
True Online Temporal-Difference Learning

True Online Temporal-Difference Learning

Harm van Seijen harm.vanseijen@ualberta.ca

A. Rupam Mahmood ashique@ualberta.ca

Patrick M. Pilarski patrick.pilarski@ualberta.ca

Marlos C. Machado machado@ualberta.ca

Richard S. Sutton sutton@cs.ualberta.ca

Reinforcement Learning and Artificial Intelligence Laboratory

Department of Computing Science

University of Alberta

T6G 2E8, Canada

Editor:

Abstract

The temporal-difference methods TD(λ) and Sarsa(λ) form a core part of modern rein-
forcement learning. Their appeal comes from their good performance, low computational
cost, and their simple interpretation, given by their forward view. Recently, new versions
of these methods were introduced, called true online TD(λ) and true online Sarsa(λ), re-
spectively (van Seijen and Sutton, 2014). Algorithmically, these true online methods only
make two small changes to the update rules of the regular methods, and the extra com-
putational cost is negligible in most cases. However, they follow the ideas underlying the
forward view much more closely. In particular, they maintain an exact equivalence with
the forward view at all times, whereas the traditional versions only approximate it for small
step-sizes. We hypothesize that these true online methods not only have better theoretical
properties, but also dominate the regular methods empirically. In this article, we put this
hypothesis to the test by performing an extensive empirical comparison. Specifically, we
compare the performance of true online TD(λ)/Sarsa(λ) with regular TD(λ)/Sarsa(λ) on
random MRPs, a real-world myoelectric prosthetic arm, and a domain from the Arcade
Learning Environment. We use linear function approximation with tabular, binary, and
non-binary features. Our results suggest that the true online methods indeed dominate the
regular methods. Across all domains/representations the learning speed of the true online
methods are often better, but never worse than that of the regular methods. An additional
advantage is that no choice between traces has to be made for the true online methods. We
show that new true online temporal-difference methods can be derived by making changes
to the real-time forward view and then rewriting the update equations.

1. Introduction

Temporal-difference (TD) learning is a core learning technique in modern reinforcement
learning (Sutton, 1988; Kaelbling et al., 1996; Sutton and Barto, 1998; Szepesvári, 2010).
One of the main challenges in reinforcement learning is to make predictions, in an initially
unknown environment, about the (discounted) sum of future rewards, the return, based on
currently observed feature values and a certain behaviour policy. With TD learning it is

1

van Seijen, Mahmood, Pilarski, Machado, Sutton

possible to learn good estimates of the expected return quickly by bootstrapping from other
expected-return estimates. TD(λ) (Sutton, 1988) is a popular TD algorithm that combines
basic TD learning with eligibility traces to further speed learning. The popularity of TD(λ)
can be explained by its simple implementation, its low-computational complexity and its
conceptually straightforward interpretation, given by its forward view. The forward view of
TD(λ) is that the estimate at each time step is moved toward an update target known as
as the λ-return, where the λ-parameter determines the trade-off between bias and variance
of the update target. This trade-off has a large influence on the speed of learning and its
optimal setting varies from domain to domain. The ability to improve this trade-off by
adjusting the value of λ is what underlies the performance advantage of eligibility traces.

Although the forward view provides a clear intuition, TD(λ) closely approximates the
forward view only for appropriately small step-sizes. Until recently, this was considered
an unfortunate, but unavoidable part of the theory behind TD(λ). This changed with the
introduction of true online TD(λ)(van Seijen and Sutton, 2014), which allows for full control
over the bias-variance trade-off at any step-size. In particular, true online TD(1) can achieve
fully unbiased updates. Moreover, true online TD(λ) only requires small modifications to
the TD(λ) update equations, and the extra computational cost is negligible in most cases.

We hypothesize that true online TD(λ), and its control version true online Sarsa(λ), not
only have better theoretical properties than their regular counterparts, but also dominate
them empirically. We test this hypothesis by performing an extensive empirical compari-
son between true online TD(λ), TD(λ) with accumulating traces and TD(λ) with replac-
ing traces, as well as true online Sarsa(λ) and Sarsa(λ) (with accumulating and replacing
traces). The domains we use include random Markov reward processes, a real-world myo-
electric prosthetic arm, and a domain from the Arcade Learning Environment (Bellemare
et al., 2013). The representations we consider range from tabular values to linear function
approximation with binary and non-binary features.

Besides the empirical study, we show how true online TD(λ) can be derived. The
derivation is based on an extended version of the forward view. Whereas the updates of
the traditional forward view can only be computed at the end of an episode, the updates
of this extended forward view can be computed in real-time, making it applicable even to
non-episodic tasks. By rewriting the updates of this real-time forward view, the true online
TD(λ) updates can be derived. This derivation forms a blueprint for the derivation of other
true online methods. By making variations to the real-time forward view and following the
same derivation as for true online TD(λ), we derive several other true online methods.

This article is organized as follows. We start by presenting the required background
on Markov decision processes and introducing TD(λ), true online TD(λ), and true online
Sarsa(λ). We then present our empirical study. After this study, we analyze on what
type of domains a large performance difference can be expected. This is followed by the
introduction of the real-time forward view and the derivation of true online TD(λ). Finally,
we present several other true online methods.

