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More formally, consider the backup applied to state St as a result of the state–
reward sequence, St, Rt+1, St+1, Rt+2, . . . , RT , ST (omitting the actions for simplic-
ity). We know that in Monte Carlo backups the estimate of v⇡(St) is updated in the
direction of the complete return:

Gt
.
= Rt+1 + �Rt+2 + �2Rt+3 + · · · + �T�t�1RT ,

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt(St+2),

where now �2Vt(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 + · · · +
�T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step return:

G(n)
t

.
= Rt+1 + �Rt+2 + �2 + · · · + �n�1Rt+n + �nVt(St+n), 8n � 1. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt(St+n).

The time t + n is called the horizon of the n-step return. If the episode ends
before the horizon is reached, then the truncation in an n-step return e↵ectively
occurs at the episode’s end, resulting in the conventional complete return. In other

words, if t+n � T , then G(n)
t = Gt. Thus, the last n n-step returns of an episode are

always complete returns, and an infinite-step return is always a complete return. This
definition enables us to treat Monte Carlo methods as the special case of infinite-step
targets. All of this is consistent with the tricks for treating episodic and continuing
tasks equivalently that we introduced in Section 3.4. There we chose to treat the
terminal state as a state that always transitions to itself with zero reward. Under
this trick, all n-step returns that last up to or past termination have the same value
as the complete return.

An n-step backup is defined to be a backup toward the n-step return. In the tab-
ular, state-value case, the n-step backup at time t produces the following increment
�t(St) in the estimated value Vt(St):

�t(St)
.
= ↵

h
G(n)

t � Vt(St)
i
, (7.2)
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· · · + �T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step
return:

G(n)
t

.
= Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nVt+n�1(St+n), n � 1, 0  t < T �n. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt+n�1(St+n).
If t + n � T (if the n-step return extends to or beyond termination), then all the
missing terms are taken as zero and the n-step return defined to be equal to the

ordinary full return (G(n)
t

.
= Gt if t + n � T ).

Note that n-step returns for n > 1 involve future rewards and value functions that
are not available at the time of transition from t to t + 1. No real algorithm can use
the n-step return until after it had seen Rt+n and computed Vt+n�1. The first time
these are available to be used is t+n. The natural algorithm for using n-step returns
is thus

Vt+n(St)
.
= Vt+n�1(St) + ↵

h
G(n)

t � Vt+n�1(St)
i
, 0  t < T, (7.2)

while the values of all other states remain unchanged, Vt+n(s) = Vt+n�1(s), 8s 6= St.
We call this algorithm n-step TD. Note that no changes at all are made during the
first n � 1 steps of each episode. To make up for that, an equal number of addition
updates are made at the end of the episode, after termination and before starting
the next episode. Complete pseudocode is given in the box on the next page.

The n-step return uses the value function Vt+n�1 to correct for the missing rewards
beyond Rt+n. An important property of n-step returns is that their expectation is
guaranteed to be a better estimate of v⇡ than Vt+n�1 is, in a worst-state sense. That
is, the worst error of the expected n-step return is guaranteed to be less than or
equal to �n times the worst error under Vt+n�1:

max
s

���E⇡

h
G(n)

t

���St =s
i

� v⇡(s)
���  �n max

s

���Vt+n�1(s) � v⇡(s)
���, (7.3)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that all n-step TD methods
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Forward View of TD(λ)

Look forward from each state to determine update from 
future states and rewards:
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Figure 7.5: The forward or theoretical view. We decide how to update each
state by looking forward to future rewards and states.
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Figure 7.6: Performance of the o↵-line �-return algorithm on a 19-state random
walk task.

way of mixing n-step backups is that there is a simple algorithm—TD(�)—for
achieving it. This is a mechanism issue rather than a theoretical one. In the
next few sections we develop the mechanistic, or backward, view of eligibility
traces as used in TD(�).

