Chapter 9:

On-policy Prediction
with Approximation
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3 waves of neural networks

e First explored in the 1950-60s: Perceptron, Adaline...
* only one learnable layer
* Revived in the 1980-90s as Connectionism, Neural Networks

e exciting multi-layer learning using backpropagation (SGD);
many successful applications; remained popular in engineering

 Revived again in ~2010 as Deep Learning

e dramatically improved over state-of-the-art in speech recognition
and visual object recognition, transforming these fields

* the best algorithms were essentially the same as in the 1980s,
except with faster computers and larger training sets

l.e., NNs won (eventually) because their performance scaled with
Moore’s law, whereas competing methods did not




Deep learning
multi-layer neural networks with many layers
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e Each line has a learned connection weight

e Fach node combines its weighted inputs, then applies a nonlinear transtormation

e For each image, the network produces class labels as output, and true class labels are provided by people (supervised learning)
e Then each weight is incremented so as to reduce the squared error (stochastic gradient descent, backpropagation)



Value function approximation (VFA) replaces the table
with a general parameterized form




Stochastic Gradient Descent (SGD) is the idea
pbehind most approximate learning

General SGD: 0 < 0 — aVy Error;

For VFA: — 0 — aVp [Target, — (S, 0)]°
Chain rule: «— 0 — 2« [Target; — 0(St, 0)] Vo [Target; — v(S;, 0)]
Semi-gradient: < 0 + a|Target; — 0(S, 0)] Voo (S, 0)
Linear case: «— 0+ o|Target; — 0(S;, 0)] d(S;)

Action-value form: 0 < 0+ «a|Target; — q(Sy, A, 0)] (S, Ap)



A natural objective In VFA
'S to minimize the Mean Square Value Error

MSVE(0) = Z d(s) :UW(S) — (s, 9):

SES

where d(s) is the fraction of time steps spent in state s

True SGD will converge to a local minimum of the error objective
In linear VFA, there I1s only one minimum: local=global



Gradient Monte Carlo Algorithm for Approximating v ~ v,

Input: the policy 7 to be evaluated
Input: a differentiable function v : o x R" — R

Initialize value-function weights 6 as appropriate (e.g., 8 = 0)
Repeat forever:
Generate an episode Sg, Ag, R1, 51, A1,..., R, ST using w
Fort=0,1,...,17 —1:
0 <— 0+ Oé[Gt — @(St,g)] V@(St,g)



State aggregation is the simplest kind of VFA

e States are partitioned into disjoint subsets (groups)

» One component of @ is allocated to each group

v(s,0) =46

group(s)

Vo 9(s,0) = [0,0,...,0,1,0,0,...,0]

Recall: 6 + 0+ o |Target; — v(S¢,0)| Vo 0(S¢, 0)



The 1000-state random walk example

e States are numbered 1 to 1000
o \Walks start in the near middle, at state 500 So = 500

or to one of the 100 states to the left

e |fthe jump goes beyond 1 or 1000, terminates with a reward of =1 or +1
(otherwise R;=0)

trajectory of 11 jumps

— S

state 1 state 500 state 1000




State aggregation into 10 groups of 100

trajectory of 11 jumps

+1
I | I |
group 1 group 2 group 3 group 4 group 5 group 6 oup 7 roup 8 group 9 group 10

state T state 500 state 1000

The whole value function over 1000 states will be approximated with 10 numbers!



Gradient MC works well
on the 1000-state random walk using state aggregation

e 10 groups of 100 states Ir True L e0E
value U “ '
e after 100,000 episodes
Value | Approximate Distribution
L | | 0t MC value ¥ \ |
e state distribution affects scale — scale
accuracy /
10.0017
_1 | O

1 State 1000



Semi-gradient TD(0) for estimating v ~ v,

Input: the policy m to be evaluated
Input: a differentiable function ¢ : 87 x R™ — R such that ¢(terminal,-) = 0

Initialize value-function weights @ arbitrarily (e.g., 8 = 0)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A ~ 7(-].5)
Take action A, observe R, S’
0 < 0+ «a|R+~0(5.0)—0(5,0)|Vi(S,0)
S+ 5

until S’ is terminal



TD converges to the TD fixedpoint, O@1p,
a blased but Interesting answer

TD(0) update: -ixedpoint analysis:
Oi11 =0+ Oé<Rt+1 + 790, Pri1 — 9;@) oY b— A8, =0
= A
= 0; + Oé(Rt+1¢t — ¢ (P — ’Y¢t+1)T9t) - b Orp
= Orp = A~ 'b

“3[6754_1‘675] — Ht —+ Oé(b — AHt),

1
MSVE(@rp) < . mein MSVE(6)
— 7

where

— o — T 0
b=E[Ri1¢: €R" and A=E {¢t(¢t—V¢t+1) } cR" xR



Gradient TD is less accurate than MC
on the 1000-state random walk using state aggregation

e 10 groups of 100 states

. T True
e after 100,000 episodes value 1"~

e o0 =2X 107 X ‘

Approximate ]
1D value v\_dh_

—

Relative values are [
still pretty accurate

| State 1000



Bootstrapping still greatly speeds learning
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Bootstrapping still greatly speeds learning
very much like the tabular 19-state walk
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With binary features, a continuous state space
can pe coarsely coded, aading generalization




The width of the receptive fields
determines breadth of generalization

1D example,  #Exam ples function imation
supervised training




Tile coding Is coarse coding for digital computers,
with rectangular receptive fields, controlled overlap

2D example
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Nevertheless, tile coding is very tlexible

Non-traditional tilings:

XK N
HINNE

a) lrregular b) Log stripes c) Diagonal stripes Hashing



Tlle coding works better than state aggregation
on the 1000-state random walk

e groups/tiles of 200 states

S e o set so that Initial learning rate
RMSVE , 'S the same for both methods
averaged [ State aggregation
over 30 runs (one tiling)

Tile coding (50 tilings)

0 5000

Episodes



Smooth-edged receptive fields are little different
put Increase computational complexity
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A 2D approx. value function
learned with 2D radial basis functions % -0



Conclusions

e Value-function approximation by stochastic gradient descent
enables RL to be applied to arbitrarily large state spaces

* Most algorithms just carry over the Targets from the tabular case

* With bootstrapping (TD), we don't get true gradient descent methods
* this complicates the analysis
e put the linear, on-policy case Is still guaranteed convergent
e and learning is still much faster

* For continuous state spaces, coarse/tile coding is a good strategy

* For ambitious Al, artificial neural networks are an interesting strategy



