
The Problem of Temporal Abstraction

How do we connect the high level to the low-level?
 " the human level to the physical level?
 " the decide level to the action level?

MDPs are great, search is great,
 excellent rep’ns of decision-making, choice, outcome
 but they are too flat

Can we keep their elegance, clarity, and simplicity,
while connecting and crossing levels?

Goal: Extend RL framework  
to temporally abstract action

• While minimizing changes to
❖ Value functions
❖ Bellman equations
❖ Models of the environment
❖ Planning methods
❖ Learning algorithms

• While maximizing generality
❖ General dynamics and rewards
❖ Ability to express all courses of behavior
❖ Minimal commitments to other choices

• Execution, e.g., hierarchy, interruption, intermixing with
planning

• Planning, e.g., incremental, synchronous, trajectory
based, “utility” problems

• State abstraction and function approximation
• Creation/Constructivism

It’s a
dimensional

thing

Options – Temporally Abstract Actions

E.g., the docking option:
 : hand-crafted controller
 : terminate when docked or charger not visible

Execution is nominally hierarchical (call-and-return)

 An option is a triple,

is the policy followed during o

is the probability of the option continuing
(not terminating) in each state

...there are also “semi-Markov” options

o = h⇡
o

, �

o

i

⇡
o

: S⇥A ! [0, 1]

�
o

: S ! [0, �]

⇡
o

�
o

Options are like actions

Just as a state has a set of actions,
It also has a set of options,

Just as we can have a flat policy, over actions,
We can have a hierarchical policy, over options,

To execute h in s :
select option o with probability
follow o until it terminates, in s’
then choose a next option with probability again, and so on

Every hierarchical policy determines a flat policy

Even if all the options are Markov, f (h) is usually not Markov

Actions are a special case of options

A(s)
O(s)

⇡ : S⇥A ! [0, 1]

⇡ = f(h)

h : O⇥ S ! [0, 1]

h(o|s)

h(o0|s0)

Value Functions with
Temporal Abstraction

A new set of optimization problems

Now consider a limited set of options
and hierarchical policies that choose only from them

O

Define value functions for hierarchical policies and options:

vO⇤ (s) = max

h2⇧(O)
vh(s)

q

O
⇤ (s, o) = max

h2⇧(O)
qh(s, o)

h 2 ⇧(O)

vh(s) = E
⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St = s,At:1 ⇠ h
⇤

q

h

(s, o) = E[G
t

| S
t

= s,A

t:t+k�1 ⇠ ⇡

o

, k ⇠ �

o

, A

t+k:1 ⇠ h]

Options define a 
Semi-Markov Decision Process (SMDP)

overlaid on the MDP

Discrete time
Homogeneous discount

Continuous time
Discrete events
Interval-dependent discount

Discrete time
Overlaid discrete events
Interval-dependent discount

A discrete-time SMDP overlaid on an MDP.
Can be analyzed at either level.

MDP

SMDP

Options
over MDP

State

Time

Models of the Environment
with Temporal Abstraction

Planning requires models of the consequences of action

The model of an action has a reward part and a state transition part:

As does the model of an option:

r(s, a) = E[Rt+1 | St = s,At = a]

p(s0|s, a) = Pr{St+1 = s0 | St = s,At = a}

r(s, o) = E
⇥
R

t+1 + · · ·+ �

k�1
R

t+k

��
S

t

= s,A

t:t+k�1 ⇠ ⇡

o

, k ⇠ �

o

⇤

p(s

0|s, o) =
1X

k=1

Pr{S
t+k

= s

0
, termination at t+ k | S

t

= s,A

t:t+k�1 ⇠ ⇡

o

} �k

Bellman Equations with Temporal Abstraction

For policy-specific value functions:

v

h

(s) =
X

o

h(o|s)
"
r(s, o) +

X

s

0

p(s0|s, o)v
h

(s0)

#

vh

q

h

(s, o) = r(s, o) +
X

s

0

p(s0|s, o)
X

o

0

h(o0|s0)q
h

(s0, o0)

r(s, o)

s0

s, o

a0
h

p

qh

s

s0

o

r(s, o)
p

h

Planning with Temporal Abstraction

Reduces to conventional value iteration if

Initialize:

Iterate:

V (s) 0, 8s 2 S

V (s) max

o

"
r(s, o) +

X

s

0

p(s

0|s, o)V (s

0
)