2

True Online Temporal-Difference Learning

2. Markov Decision Processes

Here, we present the main learning framework. As a convention, we indicate random vari-
ables by capital letters (e.g., St, Rt), vectors by bold letters (e.g., θ, φ), functions by
lowercase letters (e.g., v), and sets by calligraphic font (e.g., S, A).

Reinforcement learning (RL) problems are often formalized as Markov decision processes
(MDPs), which can be described as 5-tuples of the form 〈S,A, p, r, γ〉, consisting of S, the
set of all states; A, the set of all actions; p(s′|s, a), the transition probability function, giving
for each state s ∈ S and action a ∈ A the probability of a transition to state s′ ∈ S at
the next step; r(s, a, s′), the reward function, giving the expected reward for a transition
from (s, a) to s′. γ is the discount factor, specifying how future rewards are weighted with
respect to the immediate reward. Some MDPs contain terminal states, which divide the
sequence of state transitions into episodes. When a terminal state is reached the current
episode ends and the state is reset to the initial state.

The return at time t is defined as the discounted sum of rewards, observed after t:

Gt = Rt+1 + γ Rt+2 + γ2Rt+3 + ... =
∞∑
i=1

γi−1Rt+i ,

where Rt+1 is the reward received after taking action At in state St. For an episodic MDP,
the return is defined as the discounted sum of rewards until the end of the episode:

Gt =
T−t∑
i=1

γi−1Rt+i ,

where T is the time step that the terminal state is reached.

Actions are taken at discrete time steps t = 0, 1, 2, ... according to a policy π : S ×A →
[0, 1], which defines for each action the selection probability conditioned on the state. Each
policy π has a corresponding state-value function vπ(s), which maps each state s ∈ S to
the expected value of the return Gt from that state, when following policy π:

vπ(s) = E{Gt |St = s, π} .

In addition, the action-value function qπ(s, a) gives the expected return for policy π, given
that action a ∈ A is taken in state s ∈ S:

qπ(s, a) = E{Gt |St = s,At,= a, π} .

A core task in RL is that of estimating the state-value function vπ of some policy π
from data. In general, the learner does not have access to state s directly, but can only
observe a feature vector φ(s) ∈ Rn. We estimate the value function using linear function
approximation, in which case the value of a state s is the inner product between a weight
vector θ and its feature vector φ(s):

v̂(s,θ) = θ>φ(s) =

n∑
i=1

θi φi(s) .

3

van Seijen, Mahmood, Pilarski, Machado, Sutton

If s is a terminal state, then by definition φ(s) := 0, and hence v̂(s,θ) = 0. As a shorthand,
we will indicate φ(St), the feature vector of the state visited at time step t, by φt. Similarly,
the action-value function qπ can be estimated using linear function approximation. In this
case, the estimate is the inner product between a weight vector and an action-feature vector
ψ(s, a):

q̂(s, a,θ) = θ>ψ(s, a) =

n∑
i=1

θi ψi(s, a) .

If s is a terminal state, then by definition ψ(s, a) := 0 for all actions a. As a convention,
we will use ψ to indicate action-feature vectors and φ to indicate state-feature vectors. As
a shorthand, we will indicate ψ(St, At) by ψt.

A general model-free update rule for linear function approximation is:

θt+1 = θt + α [Ut − θ>t φt]φt , (1)

where Ut, the update target, is some estimate of the expected return at time step t. There
are many ways to construct an update target. For example, the TD(0) update target is:

Ut = Rt+1 + γθ>t φt+1 . (2)

Update (1) is referred to as an online update, meaning that the weight vector changes at
every time step t. Alternatively, an update target can be used for offline updating. In this
case, the weight vector stays constant during an episode, and instead all weight corrections
are added at once at the end of the episode. Online updating not only has the advantage
that it can be applied to non-episodic tasks, but it will generally produce better value-
function estimates, even when only considering the estimates at the end of an episode (see
Sutton & Barto, Sections 7.1–3). Hence, offline updating is primarily used as an analytical
tool; it is rarely used in practise.

3. Algorithms

In this Section, we present the algorithms that we will compare: TD(λ) with accumulating
as well as replacing traces, and true online TD(λ). We also present the control version
of true online TD(λ): true online Sarsa(λ). Finally, we discuss several other variations of
TD(λ).

3.1 Conventional TD(λ)

The conventional TD(λ) algorithm is defined by the following update equations:

δt = Rt+1 + γθ>t φt+1 − θ>t φt (3)

et = γλet−1 + φt (4)

θt+1 = θt + αδt et (5)

for t ≥ 0, and with e−1 = 0. The scalar δt is called the TD error. The vector et is
called the eligibility-trace vector, and the parameter λ ∈ [0, 1] is called the trace-decay
parameter. The update of et shown above is referred to as the accumulating-trace update.

