
Project p1: Blackjack (in python)

Due Monday, 7th of November by 2 PM in Gradescope
In this assignment you will gain experience programming a learning agent and its 
interaction with an MDP. We will use a blackjack MDP similar to that described in 
Examples 5.1 and 5.3 in the book. 
One difference is that we introduce a special additional state corresponding to the 
beginning of a blackjack game. There is only one action available in that state, and it 
results in a transition to one of the regular states treated in the book . We include this 
initial state so that you can learn its value, which will be the overall value for playing the 
game. The initial state is numbered 0, and the regular states are numbered 1-180. (All 
actions are the same in state 0.) 
There are 180 regular states because they correspond to a 3-tuple: (playerSum, 
dealerShowing,  usableAce), with the player sum between 12 and 20, the dealer 
showing between 1 and 10, and usableAce being binary. That is, a second difference 
from the blackjack MDP in the book is that here the player sum portion of the state is 
never 21. On 21 the player is assumed to stick and is not even given a chance to 
choose an action, just as on player sums less than 12 the player is assumed to hit. 
Thus, an episode’s state sequence consists of 0 followed by some states numbered 
between 1 and 180, then finally the terminal state represented by the Python value 
False. The two actions, permitted in all non-terminal states, are 0 for Stick and 1 for Hit.
Your task is to implement Double Q-learning applied to this problem. Basically, you have 
to make a python implementation of the boxed algorithm on page 143 of the Sutton and 
Barto textbook. 
We provide the blackjack MDP in the form of a single file blackjack.py (in the dropbox), 
which you will download and place in the directory in which you are working. Do not 
change this file. You should then have access to the three functions:  

• blackjack.init(), which takes no arguments and returns the initial state (0). 
This method starts a new game of blackjack 

• blackjack.sample(S,A)  --> (R,S’), which returns a tuple of two integers, the 
first of which is a sample reward and the second of which is a sample next state 
from nonterminal state S given that action A is taken. Arrival in the terminal state is 
indicated by the next state being the Python value False. In our version of 
blackjack, there are exactly two actions (0 and 1, for Stick and Hit) possible in all 
nonterminal states.

• blackjack.printPolicy(policy), which takes a deterministic function from 
{1,...,180} to {0,1} specifying the action to take in each non-terminal state and 
prints out a representation of the corresponding policy.



• blackjack.printPolicyToFile(policy), which doe the same thing as 
blackjack.printPolicy(policy), however, instead of printing the policy to the 
screen, outputs the policy in a file named policy.txt.

Here are some Python hints that may be useful in doing this project: 1) there are 
NumPy functions available called rand,  randint, max, and argmax  which are also 
included in the PyLab package; 2) you can make a 10x10 2-dimensional array X of 
small random numbers with X = 0.00001 * rand(10,10) if you use PyLab (You can also 
use numpy.random.random() for the same functionality); 3) you can assign variables 
x, y, and z to the parts of a tuple by x, y, z = tuple, where tuple is a tuple of three 
elements; and 4) there is nothing wrong with global variables and simply putting your 
main code in the file to be executed without bundling it up into a function.
The assignment has three parts:
1. First implement the equiprobable-random policy, run a number episodes and observe 

the returns from the initial state (assuming γ=1). These returns should all be either -1, 
0, or +1, with an average of about -0.3 or so. If they don’t, then you are probably 
doing something wrong. Create this code by modifying the provided file 
randomPolicy.py. Do this by modifying the body of the run function.

2. Now modify the provided DoubleQ.py to implement Double Q-learning with a 
behavior policy that is 𝜀-greedy in the sum of the two action value estimates (don’t 
change the name and input arguments and return values of learn and evaluate 
functions). Set α=0.001 and initialize the action values to small random values. As a 
first check, simply run for many episodes with 𝜀 =1.0 and measure the average return 
as you did in part 1. Obviously, you should get the same average reward as in part 1. 
Now set 𝜀=0.01 and run the training for perhaps 1,000,000 episodes, observing the 
average return every 10,000 episodes, which should increase over episodes as 
learning progresses. Of course, this is the performance of the 𝜀-greedy policy and 
you should be able to do better if you deterministically follow your learned policy 
(greedy in the sum of the two action-value arrays). After learning, print out your 
learned policy using printPolicy. One way to assess the quality of your policy is 
how similar it looks to that given in the textbook. A better way is to try it: Run 
(evaluate) your deterministic learned policy (the greedy policy with 𝜀 =0) for 1,000,000 
(or 10,000,000 if you are going for the extra credit) evaluation episodes without 
learning and report the average return.

3. Now experiment with the settings of α, 𝜀, and the number of episodes to find a setting 
that reliably produces a better policy than that obtained in part 2. Report the settings, 
the final policy (by printPolicyToFile) and the reliable performance level obtained 
by running deterministically as described at the end of part 2. Fill in the provided file 
part3.txt. In it, include the best α,  the  best  𝜀, number of learning episodes used and 
average return for your given parameters, each in a separate line and in the 
mentioned order.

Extra credit will be given to the three students or teams that find the best policies (in 
part 3) by the due date. First, second, and third place will receive extra credit equal to 



10%, 7%, and 4% of the points available on this project. To be eligible for the extra 
credit, you must run your final policy for 10,000,000 episodes, then compute and report 
the average return. If there are ties, then something creative will be done.

How and what to hand in:

Submit your assignment on Gradescope. Make sure your code runs in a Python 3 
interpreter.  Comment all the lines where you print something in the submitted 
files (your scripts should not print anything to the screen). You should submit your 
randomPolicy.py for part 1, your DoubleQ.py for part 2, and, filled part3.txt and 
policy.txt for the best policy you found in part 3. You also need to submit 
collaborator.txt even if you don’t have a collaborator. Be sure to include all 
mentioned files even if they are empty. Do not submit blackjack.py. Do not call 
PrintPolicyToFile function in your submit solution as this will overwrite your 
policy.txt (you should not have anything printing in the final submitted assignment 
anyway).