Example 7.2: �-return on the Random Walk Task Figure 7.6 shows
the performance of the o↵-line �-return algorithm on the 19-state random walk
task used with the n-step methods in Example 7.1. The experiment was just
as in the n-step case except that here we varied � instead of n. Note that we
get best performance with an intermediate value of �.

Exercise 7.4 The parameter � characterizes how fast the exponential weight-
ing in Figure 7.4 falls o↵, and thus how far into the future the �-return algo-
rithm looks in determining its backup. But a rate factor such as � is sometimes
an awkward way of characterizing the speed of the decay. For some purposes it
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Error-reduction property

Error reduction property of n-step returns

Using this, you can show that n-step methods converge

Maximum error using n-step return Maximum error using V
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where ↵ is a positive step-size parameter, as usual. The increments to the estimated
values of the other states are defined to be zero (�t(s) = 0, 8s 6= St).

We define the n-step backup in terms of an increment, rather than as a direct
update rule as we did in the previous chapter, in order to allow di↵erent ways of
making the updates. In on-line updating, the updates are made during the episode,
as soon as the increment is computed. In this case we write

Vt+1(s) = Vt(s) + �t(s), 8s 2 S. (7.3)

This kind of updating is what we have implicitly assumed in most of the previous two
chapters. In o↵-line updating, on the other hand, the increments are accumulated
“on the side” and are not used to change value estimates until the end of the episode.
In this case, the approximate values Vt(s), 8s 2 S, do not change during an episode
and can be denoted simpty V (s). At the end of the episode, the new value (for the
next episode) is obtained by summing all the increments during the episode. That
is, for an episode starting at time step 0 and terminating at step T , the update at
episode end for any s 2 S, is

V (s) V (s) +
T�1X

t=0

�t(s). (7.4)

You may recall how in Section 6.3 we carried this idea one step further, deferring
the increments until they could be summed over a whole set of episodes, in batch
updating.

For any value function Vt : S ! R, the expected value of the n-step return is
guaranteed to be a better estimate of v⇡ than Vt is, in a worst-state sense. That is,
the worst error under the new estimate is guaranteed to be less than or equal to �n

times the worst error under Vt:

max
s

���E⇡

h
G(n)

t

���St =s
i
� v⇡(s)

���  �n max
s

���Vt(s)� v⇡(s)
���, (7.5)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that on-line and o↵-line TD
prediction methods using n-step backups converge to the correct predictions under
appropriate technical conditions. The n-step TD methods thus form a family of valid
methods, with one-step TD methods and Monte Carlo methods as extreme members.

Nevertheless, n-step TD methods are rarely used because they are inconvenient
to implement. Computing n-step returns requires waiting n steps to observe the
resultant rewards and states. For large n, this can become problematic, particularly
in control applications. The significance of n-step TD methods is primarily for theory
and for understanding related methods that are more conveniently implemented. In
the next few sections we use the idea of n-step TD methods to explain and justify
eligibility trace methods.

Example 7.1: n-step TD Methods on the Random Walk Consider using
n-step TD methods on the random walk task described in Example 6.2 and shown
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n-step TD

Recall the n-step return:

Of course, this is not available until time t+n

The natural algorithm is thus to wait until then:

This is called n-step TD
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state, which we call the one-step return:

G(1)
t

.
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where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt+1(St+2),

where now �2Vt+1(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 +
· · · + �T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step
return:

G(n)
t

.
= Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nVt+n�1(St+n), n � 1, 0  t < T �n. (7.1)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt+n�1(St+n).
If t + n � T (if the n-step return extends to or beyond termination), then all the
missing terms are taken as zero and the n-step return defined to be equal to the

ordinary full return (G(n)
t

.
= Gt if t + n � T ).