4

True Online Temporal-Difference Learning

Algorithm 1 accumulate TD(λ)

INPUT: α, λ, γ,θinit
θ ← θinit
Loop (over episodes):

obtain initial φ
e← 0
While terminal state has not been reached, do:

obtain next feature vector φ′ and reward R
δ ← R+ γ θ>φ′ − θ>φ
e← γλe+ φ
θ ← θ + αδe
φ← φ′

As a shorthand, we will refer to this version of TD(λ) as ‘accumulate TD(λ)’. Algorithm 1
shows the corresponding pseudocode.

Accumulate TD(λ) can be very sensitive with respect to the α and λ parameters. Espe-
cially, a large value of λ combined with a large value of α can easily cause divergence, even
on simple tasks with bounded rewards. For this reason, a variant of TD(λ) is often used
that is more robust with respect to these parameters. This variant, which assumes binary
features, uses a different trace-update equation:

et(i) =

{
γλet−1(i) if φt(i) = 0

1 if φt(i) = 1
for all features i .

This is referred to as the replacing-trace update. In this article, we use a simple generaliza-
tion of this update rule that allows us to apply it to domains with non-binary features as
well:

et(i) =

{
γλet−1(i) if φt(i) = 0

φt(i) if φt(i) 6= 0
for all features i . (6)

Note that for binary features this generalized trace update reduces to the default replacing-
trace update. We will refer to the version of TD(λ) that uses Equation 6 as ‘replace TD(λ)’.

3.2 True Online TD(λ)

The true online TD(λ) update equations are:

δt = Rt+1 + γθ>t φt+1 − θ>t φt (7)

et = γλet−1 + φt − αγλ[e>t−1φt]φt (8)

θt+1 = θt + αδt et + α[θ>t φt − θ>t−1φt][et − φt] (9)

for t ≥ 0, and with e−1 = 0. Compared to accumulate TD(λ) (equations (3), (4) and
(5)), both the trace update and the weight update have an additional term. We call a
trace updated in this way a dutch trace; we call the term α[θ>t φt − θ>t−1φt][et − φt] the

5

van Seijen, Mahmood, Pilarski, Machado, Sutton

TD-error time-step correction, or simply the δ-correction. Algorithm 2 shows pseudocode
that implements equations (7), (8) and (9).1

Algorithm 2 true online TD(λ)

INPUT: α, λ, γ,θinit
θ ← θinit, v̂old ← 0
Loop (over episodes):

obtain initial φ
e← 0
While terminal state has not been reached, do:

obtain next feature vector φ′ and reward R
v̂ ← θ>φ
v̂′ ← θ>φ′

δ ← R+ γ v̂′ − v̂
e← γλe+ φ− αγλ(e>φ)φ
θ ← θ + α(δ + v̂ − v̂old)e− α(v̂ − v̂old)φ
v̂old ← v̂′

φ← φ′

3.3 Computational Comparison

Using the pseudocode and update equations, we can compare the computational cost of
the three versions of TD(λ). Let n be the total number of features and m the number
of features with a non-zero value. Then, the number of basic operations (addition and
multiplication) per time step for accumulate TD(λ) is 3n + 5m. For replace TD(λ) this
number is 3n + 4m (the replacing trace update takes (n − m) + m operations, instead
of n + m for an accumulating trace). True online TD(λ) takes 3n + 11m operations in
total (computing and subtracting the vector αγλ(e>φ)φ requires 4m operations; adding
the δ-correction requires 2m operations). Hence, if sparse feature vectors are used (that
is, if m << n) the computational overhead of true online TD(λ) is minimal compared
to accumulate/replace TD(λ). If non-sparse feature vectors are used (that is, if m = n),
accumulate TD(λ), replace TD(λ) and true-online TD(λ) require 8n, 7n and 14n operations,
respectively. So in this case, true online TD(λ) is roughly twice as expensive as conventional
TD(λ).

3.4 True Online Sarsa(λ)

TD(λ) and true online TD(λ) are policy evaluation methods. However, they can be turned
into control methods in a straightforward way. From a learning perspective, the main
difference is that an estimate of the action-value function qπ should be learned, rather
than of the state-value function vπ. In other words, action feature-vectors instead of state
feature-vectors have to be used. Another difference is that instead of having a fixed policy

1. We provide pseudocode for true online TD(λ) with time-dependent step-size in Section 7.1. For reasons
explained in that section, this requires a modified trace update. In addition, for reference purposes, we
provide pseudocode for the special case of tabular features in Section 7.3.

6

True Online Temporal-Difference Learning

that generates the behaviour, the policy depends on the action-value estimates. Because
these estimates typically improve over time, so does the policy. The (on-policy) control
counterpart of TD(λ) is the popular Sarsa(λ) algorithm. The control counterpart of true
online TD(λ) is ‘true online Sarsa(λ)’. Algorithm 3 shows pseudocode for true online
Sarsa(λ).

