
P2 - Supervised Learning with Tile Coding
Policy: This project can be done in teams of up to two students (all students will be
responsible for completely understanding all parts of the team solution)

Introduction

The objective of this project is to implement 2D tile coding and use it to construct the
binary-feature representation for a simple case of supervised learning of a real-valued
function.

As in all supervised learning, the training set consists of a set of examples, where each
example is a pair, input and target, and the objective is to learn a function f such that
f(input) is close to target. In this project, each input consists of two numbers or
coordinates, let’s call them in1 and in2, each of which is between 0 and 6 (that is,
input ∈ [0,6)2), and target is a single (scalar) real number. Thus, a single example
might be written (in1, in2, target). Here is a training set of four examples that we
will use in the project:

Receiving such a training set, your job will be to write the Python function f(in1,in2)
which returns a guess of the target at the corresponding input. Your guesses should be
close to the targets on the training set and, more importantly, close to the targets on
any new examples that you might see in the future (generalization). You will “receive the
training set” by receiving multiple calls to the Python function learn(in1,in2,target),
which you will also write. We will discuss these further in Part 2 below; first we focus on
the tile-coding part for converting points in input space to large binary feature vectors
(or rather small arrays containing the indices of the few 1 components of the binary
feature vectors).

Part 1: Tile Coding

Implement your supervised-learning algorithm using tile coding over in1 and in2. The
first step is to write the function tilecode(in1,in2,tileIndices) which takes in in1,
in2 and an array (tileIndices) and fills the array with tile indices, one index per tiling.

Example# in1 in2 target

1 0.1 0.1 3

2 4 2 –1.0

3 5.99 5.99 2

4 4 2.1 –1.0

Use eight standard grid tilings (numTilings=8) of the input space, where each tile
extends 0.6 (one tenth of the [0,6) range) in each of the in1 and in2 directions. You
might think of each tiling as forming a 10x10 grid, but actually make it an 11x11 grid so
that it extends beyond the input space by one tile width and height. We do this
because each tiling after the first will be offset by –⅛ of a tile width and height in the in1
and in2 directions. Thus, the first tiling will look like the left side of figure 1 and the
second tiling will look like the right side of the figure. Subsequent tilings will each be
offset by a further –⅛ of a tile in each direction (more generally, by –1/numTilings, of
course). This is not the best way to offset the tilings, and you will see artifacts in your
results because of it, but we do it anyway because it is the simplest. The next better
method would be to offset each tiling by a random amount.

 first tiling second tiling

�
Figure 1. The relationship between the input space (in bold) and the first and second
11x11 tilings.

Every tile has a different tile number (index). Assuming that you number the tiles in the
natural way, the tiles in the first tiling will run from 0 to 120, and the tiles in the second
tiling will run from 121 to 241 (why?). A given input point will be in exactly one tile in
each tiling. For example, the point from the first example in the training set above,
in1=0.1 and in2=0.1, or 0.1,0.1, will be in the first tile of the first seven tilings, that is, in
tiles 0, 121, 242, 363, 484, 605, 726 (why?). In the eighth tiling this point will be in the
13th tile (why?), which is tile 859 (why?). If you call tilecode(0.1,0.1,tileIndices),
then afterwards tileIndices will contain exactly these eight tile indices. The largest
possible tile index is 967 (why?).

What to turn in for Part 1. Download the template or shell file Tilecoder.py (from the
dropbox) and edit it to contain your function tilecode. Test your code by running that
file and printing the results. Turn in this printout (as printout1.pdf) and your modified
Tilecoder.py file. The code just calls your tilecode function on the four example input

6

60
0

6

60
0–0.6/8

points given above and prints out the tile indices for each case. If you number the tiles
as suggested, then the first example should produce the eight integer tile indices given
above. Another check on your code is that none of the indices should be negative or
greater than 967. Finally, the second and fourth examples should produce very similar
sets of indices (they should have many tiles in common) (why?). We will use this
printout to check that your tilecode function is working properly and to help in giving
partial credit. Finally, provide a list of very brief answers to the six “why” questions in the
project specification above (as a file why1.pdf). After you have completed part 1,
comment out the four print statements at the end of the file in preparation for using your
tilecoder in part 2.