Note that n-step returns for n > 1 involve future rewards and value functions that
are not available at the time of transition from t to t + 1. No real algorithm can use
the n-step return until after it had seen Rt+n and computed Vt+n�1. The first time
these are available to be used is t+n. The natural algorithm for using n-step returns
is thus

Vt+n(St)
.
= Vt+n�1(St) + ↵

h
G(n)

t � Vt+n�1(St)
i
, 0  t < T, (7.2)

while the values of all other states remain unchanged, Vt+n(s) = Vt+n�1(s), 8s 6= St.
We call this algorithm n-step TD. Note that no changes at all are made during the
first n � 1 steps of each episode. To make up for that, an equal number of addition
updates are made at the end of the episode, after termination and before starting
the next episode. Complete pseudocode is given in the box on the next page.

The n-step return uses the value function Vt+n�1 to correct for the missing rewards
beyond Rt+n. An important property of n-step returns is that their expectation is
guaranteed to be a better estimate of v⇡ than Vt+n�1 is, in a worst-state sense. That
is, the worst error of the expected n-step return is guaranteed to be less than or
equal to �n times the worst error under Vt+n�1:

max
s

���E⇡

h
G(n)

t

���St =s
i

� v⇡(s)
���  �n max

s

���Vt+n�1(s) � v⇡(s)
���, (7.3)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that all n-step TD methods
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� v⇡(s)
���  �n max

s

���Vt+n�1(s) � v⇡(s)
���, (7.3)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that all n-step TD methods
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n-step TD for estimating V ⇡ v⇡

Initialize V (s) arbitrarily, s 2 S

Parameters: step size ↵ 2 (0, 1], a positive integer n
All store and access operations (for St and Rt) can take their index mod n

Repeat (for each episode):
Initialize and store S0 6= terminal
T  1
For t = 0, 1, 2, . . . :
| If t < T , then:
| Take an action according to ⇡(·|St)
| Observe and store the next reward as Rt+1 and the next state as St+1

| If St+1 is terminal, then T  t + 1
| ⌧  t� n + 1 (⌧ is the time whose state’s estimate is being updated)
| If ⌧ � 0:

| G 
Pmin(⌧+n,T )

i=⌧+1 �i�⌧�1Ri

| If ⌧ + n < T , then: G G + �nV (S⌧+n) (G(n)
⌧ )

| V (S⌧ ) V (S⌧ ) + ↵ [G� V (S⌧ )]
Until ⌧ = T � 1

converge to the correct predictions under appropriate technical conditions. The n-
step TD methods thus form a family of sound methods, with one-step TD methods
and Monte Carlo methods as extreme members.

Example 7.1: n-step TD Methods on the Random Walk Consider using
n-step TD methods on the random walk task described in Example 6.2 and shown
in Figure 6.2. Suppose the first episode progressed directly from the center state,
C, to the right, through D and E, and then terminated on the right with a return
of 1. Recall that the estimated values of all the states started at an intermediate
value, V (s) = 0.5. As a result of this experience, a one-step method would change
only the estimate for the last state, V (E), which would be incremented toward 1, the
observed return. A two-step method, on the other hand, would increment the values
of the two states preceding termination: V (D) and V (E) both would be incremented
toward 1. A three-step method, or any n-step method for n > 2, would increment
the values of all three of the visited states toward 1, all by the same amount.

Which value of n is better? Figure 7.2 shows the results of a simple empirical test
for a larger random walk process, with 19 states (and with a �1 outcome on the
left, all values initialized to 0), which we use as a running example in this chapter.
Results are shown for n-step TD methods with a range of values for n and ↵. The
performance measure for each parameter setting, shown on the vertical axis, is the
square-root of the average squared error between the predictions at the end of the
episode for the 19 states and their true values, then averaged over the first 10 episodes
and 100 repetitions of the whole experiment (the same sets of walks were used for all
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Random Walk Examples

How does 2-step TD work here?
How about 3-step TD?

6.2. ADVANTAGES OF TD PREDICTION METHODS 135

A B C D E
100000

start

Figure 6.5: A small Markov process for generating random walks.

other words, which method learns faster? Which makes the more e�cient use
of limited data? At the current time this is an open question in the sense
that no one has been able to prove mathematically that one method converges
faster than the other. In fact, it is not even clear what is the most appro-
priate formal way to phrase this question! In practice, however, TD methods
have usually been found to converge faster than constant-↵ MC methods on
stochastic tasks, as illustrated in the following example.