Algorithm 3 true online Sarsa(λ)

INPUT: α, λ, γ,θinit
θ ← θinit, q̂old ← 0
Loop (over episodes):

obtain initial state S
select action A based on state S (for example ε-greedy)
ψ ← features corresponding to S,A
e← 0
While terminal state has not been reached, do:

take action A, observe next state S′ and reward R
select action A′ based on state S′

ψ′ ← features corresponding to S′, A′ (if S′ is terminal state, ψ′ ← 0)
q̂ ← θ>ψ
q̂′ ← θ>ψ′

δ ← R+ γ q̂′ − q̂
e← γλe+ψ − αγλ[e>ψ]ψ
θ ← θ + α(δ + q̂ − q̂old) e− α(q̂ − q̂old)ψ
q̂old ← q̂′

ψ ← ψ′ ; A← A′

To ensure accurate estimates for all state-action values are obtained, some exploration
strategy has to be used. A simple, but often sufficient strategy is to use an ε-greedy
behaviour policy. That is, given current state St, with probability ε a random action is
selected, and with probability 1− ε the greedy action is selected:

Agreedyt = argmax
a

θ>t ψ(St, a) .

A common way to derive an action-feature vector ψ(s, a) from a state-feature vector
φ(s) involves an action-feature vector of size n|A|, where n is the number of state features
and |A| is the number of actions. Each action corresponds with a block of n features in
this action-feature vector. The features in ψ(s, a) that correspond to action a take on the
values of the state features; the features corresponding to other actions have a value of 0.

3.5 Other Variations on TD(λ)

Several variations on TD(λ) other than those treated in this paper have been suggested in
the literature. Schapire and Warmuth (1996) introduced a variation of TD(λ) for which
upper and lower bounds on performance can be derived and proven. Maei, Szepesvari,
Sutton, and others (Maei, 2011; Sutton et al., 2009a,b, 2014) have explored generalizations
of TD(λ)-like algorithms to off-policy learning, in which the behavior policy (generating the

7

van Seijen, Mahmood, Pilarski, Machado, Sutton

data) and the evaluation policy (whose value function is being learned) are allowed to be
different.

4. Empirical Study

This section contains our main empirical study, comparing TD(λ), as well as Sarsa(λ), with
their true online counterparts. For each method and each domain, a scan over the step-size
α and the trace-decay parameter λ is performed such that the optimal performance can be
determined. In Section 4.4, we discuss the results.

4.1 Random MRPs

For our first series of experiments we used randomly constructed Markov Reward Processes
(MRPs).2 An MRP can be interpreted as an MDP with only a single action per state
(consequently, there is only one policy possible). We represent a random MRP as a 3-
tuple (k, b, σ), consisting of k, the number of states; b, the branching factor (that is, the
number of possible next states per transition); and σ, the standard deviation of the reward.
The next states for a particular state are drawn from the total set of states at random,
and without replacement. The transition probabilities to those states are randomized as
well (by partitioning the unit interval at b − 1 random cut points). The expected value of
the reward for a transition is drawn from a normal distribution with zero mean and unit
variance. The actual reward is drawn from a normal distribution with mean equal to this
expected reward and standard deviation σ. Our random MRPs do not contain terminal
states.3

We compared the performance of TD(λ) on three different MRPs: one with a small
number of states, (10, 3, 0.1), one with a large number of states, (100, 10, 0.1), and one with a
large number of states but a low branching factor and no stochasticity in reward generation,
(100, 3, 0). γ = 0.99 for all three MRPs. Each MRP is evaluated using three different
representations. The first representation consists of tabular features, that is, each state is
represented with a unique standard-basis vector of k dimensions. The second representation
is based on binary features. The binary representation is constructed by first assigning
indices, from 1 to k, to all states. Then, the binary encoding of the index of a state is used
as a feature vector to represent that state. The length of a feature vector is determined
by the total number of states: for k = 10, the length is 4; for k = 100, the length is 7.
As an example, for k = 10 the feature vectors of states 1, 2 and 3 are (0, 0, 0, 1),(0, 0, 1, 0)
and (0, 0, 1, 1), respectively. Finally, the third representation uses non-binary, normalized
features. For this representation each state is mapped to a 5-dimensional feature vector,
with the value of each feature drawn from a normal distribution with zero mean and unit
variance. After all the feature values for a state are drawn, they are normalized such that
the feature vector has unit length. Once generated, the feature vectors are kept fixed for
each state. We refer to this last representation as the normal representation.

2. The process we used to construct these MRPs is based on the process used by Bhatnagar, Sutton,
Ghavamzadeh and Lee (2009).

3. The code for the MRP experiments is published online at: https://github.com/armahmood/totd-
rndmdp-experiments

8

True Online Temporal-Difference Learning

MSE

MSE

MSE MSE

λ λ λ

replace TD(λ)

true-online TD(λ)

accumulate TD(λ)

true-online TD(λ)

accumulate TD(λ)

replace TD(λ)

true-online TD(λ)

accumulate TD(λ) replace TD(λ)

λ=1

λ=0

step-size

tabular features

tabular features, accumulate TD(λ)

MSE

λ=1

λ=0

step-size

tabular features, replace TD(λ)

MSE

λ=1

λ=0

step-size

tabular features, true-online TD(λ)

binary features normal features

MSE
λ=1 λ=0

step-size

binary features, accumulate TD(λ)

MSE λ=1

λ=0

step-size

normal features, accumulate TD(λ)