Part 2: Supervised Learning by Gradient Descent (ADALINE)

In this part you will use your tile coder in conjunction with linear function approximation
to learn an approximate function over the entire input space. The learning algorithm we
use is stochastic gradient descent in the weights of a linear function approximator; it is
known as the Least-Mean-Square (LMS) algorithm in the literature. As a linear
approximator, the function it produces is a linear combination of a vector of learned
weights w = (w1, w2, ..., wn), and a vector of features x(i) = (x1(i), x2(i),..., xn(i)) for a
given input i:

�
As a gradient-descent learning algorithm, the weights are updated, given an input i, a
corresponding feature vector x(i) and target value targeti, and an estimated function
value f(i), by

�
Your task in this part of the project is to implement the first of these equations in the
python function f(in1,in2) and the second in the Python function
learn(in1,in2,target), using feature vectors constructed by the tilecoder you wrote
in Part 1, and assuming the general setup outlined in the introduction.

First, note that n in the above equations is the total number of tiles in your tile coder, or
968. Because your arrays are probably indexed from 0, your loops will probably go from
0 to 967. Second, note that, because you are doing tile coding, you don’t have the
feature vector x(i) in an explicit form. Instead you have a list of indices j where xj(i) is 1,
with all others assumed 0. If you think about it, this really simplifies your job of
implementing both equations. Of course you will need to keep the weight vector w in
explicit form. That is, you really will need a vector of 968 floating point numbers; this is
your memory; initialize all of its elements to zero. The step-size parameter α should be
set to 0.1 divided by the number of tilings.

f(i) = w

1

x

1

(i) + w

2

x

2

(i) + · · ·+ wnxn(i)

Zt(s, a) =

8
<

:

1 + ��Zt�1

(s, a) if St = s, At = a, and At was greedy;

0 if St = s, At = a, and At was not greedy;

��Zt�1

(s, a) for all other s, a;

8s, a

G

�
t = (1� �)

T�t�1X

n=1

�

n�1

G

(n)
t + �

T�t�1

Gt (1)

G

�
t = (1� 1)

T�t�1X

n=1

1

n�1

G

(n)
t + 1

T�t�1

Gt = Gt (2)

G

�
t = (1� 0)

T�t�1X

n=1

0

n�1

G

(n)
t + 0

T�t�1

Gt = G

(1)

t (3)

R S A(s)

Ea[a]

! = s

0

, a

0

, s

1

, a

1

, . . .

The other random variables are a function of this sequence. The transitional

target rt+1

is a function of st, at, and st+1

. The termination condition �t,

terminal target zt, and prediction yt, are functions of st alone.

R

(n)
t = rt+1

+ �t+1

zt+1

+ (1� �t+1

)R

(n�1)

t+1

R

(0)

t = yt

R

�
t = (1� �)

1X

n=1

�

n�1

R

(n)
t

⇢t =
⇡(st, at)

b(st, at)

�w

o↵

(!) = �w

on

(!)

1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(
¯

R

�
t � yt)rwyt

1

rwJ(w) =

✓
@J(w)

@w

1

,

@J(w)

@w

2

, . . . ,

@J(w)

@wn

◆>
.

wt+1

= wt � ↵rwJ(wt)

MSE(w) =

X

s2S

d(s)

h
v⇡(s)� v̂(s,w)

i
2

,

wt+1

= wt �
1

2

rwMSE(wt)

= wt �
1

2

rw

X

s2S

d(s)

⇥
v⇡(s)� v̂(s,wt)

⇤
2

= wt �
1

2

rw

X

s2S

d(s)

⇥
v⇡(s)� v̂(s,wt)

⇤
2

= wt �
X

s2S

d(s)

⇥
v⇡(s)� v̂(s,wt)

⇤
rw[v⇡(s)� v̂(s,wt)

⇤

= wt +

X

s2S

d(s)

⇥
v⇡(s)� v̂(s,wt)

⇤
rwv̂(s,wt)

(sampling)

= wt + ↵

⇥
v⇡(St)� v̂(St,wt)

⇤
rwt v̂(St,wt),

target = sin(in1� 3) cos(in2) +N(0, 0.1)

f(i) = w

1

x

1

(i) + w

2

x

2

(i) + · · ·+ wnxn(i).

wj wj + ↵(targeti � f(i))xj(i), j = 1, . . . , n.

Zt(s, a) =

8
<

:

1 + ��Zt�1

(s, a) if St = s, At = a, and At was greedy;

0 if St = s, At = a, and At was not greedy;

��Zt�1

(s, a) for all other s, a;

8s, a

G

�
t = (1� �)

T�t�1X

n=1

�

n�1

G

(n)
t + �

T�t�1

Gt (1)

G

�
t = (1� 1)

T�t�1X

n=1

1

n�1

G

(n)
t + 1

T�t�1

Gt = Gt (2)

G

�
t = (1� 0)

T�t�1X

n=1

0

n�1

G

(n)
t + 0

T�t�1

Gt = G

(1)

t (3)

1

Completing Part 2 consists of the following steps:

1. Download the file SuperLearn.py (in the dropbox) which contains test and template
code.

2. Edit the functions f and learn to implement the desired functions, calling your
Tilecoder.tilecode function when needed.