Example 6.2: Random Walk In this example we empirically compare the
prediction abilities of TD(0) and constant-↵ MC applied to the small Markov
process shown in Figure 6.5. All episodes start in the center state, C, and
proceed either left or right by one state on each step, with equal probabil-
ity. This behavior is presumably due to the combined e↵ect of a fixed policy
and an environment’s state-transition probabilities, but we do not care which;
we are concerned only with predicting returns however they are generated.
Episodes terminate either on the extreme left or the extreme right. When an
episode terminates on the right a reward of +1 occurs; all other rewards are
zero. For example, a typical walk might consist of the following state-and-
reward sequence: C, 0,B, 0,C, 0,D, 0,E, 1. Because this task is undiscounted
and episodic, the true value of each state is the probability of terminating
on the right if starting from that state. Thus, the true value of the cen-
ter state is v

⇡

(C) = 0.5. The true values of all the states, A through E, are
1
6 ,

2
6 ,

3
6 ,

4
6 , and 5

6 . Figure 6.6 shows the values learned by TD(0) approaching the
true values as more episodes are experienced. Averaging over many episode
sequences, Figure 6.7 shows the average error in the predictions found by
TD(0) and constant-↵ MC, for a variety of values of ↵, as a function of num-
ber of episodes. In all cases the approximate value function was initialized
to the intermediate value V (s) = 0.5, for all s. The TD method is consis-
tently better than the MC method on this task over this number of episodes.

Exercise 6.1 This is an exercise to help develop your intuition about why
TD methods are often more e�cient than Monte Carlo methods. Consider
the driving home example and how it is addressed by TD and Monte Carlo
methods. Can you imagine a scenario in which a TD update would be better on
average than an Monte Carlo update? Give an example scenario—a description
of past experience and a current state—in which you would expect the TD
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A Larger Example – 19-state Random Walk
7.2. N -STEP SARSA 157

↵

Average
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and first 10 
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256

Figure 7.2: Performance of n-step TD methods as a function of ↵, for various values of n,
on a 19-state random walk task (Example 7.1).

parameter settings). Note that methods with an intermediate value of n worked best.
This illustrates how the generalization of TD and Monte Carlo methods to n-step
methods can potentially perform better than either of the two extreme methods.

Exercise 7.1 Why do you think a larger random walk task (19 states instead of
5) was used in the examples of this chapter? Would a smaller walk have shifted the
advantage to a di↵erent value of n? How about the change in left-side outcome from
0 to �1 made in the larger walk? Do you think that made any di↵erence in the best
value of n?

7.2 n-step Sarsa

How can n-step methods be used not just for prediction, but for control? In this
section we show how n-step methods can be combined with Sarsa in a straightforward
way to produce an on-policy TD control method. The n-step version of Sarsa we call
n-step Sarsa, and the original version presented in the previous chapter we henceforth
call one-step Sarsa, or Sarsa(0).

The main idea is to simply switch states for actions (state–action pairs) and then
use an "-greedy policy. The backup diagrams for n-step Sarsa, shown in Figure 7.3
are like those of n-step TD (Figure 7.1), strings of alternating states and actions,
except that the Sarsa ones all start and end with an action rather a state. We redefine
n-step returns in terms of estimated action values:

G(n)
t , Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nQt+n�1(St+n, At+n), n � 1, 0  t < T �n,

(7.4)

n-step TD
results

An intermediate α is best
An intermediate n is best
Do you think there is an optimal n?  for every task?
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Conclusions Regarding n-step Methods (so far)
Generalize Temporal-Difference and Monte Carlo learning 
methods, sliding from one to the other as n increases

n = 1 is TD as in Chapter 6
n = ∞ is MC as in Chapter 5
an intermediate n is often much better than either extreme
applicable to both continuing and episodic problems

There is some cost in computation
need to remember the last n states
learning is delayed by n steps
per-step computation is small and uniform, like TD

Everything generalizes nicely: error-reduction theory, Sarsa, off-
policy by importance sampling, Expected Sarsa, Tree Backup
The very general n-step Q(𝜎) algorithm includes everything!