MSE

λ=1

λ=0

step-size

binary features, replace TD(λ)

MSE

step-size

normal features, replace TD(λ)

MSE

λ=1

λ=0

step-size

binary features, true-online TD(λ)

MSE

λ=0

λ=1

step-size

normal features, true-online TD(λ)

MSE MSE MSE

λ λ λ

replace TD(λ)

true-online TD(λ)

accumulate TD(λ)

true-online TD(λ)accumulate TD(λ)

replace TD(λ)

true-online TD(λ)

accumulate TD(λ)

replace TD(λ)

tabular features

MSE

λ=1

λ=0

step-size

tabular features, accumulate TD(λ)

MSE

λ=1

λ=0

step-size

tabular features, replace TD(λ)

MSE

λ=1

λ=0

step-size

tabular features, true-online TD(λ)

binary features normal features

MSE

λ=1

λ=0

step-size

binary features, accumulate TD(λ)

MSE

λ=1

step-size

normal features, accumulate TD(λ)

MSE

λ=1

λ=0

step-size

binary features, replace TD(λ)

MSE

step-size

normal features, replace TD(λ)

MSE

λ=1

λ=0

step-size

binary features, true-online TD(λ)

MSE

λ=1

step-size

normal features, true-online TD(λ)

λ=0

MSE MSE MSE

λ λ λ

replace TD(λ)

true-online TD(λ)

accumulate TD(λ)

true-online TD(λ)

accumulate TD(λ)

replace TD(λ)

true-online TD(λ)

accumulate TD(λ)

replace TD(λ)

tabular features binary features normal features

MSE

λ=1

λ=0

binary features, accumulate TD(λ)

step-size

MSE

λ=1

λ=0

binary features, replace TD(λ)

step-size

MSE

λ=1

λ=0

binary features, true-online TD(λ)

step-size

MSE

λ=1

λ=0

normal features, accumulate TD(λ)

step-size

MSE

normal features, replace TD(λ)

step-size

MSE

λ=0

λ=1

normal features, true-online TD(λ)

step-size

MSE

λ=1

λ=0

tabular features, accumulate TD(λ)

step-size

MSE

λ=1

λ=0

tabular features, replace TD(λ)

step-size

MSE

λ=1

λ=0

tabular features, true-online TD(λ)

step-size

(10, 3, 0.1), tabular (10, 3, 0.1), binary (10, 3, 0.1), normal

(100, 10, 0.1), tabular (100, 10, 0.1), binary (100, 10, 0.1), normal

(100, 3, 0), tabular (100, 3, 0), binary (100, 3, 0), normal

Figure 1: MSE error during early learning for three different MRPs, indicated by (k, b, σ),
and three different representations. The error shown is at optimal α value.

In each experiment, we performed a scan over α and λ. Specifically, between 0 and 0.1,
α is varied according to 10i with i varying from -3 to -1 with steps of 0.2, and from 0.1 to
2.0 (linearly) with steps of 0.1. In addition, λ is varied from 0 to 0.9 with steps of 0.1 and
from 0.9 to 1.0 with steps of 0.01. The initial weight vector is the zero vector in all domains.
As performance metric we used the mean-squared error (MSE) with respect to the LMS
solution during early learning (for k = 10, we averaged over the first 100 time steps; for k
= 100, we averaged over the first 1000 time steps). We normalized this error by dividing it
by the MSE under the initial weight estimate.

Figure 1 shows the results for different λ at the best value of α. In Appendix A, the
results for all α values are shown. A number of observations can be made. First of all,
the straightforward generalization of the replacing-trace update rule, Equation (6), is not
effective. For all three domains, when replacing traces are combined with normal features,
all λ values result in the same performance. The reason is that normal features practically
never become zero, and hence et = φt almost all the time. A second observation is that the
optimal performance of true online TD(λ) is, on all domains and for all representations, at

9

van Seijen, Mahmood, Pilarski, Machado, Sutton

Figure 2: Source of the input data stream and predicted signals used in this experiment: a
participant with an amputation performing a simple grasping task using a myoelectrically
controlled robot arm, as described in Pilarski et al. (2013). More detail on the subject and
experimental setting can be found in Hebert et al. (2014).

least as good as the optimal performance of accumulate TD(λ) or replace TD(λ). A more
in-dept discussion of these results is provided in Section 4.4.

4.2 Predicting Signals from a Myoelectric Prosthetic Arm

In this experiment, we compared the performance of true online TD(λ) and TD(λ) on a
real-world data-set consisting of sensorimotor signals measured during the human control
of an electromechanical robot arm. The source of the data is a series of manipulation tasks
performed by a participant with an amputation, as presented by Pilarski et al. (2013). In
this study, an amputee participant used signals recorded from the muscles of their residual
limb to control a robot arm with multiple degrees-of-freedom (Figure 2). Interactions of
this kind are known as myoelectric control (c.f., Parker et al., 2006).

