Chapter 9:

On-policy Prediction
with Approximation

«dg"‘"" s \

by fay \KSQ “« \\/ LS;S T o !;:Tr(\fjﬁ‘ - \J \S \J

U v GisB) eeR n |§)
‘Ux\\\;ﬁ

Fondiow § &« B« [_TW* \![()] VQG(S{,P)
ﬁ\fwwtm.‘hm\
(N o A2
Stothackic ombad vt (G6D))

@‘é:'—“ l/ 3 o‘v EVL‘Y VRB\) [‘59 ‘)leg_@
<~ p - Okv {:'XGVH - &th—) 'i 3

iV, U%gﬁ; s, 5%

: \ /\ : &
. - . — i -. - [) ANy /
. “Dw% VO T 86,8 g
Liieay VR

V(s 6 p) = %Tgb()) 3 E gg}@ | 9s) 6@”“, ¢S\——>K{Q‘

QL0 = 7o - v 2‘3 p) = 6 aeo

Stwrgadiet Alonitins ave who Tagek depeady ¢
7/

. ,%.. A2 . RS s VA ‘*‘
X)UT VW2 lf’fjnév"\' v;;, hbitﬁ!' (T‘tk(l‘ as (5) (“‘7 Véjy

3 waves of neural networks

e First explored in the 1950-60s: Perceptron, Adaline...
* only one learnable layer
* Revived in the 1980-90s as Connectionism, Neural Networks

e exciting multi-layer learning using backpropagation (SGD);
many successful applications; remained popular in engineering

 Revived again in ~2010 as Deep Learning

e dramatically improved over state-of-the-art in speech recognition
and visual object recognition, transforming these fields

* the best algorithms were essentially the same as in the 1980s,
except with faster computers and larger training sets

l.e., NNs won (eventually) because their performance scaled with
Moore’s law, whereas competing methods did not

Deep learning
multi-layer neural networks with many layers

Diagonal
Line
Node

et
oJe
=

SRS
Jel
N | 7.
Pen e
oleJe
AN
P"\\ r“\‘

| s, |

to
ofs

X

ofo
oY
X

7N
R
o]
N\
X

xo
P/"\ivt‘:é
ole]
XK

\‘ \./ \~ \’-,;
o b o = EC e
L e Rt | e e -
- . -~ .
- . . — "
\\L N

e Each line has a learned connection weight

e Fach node combines its weighted inputs, then applies a nonlinear transtormation

e For each image, the network produces class labels as output, and true class labels are provided by people (supervised learning)
e Then each weight is incremented so as to reduce the squared error (stochastic gradient descent, backpropagation)

Value function approximation (VFA) replaces the table
with a general parameterized form

Stochastic Gradient Descent (SGD) is the idea
pbehind most approximate learning

General SGD: 0 < 0 — aVy Error;

For VFA: — 0 — aVp [Target, — (S, 0)]°
Chain rule: «— 0 — 2« [Target; — 0(St, 0)] Vo [Target; — v(S;, 0)]
Semi-gradient: < 0 + a|Target; — 0(S, 0)] Voo (S, 0)
Linear case: «— 0+ o|Target; — 0(S;, 0)] d(S;)

Action-value form: 0 < 0+ «a|Target; — q(Sy, A, 0)] (S, Ap)

A natural objective In VFA
'S to minimize the Mean Square Value Error

MSVE(0) = Z d(s) :UW(S) — (s, 9):

SES

where d(s) is the fraction of time steps spent in state s

True SGD will converge to a local minimum of the error objective
In linear VFA, there I1s only one minimum: local=global

Gradient Monte Carlo Algorithm for Approximating v ~ v,

Input: the policy 7 to be evaluated
Input: a differentiable function v : o x R" — R

Initialize value-function weights 6 as appropriate (e.g., 8 = 0)
Repeat forever:
Generate an episode Sg, Ag, R1, 51, A1,..., R, ST using w
Fort=0,1,...,17 —1:
0 <— 0+ Oé[Gt — @(St,g)] V@(St,g)

State aggregation is the simplest kind of VFA

e States are partitioned into disjoint subsets (groups)

» One component of @ is allocated to each group

v(s,0) =46

group(s)

Vo 9(s,0) = [0,0,...,0,1,0,0,...,0]

Recall: 6 + 0+ o |Target; — v(S¢,0)| Vo 0(S¢, 0)

The 1000-state random walk example

e States are numbered 1 to 1000
o \Walks start in the near middle, at state 500 So = 500

or to one of the 100 states to the left

e |fthe jump goes beyond 1 or 1000, terminates with a reward of =1 or +1
(otherwise R;=0)

trajectory of 11 jumps

— S

state 1 state 500 state 1000

State aggregation into 10 groups of 100

trajectory of 11 jumps

+1
I | I |
group 1 group 2 group 3 group 4 group 5 group 6 oup 7 roup 8 group 9 group 10

state T state 500 state 1000

The whole value function over 1000 states will be approximated with 10 numbers!