#

V ! vO⇤

h

O
⇤ (s) = greedy(s, v

O
⇤) = argmax

o2O

"
r(s, o) +

X

s

0

p(s

0|s, o)vO⇤ (s0)
#

O = A

Rooms Example

o2

HALLWAYS

o1

8 multi-step options

up

down

rightleft

(to each room's 2 hallways)
G2

4 stochastic
primitive actions

Fail 33%
of the time

G1

Target
HallwayPolicy of

one option:

Sutton, Precup,

& Singh, 1999

γ = .9

All rewards zero,
except +1 into goal

Planning is much faster with Temporal Abstraction

Iteration #0 Iteration #1 Iteration #2

with cell-to-cell
primitive actions

Iteration #0 Iteration #1 Iteration #2

with room-to-room
options

V(goal)=1

V(goal)=1

Without TA

With TA

Temporal Abstraction helps even with Goal≠Subgoal 
given both primitive actions and options

Iteration #1Initial values Iteration #2

Iteration #3 Iteration #4 Iteration #5

Iteration #1Initial values Iteration #2

Iteration #3 Iteration #4 Iteration #5why?

Temporal Abstraction helps even with Goal≠Subgoal 
given both primitive actions and options

Temporal abstraction also speeds learning
about path-to-goal

SMDP Theory Provides a lot of this

• Policies over options : µ :S ×O a [0,1]
• Value functions over options : V µ (s),Qµ (s,o),VO

*(s),QO
* (s,o)

• Learning methods : Bradtke & Duff (1995), Parr (1998)
• Models of options
• Planning methods : e.g. value iteration, policy iteration, Dyna...
• A coherent theory of learning and planning with courses of
 action at variable time scales, yet at the same level

But not all.
The most interesting issues are beyond SMDPs...

Hierarchical policies over options: h(o|s)
vh(s), qh(s, o), v

O
⇤ (s), q

O
⇤ (s, o)

: r(s, o), p(s0|s, o)

Outline

• The RL (MDP) framework

• The extension to temporally abstract “options”
❖ Options and Semi-MDPs
❖ Hierarchical planning and learning

• Rooms example

• Between MDPs and Semi-MDPs
❖ Improvement by interruption (including Spy plane demo)
❖ A taste of

• Intra-option learning
• Subgoals for learning options
• RoboCup soccer demo

Interruption

Idea: We can do better by sometimes interrupting ongoing options
 - forcing them to terminate before says to

Theorem: For any hierarchical policy
 suppose we interrupt its options one or more times, t,
 when the action we are about to take o, is such that

�
o

h : O⇥ S ! [0, 1],

qh(St, o) < qh(St, h(St))

to obtain h’,

Then h’ ≥ h (it attains more or equal reward everywhere)

Application: Suppose we have determined and thus
 Then h’ is guaranteed better than
 and is available with no further computation

qO⇤ h = hO
⇤

hO
⇤

range (input set) of each
run-to-landmark controller

landmarks

S

G

Landmarks Task

Task: navigate from S to G as
 fast as possible

4 primitive actions, for taking
tiny steps up, down, left, right

7 controllers for going straight
to each one of the landmarks,
from within a circular region
where the landmark is visible

In this task, planning at the level of primitive actions is
computationally intractable, we need the controllers

S

G

SMDP Solution
(600 Steps)

Termination-Improved
Solution (474 Steps)

Termination Improvement for Landmarks Task

Allowing early termination based on
models improves the value function at
no additional cost!

Spy Plane Example

• Mission: Fly over (observe) most
valuable sites and return to base

• Stochastic weather affects
observability (cloudy or clear) of sites

• Limited fuel
• Intractable with classical optimal

control methods
• Temporal scales:

❖ Actions: which direction to fly now
❖ Options: which site to head for

• Options compress space and time
❖ Reduce steps from ~600 to ~6

❖ Reduce states from ~1010 to ~106

10

50

50

50

100

25

15 (reward)

5

25

8

Base
100 decision steps

options

(mean time between
 weather changes)

any state ~1010
sites only ~106

q

O
⇤ (s, o) = r(s, o) +

X

s0

p(s0|s, o)vO⇤ (s0)

Spy Drone

30

40

50

60

TI SMDP Static

Spy Plane Example (Results)

