
The Problem of Temporal Abstraction

How do we connect the high level to the low-level? 
            "                the human level to the physical level? 
            "                the decide level to the action level? 

MDPs are great, search is great,  
 excellent rep’ns of decision-making, choice, outcome 
 but they are too flat

Can we keep their elegance, clarity, and simplicity, 
while connecting and crossing levels?



Goal: Extend RL framework  
to temporally abstract action

• While minimizing changes to 
❖ Value functions 
❖ Bellman equations 
❖ Models of the environment 
❖ Planning methods 
❖ Learning algorithms 

• While maximizing generality 
❖ General dynamics and rewards 
❖ Ability to express all courses of behavior 
❖ Minimal commitments to other choices 

• Execution, e.g., hierarchy, interruption, intermixing with 
planning 

• Planning, e.g., incremental, synchronous, trajectory 
based, “utility” problems 

• State abstraction and function approximation 
• Creation/Constructivism

It’s a  
dimensional  

thing



Options – Temporally Abstract Actions

E.g., the docking option: 
   : hand-crafted controller 
   : terminate when docked or charger not visible

Execution is nominally hierarchical (call-and-return)

 An option is a triple, 

is the policy followed during o

is the probability of the option continuing 
(not terminating) in each state

...there are also “semi-Markov” options 
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Options are like actions

Just as a state has a set of actions, 
It also has a set of options,

Just as we can have a flat policy, over actions, 
We can have a hierarchical policy, over options,    

To execute h in s : 
select option o with probability 
follow o until it terminates, in s’ 
then choose a next option with probability                again, and so on 

Every hierarchical policy determines a flat policy   

Even if all the options are Markov, f (h) is usually not Markov 

Actions are a special case of options
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Value Functions with  
Temporal Abstraction

A new set of optimization problems

Now consider a limited set of options  
and hierarchical policies that choose only from them

O

Define value functions for hierarchical policies and options:
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Options define a 
Semi-Markov Decision Process (SMDP) 

overlaid on the MDP

Discrete time 
Homogeneous discount

Continuous time 
Discrete events 
Interval-dependent discount

Discrete time 
Overlaid discrete events 
Interval-dependent discount

A discrete-time SMDP overlaid on an MDP. 
Can be analyzed at either level.

MDP

SMDP

Options
over MDP

State

Time



Models of the Environment 
with Temporal Abstraction

Planning requires models of the consequences of action 

The model of an action has a reward part and a state transition part: 

As does the model of an option:

r(s, a) = E[Rt+1 | St = s,At = a]

p(s0|s, a) = Pr{St+1 = s0 | St = s,At = a}
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Bellman Equations with Temporal Abstraction

For policy-specific value functions:
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Planning with Temporal Abstraction

Reduces to conventional value iteration if 

Initialize: 

Iterate:
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Rooms Example

o2

HALLWAYS

o1

8 multi-step options

up

down

rightleft

(to each room's 2 hallways)
G2

4 stochastic 
primitive actions

Fail 33% 
of the time 

G1

Target
HallwayPolicy of  

one option:

Sutton, Precup, 

& Singh, 1999

γ = .9

All rewards zero, 
except +1 into goal



Planning is much faster with Temporal Abstraction

Iteration #0 Iteration #1 Iteration #2

with cell-to-cell
primitive actions

Iteration #0 Iteration #1 Iteration #2

with room-to-room
options

V(goal )=1

V(goal )=1

Without TA

With TA



Temporal Abstraction helps even with Goal≠Subgoal 
given both primitive actions and options

Iteration #1Initial values Iteration #2

Iteration #3 Iteration #4 Iteration #5



Iteration #1Initial values Iteration #2

Iteration #3 Iteration #4 Iteration #5why?

Temporal Abstraction helps even with Goal≠Subgoal 
given both primitive actions and options



Temporal abstraction also speeds learning 
about path-to-goal



SMDP Theory Provides a lot of this 

      

• Policies over options :  µ :S ×O a [0,1]
• Value functions over options :  V µ (s),Qµ (s,o),VO

*(s),QO
* (s,o)

• Learning methods :  Bradtke &  Duff (1995), Parr (1998)
• Models of options
• Planning methods :  e.g. value iteration,  policy iteration, Dyna...
• A coherent theory of learning and planning with courses of 
  action at variable time scales, yet at the same level

But not all. 
The most interesting issues are beyond SMDPs...

Hierarchical policies over options: h(o|s)
vh(s), qh(s, o), v

O
⇤ (s), q

O
⇤ (s, o)

: r(s, o), p(s0|s, o)



Outline

• The RL (MDP) framework 

• The extension to temporally abstract “options” 
❖ Options and Semi-MDPs 
❖ Hierarchical planning and learning 

• Rooms example 

• Between MDPs and Semi-MDPs 
❖ Improvement by interruption (including Spy plane demo)  
❖ A taste of  

• Intra-option learning 
• Subgoals for learning options 
• RoboCup soccer demo



Interruption

Idea: We can do better by sometimes interrupting ongoing options 
 - forcing them to terminate before     says to  

Theorem: For any hierarchical policy 
                 suppose we interrupt its options one or more times, t, 
                 when the action we are about to take o, is such that

�
o

h : O⇥ S ! [0, 1],

qh(St, o) < qh(St, h(St))

to obtain h’, 

Then h’ ≥ h  (it attains more or equal reward everywhere)

Application: Suppose we have determined      and thus 
                    Then h’ is guaranteed better than 
                    and is available with no further computation

qO⇤ h = hO
⇤

hO
⇤



range (input set) of each
run-to-landmark controller

landmarks

S

G

Landmarks Task

Task:  navigate from S to G as  
 fast as possible 

4 primitive actions, for taking  
tiny steps up, down, left, right 

7 controllers for going straight 
to each one of the landmarks, 
from within a circular region 
where the landmark is visible 
 

In this task, planning at the level of primitive actions is  
computationally intractable, we need the controllers



S

G

SMDP Solution
(600 Steps)

Termination-Improved
Solution (474 Steps)

Termination Improvement for Landmarks Task 

Allowing early termination based on 
models improves the value function at 
no additional cost!