Gradient MC works well
on the 1000-state random walk using state aggregation

e 10 groups of 100 states Ir True L e0E
value U “ '
e after 100,000 episodes
Value | Approximate Distribution
L | | 0t MC value ¥ \ |
e state distribution affects scale — scale
accuracy /
10.0017
_1 | O

1 State 1000

Semi-gradient TD(0) for estimating v ~ v,

Input: the policy m to be evaluated
Input: a differentiable function ¢ : 87 x R™ — R such that ¢(terminal,-) = 0

Initialize value-function weights @ arbitrarily (e.g., 8 = 0)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A ~ 7(-].5)
Take action A, observe R, S’
0 < 0+ «a|R+~0(5.0)—0(5,0)|Vi(S,0)
S+ 5

until S’ is terminal

TD converges to the TD fixedpoint, O@1p,
a blased but Interesting answer

TD(0) update: -ixedpoint analysis:
Oi11 =0+ Oé<Rt+1 + 790, Pri1 — 9;@) oY b— A8, =0
= A
= 0; + Oé(Rt+1¢t — ¢ (P — ’Y¢t+1)T9t) - b Orp
= Orp = A~ 'b

“3[6754_1‘675] — Ht —+ Oé(b — AHt),

1
MSVE(@rp) < . mein MSVE(6)
— 7

where

— o — T 0
b=E[Ri1¢: €R" and A=E {¢t(¢t—V¢t+1) } cR" xR

Gradient TD is less accurate than MC
on the 1000-state random walk using state aggregation

e 10 groups of 100 states

. T True
e after 100,000 episodes value 1"~

e o0 =2X 107 X ‘

Approximate]
1D value v_dh_

—

Relative values are [
still pretty accurate

| State 1000

Bootstrapping still greatly speeds learning

055 55
0.5 = 1 'r\ '\',.'

Average oash |
RMS error !
over 1000 states 04+
and first 10
episodes %°T

03F

025}

1000 states aggregatea
into 20 groups of 50

Bootstrapping still greatly speeds learning
very much like the tabular 19-state walk

055 &1
\". f ""
0.5 ~ : 'x\‘ '\".'

Average oss| | ,
RMS error !
over 1000 states 04+
and first 10
episodes %°T

03F

025}

1000 states aggregatea
into 20 groups of 50

Average
RMS error
over 19 states
and first 10
episodes

0.55 , 5127

0S5 F 'L. .||‘ WA \ ,-""
A ¥

Ll A f
045 F '| .'\‘ "."

04~

035 F

03 F

0.25 |

19 states tabular
(from Chapter 7)

With binary features, a continuous state space
can pe coarsely coded, aading generalization

The width of the receptive fields
determines breadth of generalization

1D example, #Exam ples function imation
supervised training

Tile coding Is coarse coding for digital computers,
with rectangular receptive fields, controlled overlap

2D example

. — nilmgl —

Tiling 2

Coptinuous

Tiling 3
Tiling 4

2D state

\ Point 1n

state space
to be
represented

/

|

Four active
—— tiles/features
overlap the point

_— and are used to

represent it

I R L L
l

G — — — ebe— — — — ebe— — — — b — — —

Nevertheless, tile coding is very tlexible

Non-traditional tilings:

XK N
HINNE

a) lrregular b) Log stripes c) Diagonal stripes Hashing

Tlle coding works better than state aggregation
on the 1000-state random walk

e groups/tiles of 200 states

S e o set so that Initial learning rate
RMSVE , 'S the same for both methods
averaged [State aggregation
over 30 runs (one tiling)

Tile coding (50 tilings)

0 5000

Episodes

Smooth-edged receptive fields are little different
put Increase computational complexity

180~

i ¢ Cit1 100

1D radial basis functions "1
60 <
40

20

0
S0

s

A 2D approx. value function
learned with 2D radial basis functions % -0

Conclusions

e Value-function approximation by stochastic gradient descent
enables RL to be applied to arbitrarily large state spaces

* Most algorithms just carry over the Targets from the tabular case

* With bootstrapping (TD), we don't get true gradient descent methods
* this complicates the analysis
e put the linear, on-policy case Is still guaranteed convergent
e and learning is still much faster

* For continuous state spaces, coarse/tile coding is a good strategy

* For ambitious Al, artificial neural networks are an interesting strategy

