Unified View

width

of backup ’ D .
Temporal- ynamic
difference programming
learning

Exhaustive

Monte ., search

Carlo

Chapter 7:

Multi-step Bootstrapping
Unifying Monte Carlo and TD

key algorithms: n-step TD, n-step Sarsa, Tree-backup, Q(o)

n-step TD Prediction

1-step TD co-step TD
and TD(0) 2-stepTD 3-step TD n-step TD and Monte Carlo

A R G SR
1] !
I [
! !
:

OO0
o—)+—eo—+—eo——e

Idea: Look farther into the
future when you do TD — I
backup (1,2,3, ..., n steps) | O

I ——

Mathematics of n-step TD Returns/Targets

@ Monte Carlo: Gy = Riy1 +yRiy2 + vV Riyzs + -+ 1Ry

o TD: G = Ry +Vi(Sis1)

@ Use V; to estimate remaining return

@ n-step TD:
@ 2 step return: G* = Ry 1 +vRiya + 72 Vi(Sis2)

@ n-step return: G\™ = R,y 1 + vRipo + 72+ + 9" Rysn + 7" Vi(Spin)

with ¢\ =G, ift+n>T

Forward View of TD(\)

@ Look forward from each state to determine update from
future states and rewards:

~

Error-reduction property

@ Error reduction property of n-step returns

max [)‘S —s} —‘UW(S)‘ < A" max“/}(s) — vr($)
S
N AN
Y Y
Maximum error using n-step return Maximum error using V

@ Using this, you can show that n-step methods converge

n-step TD

@ Recall the n-step return:

Gi" = Rea+vRisat +7" Reyn+7"Vian-1(Stan), n 21,0 <t <T—n

@ Of course, this 1s not available until time 7+n

@ The natural algorithm is thus to wait until then:

%—l—n(st) = ‘/t—l—n—l(st) + « ng) — ‘/t—l—n—l(st) 3 0<t<T

@ This 1s called n-step TD

n-step TD for estimating V ~ v,

Initialize V (s) arbitrarily, s € 8
Parameters: step size a € (0, 1], a positive integer n
All store and access operations (for S; and R;) can take their index mod n

Repeat (for each episode):
Initialize and store Sy # terminal
T < o0
Fort=0,1,2,...:
| Ift < T, then:
| Take an action according to (-|.Sy)
| Observe and store the next reward as R;;+; and the next state as Syy1
| If S¢yq is terminal, then T <+t + 1
| 7+ t—n+1 (7 is the time whose state’s estimate is being updated)
|
|
|
|

If 7 > 0:
min(7+n,1') ;_+—
G — Zz 7'—|—1+)’Y 1R
If 7+n<T,then: G+ G+~"V(Srin) (ng))

V(Sr) < V(Sr) + a|G =V (S;)]
Untilm=T -1

Random Walk Examples

0 0 0 0 0 1
B—®=-—@—C0—0=-—6—0

start

@ How does 2-step TD work here?
@ How about 3-step TD?

A Larger Example — 19-state Random Walk

055 5157
05} \-"‘

Average 0.45 -
RMS error
over 19 states 04
and first 10

episodes °%°T

03 F

025

@ An intermediate a 1s best
@ An intermediate n 1S best

@ Do you think there is an optimal n? for every task?

10

Conclusions Regarding n-step Methods (so far)

@ Generalize Temporal-Difference and Monte Carlo learning
methods, sliding from one to the other as n increases

en =11s TD as in Chapter 6
e n = 1s MC as in Chapter 5
@ an intermediate n 1s often much better than either extreme
@ applicable to both continuing and episodic problems
@ There 1s some cost in computation
@ need to remember the last n states
@ learning 1s delayed by n steps
@ per-step computation 1s small and uniform, like TD

@ Everything generalizes nicely: error-reduction theory

11

It’s much the same for action values

12

On-policy n-step Action-value Methods

@ Action-value form of n-step return

G = R 4+9Rea+ 49" Riyn+7"Qttn1(Stins Arin)

@ n-step Sarsa:
Qi+n(St, At) = Qi4n—1(St, A¢) + o {ng) — Qt+n—1(5tw4t)}

e n-step Expected Sarsa is the same update with a slightly
different n-step return:

ng) = R+ A+ R 7" Z m(alSt4n) Qt4n—1(St4n, a)

13

Off-policy n-step Methods by Importance Sampling

e Recall the importance-sampling ratio:
min(t+n—1,T—1
S = (1l 7 (AnlSi)
! (Ag|Sk)

k=t

e We get off-policy methods by weighting updates by this ratio
e Off-policy n-step TD:

Vitn(St) = Vign—1(St) + api™ [ng) — V%+n—1(5t)]

e Off-policy n-step Sarsa:
Qi1n(St, At) = Qryn—1(S, At)JrOéPiﬂL [G(n) Qt+n—1(5t, At)}

e Off-policy n-step Expected Sarsa:

Qtn(St, Ar) = Qryn—1(S:, Ar) + apii = 1[G — Quin— 1(51571475)}

14

Off-policy Learning w/o Importance Sampling:
The n-step Tree Backup Algorithm

3-step TB

Expected Sarsa
and 1-step Tree Backup 2-step Tree Backup

.StaAt 'St7At

+7 T(At1]St41) (Rt+2 +7 > m(d[S112)Q(Si12, a/))

15

A Unifying Algorithm: n-step Q(o)

©
NN
—t
x'o
N
oOF
/\,_.,
\./-O

[]
S 7
H>:>-~o- S
° S S
I
o

on
O]
—
=
o
©
L
o
o =
N o

<—e 22
® ° @
CD 1
2
° ® 2
I
—_

I
—_

0= +—eo"—eo-—e
o
>)«—o>)
o
> o D—o—D+—eo)—e 8$
I

Choose whether to sample or take the expectation on each step with o(s)
16

Conclusions Regarding n-step Methods

@ Generalize Temporal-Difference and Monte Carlo learning
methods, sliding from one to the other as n increases

en =11s TD as in Chapter 6
e n = 1s MC as in Chapter 5
@ an intermediate n 1s often much better than either extreme
@ applicable to both continuing and episodic problems
@ There 1s some cost in computation
@ need to remember the last n states
@ learning 1s delayed by n steps
@ per-step computation 1s small and uniform, like TD

e Everything generalizes nicely: error-reduction theory, Sarsa, off-
policy by importance sampling, Expected Sarsa, Tree Backup

@ The very general n-step Q(o) algorithm includes everything!
17