Spy Plane Example

• Mission: Fly over (observe) most 
valuable sites and return to base 

• Stochastic weather affects 
observability (cloudy or clear) of sites 

• Limited fuel 
• Intractable with classical optimal 

control methods 
• Temporal scales: 

❖ Actions: which direction to fly now 
❖ Options: which site to head for  

• Options compress space and time 
❖ Reduce steps from ~600 to ~6 

❖ Reduce states from ~1010 to ~106

10

50

50

50

100

25

15 (reward)

5

25

8

Base
100 decision steps

options

(mean time between
     weather changes)

any state ~1010
sites only ~106

q

O
⇤ (s, o) = r(s, o) +

X

s0

p(s0|s, o)vO⇤ (s0)



Spy Drone



30

40

50

60

TI SMDP Static

Spy Plane Example (Results) 

• SMDP planner: 
❖ Assumes options followed to 

completion 
❖ Plans optimal SMDP solution 

• SMDP planner with interruption 
❖ Plans as if options must be 

followed to completion 
❖ But actually takes them for only 

one step 
❖ Re-picks a new option on every 

step 
• Static planner: 

❖ Assumes weather will not change 
❖ Plans optimal tour among clear 

sites 
❖ Re-plans whenever weather 

changes

Low Fuel

High Fuel

Expected Reward/Mission

Temporal abstraction finds 
better approximation than 
static planner, with little 
more computation than 
SMDP planner

SMDP 
Planner

Static 
Re-planner

SMDP  
planner  

with  
interruption



Outline

• The RL (MDP) framework 

• The extension to temporally abstract “options” 
❖ Options and Semi-MDPs 
❖ Hierarchical planning and learning 

• Rooms example 

• Between MDPs and Semi-MDPs 
❖ Improvement by interruption (including Spy plane demo)  
❖ A taste of  

• Intra-option learning 
• Subgoals for learning options 
• RoboCup soccer demo



Intra-Option Learning Methods  
for Markov Options

Proven to converge to correct values, under same assumptions  
as 1-step Q-learning

Idea: take advantage of each fragment of experience
SMDP Q-learning: 

• execute option to termination, keeping track of reward along  
 the way 

• at the end, update only the option taken, based on reward and 
 value of state in which option terminates

Intra-option Q-learning: 
• after each primitive action, update all the options that could have  
    taken that action, based on the reward and the expected value 
    from the next state on



Intra-Option Learning Methods  
for Markov Options

Proven to converge to correct values, under same assumptions  
as 1-step Q-learning

Idea: take advantage of each fragment of experience

Intra-Option Learning: after each primitive action, update all the options  
                                    that could have taken that action

SMDP Learning: execute option to termination,then update only the  
       option taken



Returning to the rooms example…

o2

HALLWAYS

o1

8 multi-step options

up

down

rightleft

(to each room's 2 hallways)
G2

4 stochastic 
primitive actions

Fail 33% 
of the time 

G1

Target
HallwayPolicy of  

one option:

Sutton, Precup, 

& Singh, 1999

γ = .9

All rewards zero, 
except +1 into goal



Intra-Option Value Learning 
in the Rooms Example

 Intra-option methods learn correct values without ever  
taking the options! SMDP methods are not applicable here

Random start, goal in right hallway, random actions
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-1

0

0 10001000 6000 2000 3000 4000 5000 6000
EpisodesEpisodes

Option
values

Average
value of

greedy policy

Learned value

Learned value

Upper
hallway
option

Left
hallway
option

True value

True value-4

-3

-2

1 10 100

Value of Optimal Policy



Intra-Option Model Learning

Intra-option methods work much faster than SMDP methods

Random start state, no goal, pick randomly among all options

Options executed

State
prediction

error
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Options Depend on Outcome Values

Large Outcome Values Small Outcome Values 

Learned Policy: Avoids Negative 
                          Rewards

Learned Policy: Shortest Paths

Small negative rewards on each step

g = 10 g = 1

g = 0 g = 0



Summary: Benefits of Options

• Transfer of knowledge 
❖ Solutions to sub-tasks can be saved and reused 
❖ Domain knowledge can be provided as options and subgoals 

• Potentially much faster learning and planning 
❖ By representing action at an appropriate temporal scale 

• Models of options are a form of knowledge representation 
❖ Expressive 
❖ Clear 
❖ Suitable for learning and planning 

• Much more to learn than just one policy, one set of values 
❖ A framework for “constructivism” or “continual learning” – for 

finding models of the world that are useful for rapid planning and 
learning



Conclusions

• We have come a long way toward linking human-level choices to 
microscopic actions 
❖ Temporally abstract facts, and estimates of them - knowledge! 
❖ A theory of how to combine known subcontrollers (behaviors) 
❖ Beginnings of how to learn them efficiently and without interference 

• Resolution of the “subgoal credit-assignment” problem 

• We have shown how the high-level can mirror the low 
❖ It’s all choices, states, and values 
❖ A minimal extension of existing RL/MDP ideas 

• The state assumption remains a problem 
❖ Someday options may revolutionize our notion of state and of 

perception