For consistency and comparison of results, we used the same source data and prediction
learning architecture as published in Pilarski et al. (2013). In total, two signals are pre-
dicted: grip force and motor angle signals from the robot’s hand. Specifically, the target
for the prediction is a discounted sum of each signal over time, similar to return predictions
(c.f., general value functions and nexting; Sutton et al., 2011; Modayil et al., 2014). Where
possible, we used the same implementation and code base as Pilarski et al. (2013). Data
for this experiment consisted of 58,000 time steps of recorded sensorimotor information,
sampled at 40 Hz (i.e., approximately 25 minutes of experimental data). The state space
consisted of a tile-coded representation of the robot gripper’s position, velocity, recorded
gripping force, and two muscle contraction signals from the human user. A standard imple-
mentation of tile-coding was used, with ten bins per signal, eight overlapping tilings, and
a single active bias unit. This results in a state space with 800,001 features, 9 of which
were active at any given time. Hashing was used to reduce this space down to a vector of

10

True Online Temporal-Difference Learning

200,000 features that are then presented to the learning system. All signals were normalized
between 0 and 1 before being provided to the function approximation routine. The discount
factor for predictions of both force and angle was γ = 0.97, as in the results presented by
Pilarski et al. (2013). Parameter sweeps over λ and α are conducted for all three methods.
The performance metric is the mean absolute return error over all 58,000 time steps of
learning, normalized by dividing by the error for λ = 0.

Figure 13 shows the performance for the angle as well as the force predictions at the
best α value for different values of λ. In Appendix B, the results for all α values are
shown. The relative performance of replace TD(λ) and accumulate TD(λ) depends on the
predictive question being asked. For predicting the robot’s grip force signal—a signal with
small magnitude and rapid changes—replace TD(λ) is better than accumulate TD(λ) at all
non-zero λ values. However, for predicting the robot’s hand actuator position, a smoothly
changing signal that varies between a range of ∼300-500, accumulate TD(λ) dominates
replace TD(λ) over all non-zero λ values. True online TD dominates both methods for all
non-zero λ values on both prediction tasks (force and angle).

van Seijen, Sutton

ANGLE PREDICTION FORCE PREDICTION

BEST

TOTD

RTraces

ATraces

Figure 5: Analysis of TOTD with respect to accumulating and replacing traces on prosthetic
data from the single amputee subject described in Pilarski et al. (2013), for the prediction of
servo motor angle (left column) and grip force (right column) as recorded from the amputee’s
myoelectrically controlled robot arm during a grasping task.

16

angle prediction force prediction

replace TD(λ)
replace TD(λ)

 true online TD(λ) true online TD(λ)

accumulate TD(λ)

accumulate TD(λ)

λλ

Figure 3: Performance as function of λ at the optimal α value, for the prediction of the
servo motor angle (left), as well as the grip force (right).

4.3 Control in the ALE Domain Asterix

In this experiment, we compared the performance of true online Sarsa(λ) with that of accu-
mulate Sarsa(λ) and replace Sarsa(λ), on a domain from the Arcade Learning Environment
(ALE) (Bellemare et al., 2013; Defazio and Graepel, 2014; Mnih et al., 2015), called As-
terix.4 The ALE is a general testbed that provides an interface to hundreds of Atari 2600
games in which one has access, at each frame, to the game screen, the current RAM state
and to a reward signal obtained from the transition between game frames. At each frame
the agent provides one of the 18 possible actions in the game (equivalent to the 18 differ-
ent actions allowed in the joystick) with the goal of maximizing the (discounted) sum of
rewards.

4. We used ALE version 0.4.4 for our experiments. The code for the ALE experiments is published online
at: https://github.com/mcmachado/TrueOnlineSarsa

11

van Seijen, Mahmood, Pilarski, Machado, Sutton

In the Asterix domain (see Figure 4 for a screenshot), the agent controls a yellow avatar,
which has to collect ‘potion’ objects, while avoiding ‘harp’ objects. Both potions and harps
move across the screen horizontally. Every time the agent collects a potion it receives a
reward of 50 points, and every time it touches a harp it looses a life (it has three lives in
total). The game ends after the agent has lost three lives, or after 5 minutes, whichever
comes first.5

Figure 4: Screenshot of the game Asterix.

The agent can use the actions up, right, down, and left to move across the screen,
a no-op action, as well as combinations of two directions, resulting in a diagonal move
(e.g.up-right). This results in 9 actions in total. The state-space representation is based on
linear function approximation. We use what Bellemare et al. (2013) called Basic feature
set, which “encodes the presence of colours on the Atari 2600 screen.” It is obtained by first
subtracting the game screen background (see Bellemare et al., 2013, sec. 3.1.1) and then
dividing the remaining screen in to 16× 14 tiles of size 10× 15 pixels. Finally, for each tile,
one binary feature is generated for each of the 128 available colours, encoding whether a
colour is active or not in that tile. This generates 28,672 features (besides a bias term that
is always active).

