advantage of RBFs over binary features is that they produce approxi-
mate functions that vary smoothly and are di↵erentiable. Although this is appealing,
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Figure 9.13: One-dimensional radial basis functions.1D radial basis functions

A 2D approx. value function 
learned with 2D radial basis functions

Smooth-edged receptive fields are little different 
but increase computational complexity



Conclusions
• Value-function approximation by stochastic gradient descent  

enables RL to be applied to arbitrarily large state spaces 

• Most algorithms just carry over the Targets from the tabular case 

• With bootstrapping (TD), we don’t get true gradient descent methods 

• this complicates the analysis 

• but the linear, on-policy case is still guaranteed convergent 

• and learning is still much faster 

• For continuous state spaces, coarse/tile coding is a good strategy 

• For ambitious AI, artificial neural networks are an interesting strategy