It’s much the same for action values
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1-step Sarsa
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa

∞-step Sarsa
aka Monte Carlo

n-step 
Expected Sarsa

Figure 7.3: The spectrum of n-step backups for state-action values. They range from the
one-step backup of Sarsa(0) to the up-until-termination backup of a Monte Carlo method. In
between are the n-step backups, based on n steps of real rewards and the estimated value of
the nth next state–action pair, all appropriately discounted. On the far right is the backup
diagram for n-step Expected Sarsa.

with G(n)
t , Gt if t + n � T . The natural algorithm is then

Qt+n(St, At) , Qt+n�1(St, At)+↵
h
G(n)

t � Qt+n�1(St, At)
i
, 0  t < T, (7.5)

while the values of all other states remain unchanged, Qt+n(s, a) = Qt+n�1(s, a), 8s, a
such that s 6= St or a 6= At. This is the algorithm we call n-step Sarsa. Pseudocode
is shown in the box on the next page, and an example of why it can speed up learning
compared to one-step methods is given in Figure 7.4.

What about Expected Sarsa? The backup diagram for the n-step version of Ex-
pected Sarsa is shown on the far right in Figure 7.3. It consists of a linear string of
sampled actions and states, just as in n-step Sarsa, except that its last element is
a branch over all action possibilities weighted, as always, by their probability under
⇡. This algorithm can be described by the same equation as n-step Sarsa (above)
except with the n-step return defined as

G(n)
t , Rt+1+· · ·+�n�1Rt+n+�n

X

a

⇡(a|St+n)Qt+n�1(St+n, a), n � 1, 0  t  T�n.

(7.6)



On-policy n-step Action-value Methods

Action-value form of n-step return

n-step Sarsa:

n-step Expected Sarsa is the same update with a slightly 
different n-step return:
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.
= Rt+1+�Rt+2+· · ·+�n�1Rt+n+�nQt+n�1(St+n, At+n), n � 1, 0  t < T �n,

(7.4)

154 CHAPTER 7. MULTI-STEP BOOTSTRAPPING

1-step Sarsa
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa

∞-step Sarsa
aka Monte Carlo

n-step 
Expected Sarsa

Figure 7.3: The spectrum of n-step backups for state-action values. They range from the
one-step backup of Sarsa(0) to the up-until-termination backup of a Monte Carlo method. In
between are the n-step backups, based on n steps of real rewards and the estimated value of
the nth next state–action pair, all appropriately discounted. On the far right is the backup
diagram for n-step Expected Sarsa.

with G(n)
t

.
= Gt if t + n � T . The natural algorithm is then

Qt+n(St, At)
.
= Qt+n�1(St, At)+↵

h
G(n)

t � Qt+n�1(St, At)
i
, 0  t < T, (7.5)

while the values of all other states remain unchanged, Qt+n(s, a) = Qt+n�1(s, a), 8s, a
such that s 6= St or a 6= At. This is the algorithm we call n-step Sarsa. Pseudocode
is shown in the box on the next page, and an example of why it can speed up learning
compared to one-step methods is given in Figure 7.4.

What about Expected Sarsa? The backup diagram for the n-step version of Ex-
pected Sarsa is shown on the far right in Figure 7.3. It consists of a linear string of
sampled actions and states, just as in n-step Sarsa, except that its last element is
a branch over all action possibilities weighted, as always, by their probability under
⇡. This algorithm can be described by the same equation as n-step Sarsa (above)
except with the n-step return defined as

G(n)
t

.
= Rt+1+· · ·+�n�1Rt+n+�n

X

a

⇡(a|St+n)Qt+n�1(St+n, a), n � 1, 0  t  T�n.