Because episode lengths can vary hugely (basically, from about 10 seconds all the way up
to 5 minutes), constructing a fair performance metric is non-trivial. For example, comparing
the average return on the first N episodes of two methods is only fair if they have seen
roughly the same amount of samples in those episodes, which is not guaranteed for this
domain. On the other hand, looking at the total reward collected for the first X samples is
also not a good metric, because there is no negative reward associated to dying. To resolve
this, we look at the return per episode, averaged over the first n(X) episodes, where n(X)
is the number of episodes observed in the first X samples. More specifically, our metric
consists of the average score per episode while learning for 20 hours (4,320,000 frames). In
addition, we averaged the resulting number over 400 independent runs.

As with the evaluation experiments, we performed a scan over the step-size α and the
trace-decay parameter λ. Specifically, we looked at all combinations of α ∈ {0.20, 0.50, 0.80,
1.10, 1.40, 1.70, 2.00} and λ ∈ {0.00, 0.50, 0.80, 0.90, 0.95, 0.99} (these values were deter-
mined during a preliminary parameter sweep). We used a discount factor γ = 0.999 and

5. We added the 5 minute time limit ourselves as in previous work (Bellemare et al., 2013); the original
game has no time limit.

12

True Online Temporal-Difference Learning

ε-greedy exploration with ε = 0.01. The weight vector was initialized to the zero vector.
Also, as Bellemare et al. (2013) , we take an action at each 5 frames, this decreases the
algorithms running time and it also tries to avoid “super-human” reflexes in our agents.

The results are shown in Figure 5. On this domain, the optimal performance of all three
versions of Sarsa(λ) is similar.

accumulate Sarsa(λ)

true online Sarsa(λ)

replace Sarsa(λ)

return
per

episode

λ

Figure 5: Return per episode, averaged over the first 4,320,000 frames as well as 400 inde-
pendent runs, as function of λ, at optimal α, on the Asterix domain.

4.4 Discussion

Figure 6 summarizes the performance of the different TD(λ) versions on all evaluation
domains. Specifically, it shows the error for each method at its best settings of α and λ.
The error is normalized by dividing it by the error at λ = 0 (remember that all versions of
TD(λ) behave the same for λ = 0). Because λ = 0 lies in the parameter range that is being
optimized over, the normalized error can never be higher than 1. If for a method/domain
the normalized error is equal to 1, this means that setting λ higher than 0 either has no
effect, or that the error gets worse. In either case, eligibility traces are not effective for that
method/domain.

Overall, true online TD(λ) is clearly better than accumulate TD(λ) and replace TD(λ)
in terms of optimal performance. Specifically, on each considered domain, the error for true
online TD(λ) is either smaller or equal to the error of accumulate/replace TD(λ). This is
especially impressive, given the wide of variety of domains, and the fact the computational
overhead for true online TD(λ) is small (see Section 3.3 for details).

Comparing accumulate TD(λ) with replace TD(λ), it can be seen that, when consid-
ering tabular or binary features, on some domains accumulate TD(λ) performs best, while
on others replace TD(λ) performs best. When normal features are used, our naive general-
ization of replace TD(λ) is not effective (standard replace TD(λ) is not defined for normal
features).

13

van Seijen, Mahmood, Pilarski, Machado, Sutton

0

0.2

0.4

0.6

0.8

1

1.2

n
o
rm

a
liz

e
d
 e

rr
o
r

accumulate TD(λ) replace TD(λ) true online TD(λ)

(10, 3, 0.1)
tabular

(10, 3, 0.1)
binary

(10, 3, 0.1)
normal

(100, 10, 0.1)
tabular

(100, 10, 0.1)
normal

(100, 3, 0)
tabular

(100, 3, 0)
binary

(100, 10, 0.1)
binary

(100, 3, 0)
normal

prostethic
angle

prostethic
force

Figure 6: Summary of the evaluation results: error at optimal (α, λ)-settings for all domains,
normalized with the TD(0) error.

On the Asterix domain, the performance of the three Sarsa(λ) versions is similar. This
is in accordance with the evaluation results, which showed that the size of the performance
difference is domain dependent. In the worst case, the performance of the true online
method is similar to that of the regular method.

The optimal performance is not the only factor that determines how good a method is;
what also matters is how easy it is to find this performance. The detailed plots in Appendix
A and B reveal that the parameter sensitive of accumulate TD(λ) is much higher than that
of true online TD(λ) and replace TD(λ). This is clearly visible in the first MRP task (Figure
10), as well as the experiments with the myoelectric prosthetic arm (Figure 13).

There is one more thing to take away from the experiments. In the first MRP, (10,
3, 0.1), with normal features, accumulate TD(λ), as well as replace TD(λ), are ineffective
(see Figure 6: the normalized performance of accumulate/replace TD(λ) is 1, meaning that
the performance at optimized λ is equal to the performance of TD(0)). However, true on-
line TD(λ) was able to obtain a considerable performance advantage with respect to TD(0).
This demonstrates that true online TD(λ) expands the set of domains/representations where
eligibility traces are effective. This could potentially have far-reaching consequences. Specif-
ically, using non-binary features becomes a lot more interesting. Replacing traces are not
feasible / ineffective for such representations, while using accumulating traces can easily
result in divergence of values. However, for true online TD(λ) non-binary features are not
necessarily more challenging than binary features. Exploring new, non-binary representa-
tions could potentially further improve the performance for true online TD(λ) on domains
such as the myoelectic prosthetic arm or the Asterix domain.