• SMDP planner:
❖ Assumes options followed to

completion
❖ Plans optimal SMDP solution

• SMDP planner with interruption
❖ Plans as if options must be

followed to completion
❖ But actually takes them for only

one step
❖ Re-picks a new option on every

step
• Static planner:

❖ Assumes weather will not change
❖ Plans optimal tour among clear

sites
❖ Re-plans whenever weather

changes

Low Fuel

High Fuel

Expected Reward/Mission

Temporal abstraction finds
better approximation than
static planner, with little
more computation than
SMDP planner

SMDP
Planner

Static
Re-planner

SMDP  
planner  

with  
interruption

Outline

• The RL (MDP) framework

• The extension to temporally abstract “options”
❖ Options and Semi-MDPs
❖ Hierarchical planning and learning

• Rooms example

• Between MDPs and Semi-MDPs
❖ Improvement by interruption (including Spy plane demo)
❖ A taste of

• Intra-option learning
• Subgoals for learning options
• RoboCup soccer demo

Intra-Option Learning Methods  
for Markov Options

Proven to converge to correct values, under same assumptions
as 1-step Q-learning

Idea: take advantage of each fragment of experience
SMDP Q-learning:

• execute option to termination, keeping track of reward along
 the way

• at the end, update only the option taken, based on reward and
 value of state in which option terminates

Intra-option Q-learning:
• after each primitive action, update all the options that could have
 taken that action, based on the reward and the expected value
 from the next state on

Intra-Option Learning Methods  
for Markov Options

Proven to converge to correct values, under same assumptions
as 1-step Q-learning

Idea: take advantage of each fragment of experience

Intra-Option Learning: after each primitive action, update all the options
 that could have taken that action

SMDP Learning: execute option to termination,then update only the
 option taken

Returning to the rooms example…

o2

HALLWAYS

o1

8 multi-step options

up

down

rightleft

(to each room's 2 hallways)
G2

4 stochastic
primitive actions

Fail 33%
of the time

G1

Target
HallwayPolicy of

one option:

Sutton, Precup,

& Singh, 1999

γ = .9

All rewards zero,
except +1 into goal

Intra-Option Value Learning 
in the Rooms Example

 Intra-option methods learn correct values without ever
taking the options! SMDP methods are not applicable here

Random start, goal in right hallway, random actions

-4

-3

-2

-1

0

0 10001000 6000 2000 3000 4000 5000 6000
EpisodesEpisodes

Option
values

Average
value of

greedy policy

Learned value

Learned value

Upper
hallway
option

Left
hallway
option

True value

True value-4

-3

-2

1 10 100

Value of Optimal Policy

Intra-Option Model Learning

Intra-option methods work much faster than SMDP methods

Random start state, no goal, pick randomly among all options

Options executed

State
prediction

error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20,000 40,000 60,000 80,000 100,000

SMDP

SMDP
Intra

Intra

SMDP 1/t
Max
error
Avg.
error

SMDP 1/t

0

1

2

3

4

0 20,000 40,000 60,000 80,000 100,000
Options executed

SMDP
Intra

SMDP 1/t

SMDP

Intra SMDP 1/t

Reward
prediction

error
Max error

Avg. error

Options Depend on Outcome Values

Large Outcome Values Small Outcome Values

Learned Policy: Avoids Negative
 Rewards

Learned Policy: Shortest Paths

Small negative rewards on each step

g = 10 g = 1

g = 0 g = 0

Summary: Benefits of Options

• Transfer of knowledge
❖ Solutions to sub-tasks can be saved and reused
❖ Domain knowledge can be provided as options and subgoals

• Potentially much faster learning and planning
❖ By representing action at an appropriate temporal scale

• Models of options are a form of knowledge representation
❖ Expressive
❖ Clear
❖ Suitable for learning and planning

• Much more to learn than just one policy, one set of values
❖ A framework for “constructivism” or “continual learning” – for

finding models of the world that are useful for rapid planning and
learning

Conclusions

• We have come a long way toward linking human-level choices to
microscopic actions
❖ Temporally abstract facts, and estimates of them - knowledge!
❖ A theory of how to combine known subcontrollers (behaviors)
❖ Beginnings of how to learn them efficiently and without interference

• Resolution of the “subgoal credit-assignment” problem

• We have shown how the high-level can mirror the low
❖ It’s all choices, states, and values
❖ A minimal extension of existing RL/MDP ideas

• The state assumption remains a problem
❖ Someday options may revolutionize our notion of state and of

perception

