Chapter 6: Temporal Difference Learning

Objectives of this chapter:

Introduce Temporal Difference (TD) learning
Focus first on policy evaluation, or prediction, methods

Y
Y
@ Compare efficiency of TD learning with MC learning
Y

Then extend to control methods
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cf. Dynamic Programming
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Simple Monte Carlo

V(S,) < V(S)+a|G, -V(S,)]
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Simplest TD Method

V(S,) < V(S)+a|R, +7V(S,)-V(S)]
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TD methods bootstrap and sample

@ Bootstrapping: update involves an estimate
@ MC does not bootstrap
@ DP bootstraps
@ TD bootstraps
@ Sampling: update does not involve an
expected value
@ MC samples
@ DP does not sample
@ TD samples
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TD Prediction

Policy Evaluation (the prediction problem):
for a given policy m, compute the state-value function vr

Recall: Simple every-visit Monte Carlo method:

V(Sy) = V() + |G = V(S))]

target: the actual return after time ¢

The simplest temporal-difference method TD(0):

V(S & V() + | Ry +9V(Siia) = V(S0
|

target: an estimate of the return
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Example: Driving Home

Elapsed Time  Predicted Predicted

State (minutes) Time to Go Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 35
2ndary road, behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43
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Driving Home

Changes recommended by
Monte Carlo methods (a=1)

45 -
___Aactual outcome_____
A
. 40 4
Predicted
total
travel  35.
time
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leaving reach exiting 2ndary home arrive
office car highway road street home

Situation
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Advantages of TD Learning

@ TD methods do not require a model of the environment,
only experience

@ TD, but not MC, methods can be fully incremental
@ You can learn before knowing the final outcome
© Less memory
@ Less peak computation
@ You can learn without the final outcome
@ From incomplete sequences

@ Both MC and TD converge (under certain assumptions to
be detailed later), but which is faster?
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Random Walk Example

. 0 C ) 0 <L> . 0 . 0 . 1 _

Estimated
value

Values learned by TD after
various numbers of episodes

V(St) <+ V(St) +« [Rt—l—l + 7V (Sty1) — V(St)}
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TD and MC on the Random Walk
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Data averaged over
100 sequences of episodes
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Batch Updating in TD and MC methods

Batch Updating: train completely on a finite amount of data,
e.g., train repeatedly on 10 episodes until convergence.

Compute updates according to TD or MC, but only update
estimates after each complete pass through the data.

For any finite Markov prediction task, under batch updating,
TD converges for sufficiently small .

Constant-oo MC also converges under these conditions, but to
a difference answer!
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Random Walk under Batch Updating

25 —
BATCH TRAINING

2 —
RMS error, .15-
averaged
over states .14
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0 T T T 1

0 25 50 75 100,
Walks / Episodes

After each new episode, all previous episodes were treated as a batch,
and algorithm was trained until convergence. All repeated 100 times.
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You are the Predictor

Suppose you observe the following 8 episodes:

A.0.B.0
B, 1

5.1 V(B)?

o (B)? 0.75
B. 1 V(A)? 07
B, 1

B, 1

B. 0

Assume Markov states, no discounting (y = 1)
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You are the Predictor

r=20

T V(A)? 0.75

A
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You are the Predictor

@ The prediction that best matches the training data 1s V(A)=0
@ This minimizes the mean-square-error on the training set
@ This 1s what a batch Monte Carlo method gets

@ If we consider the sequentiality of the problem, then we
would set V(A)=.75

@ This 1s correct for the maximum likelihood estimate of a
Markov model generating the data

@ 1i.e,1f we do a best fit Markov model, and assume it 1s
exactly correct, and then compute what it predicts (how?)

@ This is called the certainty-equivalence estimate
@ This 1s what TD gets
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Summary so far

@ Introduced one-step tabular model-free T'D methods

@ These methods bootstrap and sample, combining aspects of
DP and MC methods

@ TD methods are computationally congenial

@ If the world is truly Markov, then TD methods will learn
faster than MC methods

@ MC methods have lower error on past data, but higher error
on future data
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Learning An Action-Value Function

Estimate gr for the current policy 7

Rt+1 m Rt+2 m Rt+3
- — S, —e Si ® S+ ° (Sis fF—@— - -
t St,At U St+l)At+l U St+2;At+2 " St+3’At+3

After every transition from a nonterminal state, S, , do this:

0(S,.A) < Q(S,.A) +a[R,, +70(S,,,.A,) - O(S,.A)]
If S,,, 1s terminal, then define Q(S,,,,A,,,) =0

r+1
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Sarsa: On-Policy TD Control

Turn this into a control method by always updating the
policy to be greedy with respect to the current estimate:

Initialize Q(s,a),Vs € 8, a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A" from S’ using policy derived from @Q (e.g., e-greedy)
Q(S,4) < Q(S, A) + a[R+7Q(5", A") — Q(S, A)]
S« S A+ Al

until S is terminal
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Windy Gridworld

S G +

standard
moves

Windz O O O 1 1 1 2 2 1 0

undiscounted, episodic, reward = —1 until goal
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Results of Sarsa on the Windy Gridworld
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Q-Learning: Off-Policy TD Control

One-step Q-learning: I
Q(St, Ar) < Q(St, At) + « {Rt—i—l -+ Y max Q(St+1,a) — Q(St, At)} /%\

Initialize Q(s,a),Vs € §,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S, A) + a|R + v max, QS a) — Q(S, A)]
S« 5

until S is terminal
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Cliffwalking
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Expected Sarsa

@ Instead of the sample value-of-next-state, use the expectation!

Q(St, A) = Q(St, Ar) + o :Rt+1 +YE[Q(Si41, At41) | Stqa] — Q(Sr, At)}
< Q(St, At) + a :Rt—l—l + ’VZW(CL\S(*,H)Q(SHL a) — Q(St; At)}

I I
A\ 7\

Q-learning Expected Sarsa

@ Expected Sarsa’s performs better than Sarsa (but costs more)
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van Seijen, van Hasselt, Whiteson, & Wiering 2009

Performance on the Cliff-walking Task
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Off-policy Expected Sarsa

© Expected Sarsa generalizes to arbitrary behavior policies u

@ 1n which case it includes Q-learning as the special case in
which m 1s the greedy policy

Q(St, Ay) + Q(St, At) + « :Rt+1 + YE[Q(St41, Atr1) | Ser1] — Q(Sy, At)}

QS A + | Repa +7 ) m(alSi1)Q(S41,0) — Q(S, A

e ] !
A /N

Nothing
changes
here

Q-learning Expected Sarsa

@ This idea seems to be new
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Maximization Bias Example
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Hado van Hasselt 2010
Double Q-Learning
Train 2 action-value functions, Q1 and Q>
Do Q-learning on both, but
® never on the same time steps (Q1 and Q> are indep.)
® pick Q1 or (> at random to be updated on each step
If updating Q1, use Q- for the value of the next state:

Q1(St, At) < Q1(St, Ar) +a <Rt+1 +Q2(St1, argmax Q1 (Spv1,a)) — Q1(Sk, At))

Action selections are (say) e-greedy with respect to the sum
of O1 and O»



Hado van Hasselt 2010

Double Q-Learning

Initialize Q1(s,a) and Q2(s,a),Vs € 8,a € A(s), arbitrarily
Initialize Q1 (terminal-state,-) = Qs (terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @1 and Qs (e.g., e-greedy in Q1 + Q2)
Take action A, observe R, S’
With 0.5 probabilility:

Q1(8, 4) = Qu(S, 4) + a (R +1Qx(S', argmax, Q1 (5", a)) = Q1(S, 4) )
else:

Qa(8, 4) = Qa(S, 4) + a( R +1Q1 (8, argmax, Q(S', a)) — Qa(S, 4) )
S <+ 5

until S is terminal




Example of Maximization Bias
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Afterstates

@ Usually, a state-value function evaluates states in which
the agent can take an action.

@ But sometimes it 1s useful to evaluate states after agent has
acted, as 1n tic-tac-toe.

@ Why is this useful?

@ What is this in general?
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Summary

@ Introduced one-step tabular model-free T'D methods

@ These methods bootstrap and sample, combining aspects of
DP and MC methods

@ TD methods are computationally congenial

@ If the world is truly Markov, then TD methods will learn
faster than MC methods

@ MC methods have lower error on past data, but higher error
on future data

@ Extend prediction to control by employing some form of GPI
@ On-policy control: Sarsa, Expected Sarsa
@ Off-policy control: Q-learning, Expected Sarsa

@ Avoiding maximization bias with Double Q-learning
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Unified View
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