(7.6)

154 CHAPTER 7. MULTI-STEP BOOTSTRAPPING

1-step Sarsa
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa

∞-step Sarsa
aka Monte Carlo

n-step 
Expected Sarsa

Figure 7.3: The spectrum of n-step backups for state-action values. They range from the
one-step backup of Sarsa(0) to the up-until-termination backup of a Monte Carlo method. In
between are the n-step backups, based on n steps of real rewards and the estimated value of
the nth next state–action pair, all appropriately discounted. On the far right is the backup
diagram for n-step Expected Sarsa.

with G(n)
t

.
= Gt if t + n � T . The natural algorithm is then

Qt+n(St, At)
.
= Qt+n�1(St, At)+↵

h
G(n)

t � Qt+n�1(St, At)
i
, 0  t < T, (7.5)

while the values of all other states remain unchanged, Qt+n(s, a) = Qt+n�1(s, a), 8s, a
such that s 6= St or a 6= At. This is the algorithm we call n-step Sarsa. Pseudocode
is shown in the box on the next page, and an example of why it can speed up learning
compared to one-step methods is given in Figure 7.4.

What about Expected Sarsa? The backup diagram for the n-step version of Ex-
pected Sarsa is shown on the far right in Figure 7.3. It consists of a linear string of
sampled actions and states, just as in n-step Sarsa, except that its last element is
a branch over all action possibilities weighted, as always, by their probability under
⇡. This algorithm can be described by the same equation as n-step Sarsa (above)
except with the n-step return defined as

G(n)
t

.
= Rt+1+· · ·+�n�1Rt+n+�n

X

a

⇡(a|St+n)Qt+n�1(St+n, a), n � 1, 0  t  T�n.

(7.6)



Off-policy n-step Methods by Importance Sampling

Recall the importance-sampling ratio:

We get off-policy methods by weighting updates by this ratio

Off-policy n-step TD:

Off-policy n-step Sarsa:

Off-policy n-step Expected Sarsa:
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7.3 n-step O↵-policy Learning by Importance Sampling

Recall that o↵-policy learning is learning the value function for one policy, ⇡, while
following another policy, µ. Often, ⇡ is the greedy policy for the current action-
value-function estimate, and µ is a more exploratory policy, perhaps "-greedy. In
order to use the data from µ we must take into account the di↵erence between the
two policies, using their relative probability of taking the actions that were taken
(see Section 5.5). In n-step methods, returns are constructed over n steps, so we are
interested in the relative probability of just those n actions. For example, to make
an o↵-policy version of n-step TD,1 the update for time t (actually made at time
t + n) can simply be weighted by ⇢t+n

t ,

Vt+n(St)
.
= Vt+n�1(St) + ↵⇢t+n

t

h
G(n)

t � Vt+n�1(St)
i
, 0  t < T, (7.7)

where ⇢t+n
t , called the importance sampling ratio, is the relative probability under

the two policies of taking the n actions from At to At+n�1 (cf. Eq. 5.3):

⇢t+n
t

.
=

min(t+n�1,T�1)Y

k=t

⇡(Ak|Sk)

µ(Ak|Sk)
. (7.8)

For example, if any one of the actions would never be taken by ⇡ (i.e., ⇡(Ak|Sk) = 0)
then the n-step return should be given zero weight and be totally ignored. On the
other hand, if by chance an action is taken that ⇡ would take with much greater
probability than µ does, then this will increase the weight that would otherwise be
given to the return. This makes sense because that action is characteristic of ⇡
(and therefore we want to learn about it) but is selected rarely by µ and thus rarely
appears in the data. To make up for this we have to over-weight it when it does
occur. Note that if the two policies are actually the same (the on-policy case) then
the importance sampling ratio is always 1. Thus our new update (7.7) generalizes
and can completely replace our earlier n-step TD update. Similarly, our previous
n-step Sarsa update can be completely replaced by its general o↵-policy form:

Qt+n(St, At)
.
= Qt+n�1(St, At)+↵⇢t+n

t+1

h
G(n)

t � Qt+n�1(St, At)
i
, 0  t < T. (7.9)

Note the importance sampling ratio here starts one step later than for n-step TD
(above). This is because here we are updating a state–action pair. We do not have
to care how likely we were to select the action; now that we have selected it we want
to learn fully from what happens, with importance sampling only for subsequent
actions. Pseudocode for the full algorithm is shown in the box on the next page.

