
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

width
of backup

height
(depth)

of backup

Temporal-
difference

learning

Dynamic
programming

Monte
Carlo

...

Exhaustive
search

1

Unified View

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

Chapter 8: Planning and Learning

To think more generally about uses of environment models
Integration of (unifying) planning, learning, and execution
“Model-based reinforcement learning”

Objectives of this chapter:

Paths to a policy

Model

Value
function

Policy

Experience

Direct RL
methods

Direct
planning

Greedification

Model
learning

SimulationEnvironmental
interaction

Model-based RL

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 4

Models

Model: anything the agent can use to predict how the
environment will respond to its actions
Distribution model: description of all possibilities and their
probabilities

e.g., p(s’, r | s, a) for all s, a, s’, r
Sample model, a.k.a. a simulation model

produces sample experiences for given s, a
allows reset, exploring starts
often much easier to come by

Both types of models can be used to produce hypothetical
experience

ˆ

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Planning: any computational process that uses a model to
create or improve a policy

Planning in AI:
state-space planning
plan-space planning (e.g., partial-order planner)

We take the following (unusual) view:
all state-space planning methods involve computing
value functions, either explicitly or implicitly
they all apply backups to simulated experience

5

Planning

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 6

Planning Cont.

Random-Sample One-Step Tabular Q-Planning

Classical DP methods are state-space planning methods
Heuristic search methods are state-space planning methods
A planning method based on Q-learning:

186CHAPTER 8. PLANNING AND LEARNING WITH TABULAR METHODS

Do forever:
1. Select a state, S 2 S, and an action, A 2 A(s), at random
2. Send S,A to a sample model, and obtain

a sample next reward, R, and a sample next state, S0

3. Apply one-step tabular Q-learning to S,A,R, S

0:
Q(S,A) Q(S,A) + ↵[R+ �max

a

Q(S0
, a)�Q(S,A)]

Figure 8.1: Random-sample one-step tabular Q-planning

steps may be the most e�cient approach even on pure planning problems if
the problem is too large to be solved exactly.

8.2 Integrating Planning, Acting, and Learn-
ing

When planning is done on-line, while interacting with the environment, a num-
ber of interesting issues arise. New information gained from the interaction
may change the model and thereby interact with planning. It may be desirable
to customize the planning process in some way to the states or decisions cur-
rently under consideration, or expected in the near future. If decision-making
and model-learning are both computation-intensive processes, then the avail-
able computational resources may need to be divided between them. To begin
exploring these issues, in this section we present Dyna-Q, a simple architec-
ture integrating the major functions needed in an on-line planning agent. Each
function appears in Dyna-Q in a simple, almost trivial, form. In subsequent
sections we elaborate some of the alternate ways of achieving each function
and the trade-o↵s between them. For now, we seek merely to illustrate the
ideas and stimulate your intuition.

Within a planning agent, there are at least two roles for real experience: it
can be used to improve the model (to make it more accurately match the real
environment) and it can be used to directly improve the value function and
policy using the kinds of reinforcement learning methods we have discussed in
previous chapters. The former we call model-learning , and the latter we call
direct reinforcement learning (direct RL). The possible relationships between
experience, model, values, and policy are summarized in Figure 8.2. Each
arrow shows a relationship of influence and presumed improvement. Note how
experience can improve value and policy functions either directly or indirectly
via the model. It is the latter, which is sometimes called indirect reinforcement
learning, that is involved in planning.

Paths to a policy

Model

Value
function

Policy

Experience

Direct RL
methods

Direct
planning

Greedification

Model
learning

SimulationEnvironmental
interaction

Dyna

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 8

Learning, Planning, and Acting

Two uses of real experience:
model learning: to improve
the model
direct RL: to directly
improve the value function
and policy

Improving value function and/or
policy via a model is sometimes
called indirect RL. Here, we
call it planning.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 9

Direct (model-free) vs. Indirect (model-based) RL

Indirect methods:
make fuller use of
experience: get
better policy with
fewer environment
interactions

Direct methods
simpler
not affected by bad
models

But they are very closely related and can be usefully combined:

planning, acting, model learning, and direct RL can occur

simultaneously and in parallel

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 10

The Dyna Architecture

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 11

The Dyna-Q Algorithm

model learning

planning

direct RL

8.2. INTEGRATING PLANNING, ACTING, AND LEARNING 189

Initialize Q(s, a) and Model(s, a) for all s 2 S and a 2 A(s)
Do forever:

(a) S current (nonterminal) state
(b) A "-greedy(S,Q)
(c) Execute action A; observe resultant reward, R, and state, S0

(d) Q(S,A) Q(S,A) + ↵[R+ �max
a

Q(S0
, a)�Q(S,A)]

(e) Model(S,A) R,S

0 (assuming deterministic environment)
(f) Repeat n times:

S random previously observed state
A random action previously taken in S

R, S

0 Model(S,A)
Q(S,A) Q(S,A) + ↵[R+ �max

a

Q(S0
, a)�Q(S,A)]

Figure 8.4: Dyna-Q Algorithm. Model(s, a) denotes the contents of the model
(predicted next state and reward) for state–action pair s, a. Direct reinforce-
ment learning, model-learning, and planning are implemented by steps (d),
(e), and (f), respectively. If (e) and (f) were omitted, the remaining algorithm
would be one-step tabular Q-learning.