3. Run SuperLearn.py. The last line of the file calls the test1 function, which calls your
learning algorithm on the four example points and prints out results. As a result of
learning, your approximate function value should move 10% of the way from its
original value towards the target value. The before value of the fourth point should
be nonzero (why?). Make sure this is working correctly before going on to the next
step.

4. Change the last line of SuperLearn.py to call test2 instead of test1 and execute it
again. The test2 function constructs 20 examples using the target function:

� , where N(0,0.1) is a normally distributed
random number with mean 0 and standard deviation 0.1. The examples are sent to
learn, and then the resultant function f (after 20 examples) is printed out to a file
(f20) in a form suitable for plotting by excel or similar. A Monte Carlo estimate of the
Mean-Squared-Error in the function is also printed to standard output. The program
then continues for 10,000 more examples, printing out the MSE after each 1000, and
then finally prints out the function to a file (f10000) for plotting again. You should see
the MSE coming down smoothly from about 0.25 to almost 0.01 and staying there
(why does it not decrease further towards zero?).

5. Make 3D plots of the function learned after 20 and 10,000 examples, using the data
printed in step 4. One way to do this is to use the program plot.py provided in the
dropbox, as in “python plot.py f20”. After 10,000 examples, the learned function
should look very much like the target function minus the noise term. You can test
that by typing the target function minus the noise into one of the online 3D plotting
programs, such as that at http://www.livephysics.com/ptools/online-3d-function-
grapher.php.

6. After only 20 examples, your learned function will not yet look like the target function.
Explain in a paragraph why it looks the way it does. If your learned function involves
many peaks and valleys, then be sure to explain both their number, their height, and
their width. Suppose that, instead of tiling the input space into an 11x11 grid of
squares, you had divided into an 11x21 grid of rectangles, with the in1 dimension
being divided twice as finely as the in2 dimension. Explain how you would expect
the function learned after 20 examples to change if this alternative tiling were used.

What to turn in for Part 2. Turn in 1) your edited version of SuperLearn.py, 2) a pdf file
with the printout from step 3 together the MSEs printed from step 4, 3) the two 3D plots
from step 5 (as files f20.pdf and f10000.pdf), 4) your explanations from step 6 (as a file

target = sin(in1� 3) cos(in2) +N(0, 0.1)

f(i) = w

1

x

1

(i) + w

2

x

2

(i) + · · ·+ wnxn(i).

wj wj + ↵(target� f(i))xj , j = 1, . . . , n.

Zt(s, a) =

8
<

:

1 + ��Zt�1

(s, a) if St = s, At = a, and At was greedy;

0 if St = s, At = a, and At was not greedy;

��Zt�1

(s, a) for all other s, a;

8s, a

G

�
t = (1� �)

T�t�1X

n=1

�

n�1

G

(n)
t + �

T�t�1

Gt (1)

G

�
t = (1� 1)

T�t�1X

n=1

1

n�1

G

(n)
t + 1

T�t�1

Gt = Gt (2)

G

�
t = (1� 0)

T�t�1X

n=1

0

n�1

G

(n)
t + 0

T�t�1

Gt = G

(1)

t (3)

R S A(s)

Ea[a]

! = s

0

, a

0

, s

1

, a

1

, . . .

The other random variables are a function of this sequence. The transitional

target rt+1

is a function of st, at, and st+1

. The termination condition �t,

terminal target zt, and prediction yt, are functions of st alone.

R

(n)
t = rt+1

+ �t+1

zt+1

+ (1� �t+1

)R

(n�1)

t+1

R

(0)

t = yt

R

�
t = (1� �)

1X

n=1

�

n�1

R

(n)
t

⇢t =
⇡(st, at)

b(st, at)

�w

o↵

(!) = �w

on

(!)

1Y

i=1

⇢i

�wt = ↵t(CtR
�
t � yt)rwyt

�wt = ↵t(
¯

R

�
t � yt)rwyt

1

http://www.livephysics.com/ptools/online-3d-function-grapher.php

explain.pdf), and 5) your brief answers to the “why” questions in steps 3 and 4 (as a file
why2.pdf). If you prefer, you can substitute .txt files for some of the .pdf files.
All these files should be combined into a zip file and submitted on eclass.