The o↵-policy version of n-step Expected Sarsa would use the same update as
above for Sarsa except that the importance sampling ratio would have an additional
one less factor in it. That is, the above equation would use ⇢t+n�1

t+1 instead of ⇢t+n
t+1 ,

1The algorithms presented in this section are the simplest forms of o↵-policy n-step TD. There
may be others based on the ideas developed in Chapter 5, including those of weighted importance
sampling and per-reward importance sampling. This is a good topic for further research.
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h
G(n)

t �Qt+n�1(St, At)
i



Off-policy Learning w/o Importance Sampling: 
The n-step Tree Backup Algorithm 
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A Unifying Algorithm: n-step Q(𝜎)

16

164 CHAPTER 7. MULTI-STEP BOOTSTRAPPING

⇤7.5 A Unifying Algorithm: n-step Q(�)

So far in this chapter we have considered three di↵erent action-value backups, cor-
responding to the first three backup diagrams shown in Figure 7.5. n-step Sarsa has
all sampled transitions, the tree-backup algorithm has all state-to-action transitions
fully branched without sampling, and the n-step Expected Sarsa backup has all sam-
ple transitions except for the last state-to-action ones, which are fully branched with
an expected value. To what extent can these algorithms be unified?

One idea for unification is suggested by the fourth backup diagram in Figure 7.5.
This is the idea that one might decide on a step-by-step basis whether one wanted to
take the action as a sample, as in Sarsa, or consider the expectation over all actions
instead, as in the tree backup. Then, if one chose always to sample, one would obtain
Sarsa, whereas if one chose never to sample, one would get the tree-backup algorithm.
Expected Sarsa would be the case where one chose to sample for all steps except the
last one. And of course there would be many other possibilities, as suggested by the
last diagram in the figure. To increase the possibilities even further we can consider
a continuous variation between sampling and expectation. Let �t 2 [0, 1] denote the
degree of sampling on step t, with � = 1 denoting full sampling and � = 0 denoting
a pure expectation with no sampling. The random variable �t might be set as a
function of the state, action, or state–action pair at time t. We call this proposed
new algorithm n-step Q(�).

⇢

⇢

⇢

⇢

⇢

⇢

⇢

⇢

⇢

� = 1

� = 0

� = 1

� = 0

4-step
Sarsa

4-step
Tree backup

4-step
Expected Sarsa

4-step
 Q(�)

Figure 7.5: The three kinds of n-step action-value backups considered so far in this
chapter (4-step case) plus a fourth kind of backup that unifies them all. The ‘⇢’s
indicate half transitions on which importance sampling is required in the o↵-policy
case. The fourth kind of backup unifies all the others by choosing on a state-by-state
basis whether to sample (�t = 1) or not (�t = 0).

Choose whether to sample or take the expectation on each step with 𝜎(s)
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Conclusions Regarding n-step Methods
Generalize Temporal-Difference and Monte Carlo learning 
methods, sliding from one to the other as n increases

n = 1 is TD as in Chapter 6
n = ∞ is MC as in Chapter 5
an intermediate n is often much better than either extreme
applicable to both continuing and episodic problems

There is some cost in computation
need to remember the last n states
learning is delayed by n steps
per-step computation is small and uniform, like TD

Everything generalizes nicely: error-reduction theory, Sarsa, off-
policy by importance sampling, Expected Sarsa, Tree Backup
The very general n-step Q(𝜎) algorithm includes everything!