Example 8.1: Dyna Maze Consider the simple maze shown inset in
Figure 8.5. In each of the 47 states there are four actions, up, down, right, and
left, which take the agent deterministically to the corresponding neighboring
states, except when movement is blocked by an obstacle or the edge of the
maze, in which case the agent remains where it is. Reward is zero on all
transitions, except those into the goal state, on which it is +1. After reaching
the goal state (G), the agent returns to the start state (S) to begin a new
episode. This is a discounted, episodic task with � = 0.95.

The main part of Figure 8.5 shows average learning curves from an ex-
periment in which Dyna-Q agents were applied to the maze task. The initial
action values were zero, the step-size parameter was ↵ = 0.1, and the explo-
ration parameter was " = 0.1. When selecting greedily among actions, ties
were broken randomly. The agents varied in the number of planning steps,
n, they performed per real step. For each n, the curves show the number of
steps taken by the agent in each episode, averaged over 30 repetitions of the
experiment. In each repetition, the initial seed for the random number gen-
erator was held constant across algorithms. Because of this, the first episode
was exactly the same (about 1700 steps) for all values of n, and its data are
not shown in the figure. After the first episode, performance improved for all
values of n, but much more rapidly for larger values. Recall that the n = 0
agent is a nonplanning agent, utilizing only direct reinforcement learning (one-
step tabular Q-learning). This was by far the slowest agent on this problem,
despite the fact that the parameter values (↵ and ") were optimized for it. The

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 12

Dyna-Q on a Simple Maze

rewards = 0 until goal, when =1

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 13

Dyna-Q Snapshots: Midway in 2nd Episode

S

G

S

G

WITHOUT PLANNING (N=0) WITH PLANNING (N=50)n n

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14

When the Model is Wrong:  
 Blocking Maze

The changed environment is harder

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 15

When the Model is Wrong:  
 Shortcut Maze

The changed environment is easier

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 16

What is Dyna-Q ?

Uses an “exploration bonus”:
Keeps track of time since each state-action pair was
tried for real
An extra reward is added for transitions caused by
state-action pairs related to how long ago they were
tried: the longer unvisited, the more reward for visiting

The agent actually “plans” how to visit long unvisited
states

+

194CHAPTER 8. PLANNING AND LEARNING WITH TABULAR METHODS

cial “bonus reward” is given on simulated experiences involving these actions.
In particular, if the modeled reward for a transition is R, and the transition
has not been tried in ⌧ time steps, then planning backups are done as if that
transition produced a reward of R + 

p
⌧ , for some small . This encour-

ages the agent to keep testing all accessible state transitions and even to plan
long sequences of actions in order to carry out such tests. Of course all this
testing has its cost, but in many cases, as in the shortcut maze, this kind of
computational curiosity is well worth the extra exploration.

Exercise 8.2 Why did the Dyna agent with exploration bonus, Dyna-Q+,
perform better in the first phase as well as in the second phase of the blocking
and shortcut experiments?

Exercise 8.3 Careful inspection of Figure 8.8 reveals that the di↵erence
between Dyna-Q+ and Dyna-Q narrowed slightly over the first part of the
experiment. What is the reason for this?

Exercise 8.4 (programming) The exploration bonus described above ac-
tually changes the estimated values of states and actions. Is this necessary?
Suppose the bonus 

p
⌧ was used not in backups, but solely in action selection.

That is, suppose the action selected was always that for which Q(S, a)+

p
⌧

Sa

was maximal. Carry out a gridworld experiment that tests and illustrates the
strengths and weaknesses of this alternate approach.

8.4 Prioritized Sweeping

In the Dyna agents presented in the preceding sections, simulated transitions
are started in state–action pairs selected uniformly at random from all pre-
viously experienced pairs. But a uniform selection is usually not the best;
planning can be much more e�cient if simulated transitions and backups are
focused on particular state–action pairs. For example, consider what happens
during the second episode of the first maze task (Figure 8.6). At the beginning
of the second episode, only the state–action pair leading directly into the goal
has a positive value; the values of all other pairs are still zero. This means
that it is pointless to back up along almost all transitions, because they take
the agent from one zero-valued state to another, and thus the backups would
have no e↵ect. Only a backup along a transition into the state just prior to
the goal, or from it into the goal, will change any values. If simulated transi-
tions are generated uniformly, then many wasteful backups will be made before
stumbling onto one of the two useful ones. As planning progresses, the region
of useful backups grows, but planning is still far less e�cient than it would
be if focused where it would do the most good. In the much larger problems

time since last visiting
the state-action pair

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 17

Prioritized Sweeping

Which states or state-action pairs should be generated
during planning?
Work backwards from states whose values have just
changed:

Maintain a queue of state-action pairs whose values
would change a lot if backed up, prioritized by the size
of the change
When a new backup occurs, insert predecessors
according to their priorities
Always perform backups from first in queue

Moore & Atkeson 1993; Peng & Williams 1993
improved by McMahan & Gordon 2005; Van Seijen 2013

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 18

Prioritized Sweeping196CHAPTER 8. PLANNING AND LEARNING WITH TABULAR METHODS

Initialize Q(s, a), Model(s, a), for all s, a, and PQueue to empty
Do forever:

(a) S current (nonterminal) state
(b) A policy(S,Q)
(c) Execute action A; observe resultant reward, R, and state, S0

(d) Model(S,A) R,S

0

(e) P |R+ �max
a

Q(S0
, a)�Q(S,A)|.

(f) if P > ✓, then insert S,A into PQueue with priority P

(g) Repeat n times, while PQueue is not empty:
S,A first(PQueue)
R,S

0 Model(S,A)
Q(S,A) Q(S,A) + ↵[R+ �max

a

Q(S0
, a)�Q(S,A)]

Repeat, for all S̄, Ā predicted to lead to S:
R̄ predicted reward for S̄, Ā, S
P |R̄+ �max

a

Q(S, a)�Q(S̄, Ā)|.
if P > ✓ then insert S̄, Ā into PQueue with priority P

Figure 8.9: The prioritized sweeping algorithm for a deterministic environ-
ment.

the same structure as the one shown in Figure 8.5, except that they vary
in the grid resolution. Prioritized sweeping maintained a decisive advantage
over unprioritized Dyna-Q. Both systems made at most n = 5 backups per
environmental interaction.

Example 8.5: Rod Maneuvering The objective in this task is to maneuver
a rod around some awkwardly placed obstacles to a goal position in the fewest
number of steps (Figure 8.11). The rod can be translated along its long axis
or perpendicular to that axis, or it can be rotated in either direction around
its center. The distance of each movement is approximately 1/20 of the work
space, and the rotation increment is 10 degrees. Translations are deterministic
and quantized to one of 20⇥ 20 positions. The figure shows the obstacles and
the shortest solution from start to goal, found by prioritized sweeping. This
problem is still deterministic, but has four actions and 14,400 potential states
(some of these are unreachable because of the obstacles). This problem is
probably too large to be solved with unprioritized methods.

Prioritized sweeping is clearly a powerful idea, but the algorithms that have
been developed so far appear not to extend easily to more interesting cases.
The greatest problem is that the algorithms appear to rely on the assumption
of discrete states. When a change occurs at one state, these methods perform
a computation on all the predecessor states that may have been a↵ected. If
function approximation is used to learn the model or the value function, then
a single backup could influence a great many other states. It is not apparent

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 19

Prioritized Sweeping vs. Dyna-Q

Both use n=5 backups per
environmental interaction

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 20

Rod Maneuvering (Moore and Atkeson 1993)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Improved Prioritized Sweeping with Small Backups

Planning is a form of state-space search
a massive computation which we want to control to
maximize its efficiency

Prioritized sweeping is a form of search control
focusing the computation where it will do the most good

But can we focus better?
Can we focus more tightly?
Small backups are perhaps the smallest unit of search work

and thus permit the most flexible allocation of effort

21

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 22

Full and Sample (One-Step) Backups
Full backups

(DP)

Sample backups
(one-step TD)

Value
estimated

V
!
(s)

V*(s)

Q!
(a,s)

Q*(a,s)

s

a

s'

r

policy evaluation

s

a

s'

r

max

value iteration

s

a

r

s'

TD(0)

s,a

a'

s'

r

Q-policy evaluation

s,a

a'

s'

r

max

Q-value iteration

s,a

a'

s'

r

Sarsa

s,a

a'

s'

r

Q-learning

max

vπ

v*

qπ

q*

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 23

Heuristic Search

Used for action selection, not for changing a value function
(=heuristic evaluation function)
Backed-up values are computed, but typically discarded
Extension of the idea of a greedy policy — only deeper
Also suggests ways to select states to backup: smart
focusing:

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 24

Summary

Emphasized close relationship between planning and learning
Important distinction between distribution models and sample
models
Looked at some ways to integrate planning and learning

synergy among planning, acting, model learning
Distribution of backups: focus of the computation

prioritized sweeping
small backups
sample backups
trajectory sampling: backup along trajectories
heuristic search

Size of backups: full/sample/small; deep/shallow