5. Analytical Comparison

The empirical study suggests that true online TD(λ) performs at least as good as accumulate
TD(λ) and replace TD(λ). In this section, we try to answer the question on what kind of
domains a large difference in performance can be expected, and similarly, when no difference
is expected. The following three theorems provide some insights into this.

14

True Online Temporal-Difference Learning

Theorem 1 For λ = 0, accumulate TD(λ), replace TD(λ) and true online TD(λ) behave
the same.

Proof For λ = 0, the accumulating-trace update, the (generalized) replacing-trace update
and the dutch-trace update all reduce to et = φt. In addition, because et = φt, the δ-
correction of true online TD(λ) is 0.

A feature i is visited at time t if φt(i) > 0. The following theorem shows that any
difference in behaviour between the three versions of TD(λ) is due to how revisits of features
are handled.

Theorem 2 When no features are revisited within the same episode, accumulate TD(λ),
replace TD(λ) and true online TD(λ) behave the same (for any λ).

Proof Because at the start of an episode all trace values are 0, and because a feature is
only visited once within an episode, if φt(i) 6= 0, then et−1(i) = 0 and if et−1(i) 6= 0, then
φt(i) = 0. Hence, the accumulating-trace update and the generalized replacing-trace up-
date have the same effect. It also means that e>t−1φt is always zero. Hence, the dutch-trace
update reduces to the accumulating-trace update. In addition, because the weight of a fea-
ture does not get updated until the feature is visited, if φt(i) 6= 0, then θt(i)− θt−1(i) = 0,
and if θt(i) − θt−1(i) 6= 0, then φt(i) 6= 0. It follows that θ>t φt − θ>t−1φt is always 0, and
hence the δ-correction as well.

Finally, our third theorem states that for small step-sizes the behaviour of true online
TD(λ) approximates that of accumulate TD(λ):

Theorem 3 Let ∆acc
t be the weight update at time t due to accumulate TD(λ) and ∆true

t

the weight update due to true online TD(λ). If γλ < 1 and the feature vectors and TD
errors are bounded, then ∆acc

t /∆true
t → 1 if α→ 0.

Proof The update equations specify that

∆acc
t := αeacct δt ,

∆true
t := αedutt δt + α[θ>t φt − θ>t−1φt][edutt − φt] ,

where eacct is an accumulating trace, and edutt is a dutch trace. We will prove the theorem
by showing that ∆true

t can be written as:

∆true
t = α

[
eacct δt + c(α)

]
with c(α)→ 0 if α→ 0. More specifically, ∆true

t can be written as:

∆true
t = α

[
eacct δt + (edutt − eacct)δt + (θt − θt−1)>φt(edutt − φt)

]
We will show that edutt − eacct → 0 if α → 0, and that (θt − θt−1)>φt(edutt − φt) → 0 if
α→ 0.

15

van Seijen, Mahmood, Pilarski, Machado, Sutton

The non-incremental expression for eacct is:

eacc0 = φ0

eacc1 = γλφ0 + φ1

eacc2 = (γλ)2φ0 + γλφ1 + φ2

...

eacct =
t∑
i=0

(γλ)t−iφt

Let the value of feature i be bounded by C, that is |φt(i)| < C for all i, t. Then, |eacct (i)| <
C/(1− γλ) for all i, t. Because γλ < 1, this is some finite value.

The dutch-trace update can be re-written as:

edutt = γλ(I− αφtφ>t) edutt−1 + φt

Using this, the non-incremental expression for edutt becomes:

edut0 = φ0

edut1 = γλ(I− αφ1φ
>
1)φ0 + φ1

edut2 = (γλ)2(I− αφ2φ
>
2)(I− αφ1φ

>
1)φ0 + γλ(I− αφ2φ

>
2)φ1 + φ2

...

Because the feature vectors are bounded, if α → 0, (I − αφiφ>i) → I, and edutt → eacct
(because the trace values are bounded, this is true even if t→∞).

Finally, we need to show that (θt − θt−1)>φt(etruet − φt) → 0 if α → 0. Because the
feature vectors and trace values are bounded, it suffices to show that θt−θt−1 = ∆true

t−1 → 0
if α→ 0, which follows from the definition of ∆true

t (given the condition that the TD error
is bounded).

Based on these three theorems, we expect a large difference on domains for which the
optimal α and optimal λ are relatively large, and where features are frequently revisited.
Domains with a relatively large optimal α and optimal λ are typically domains with rela-
tively low stochasticity. So as a rule of thumb, a large difference can be expected on domains
with relatively low stochasticity and frequent revisits of features.

6. Derivation of True Online TD(λ)

The defining property of a true online method is that it maintains an exact equivalence
with an online forward view at all times. This means that at every moment in time, the
weight vector can be interpreted as the result of a sequence of updates with multi-step
update targets. To achieve this step-by-step equivalence, the regular forward has to be
extended, because it only specifies what the weights at the end of an episode should be. In
this section, we present the extended forward view, and we derive the true online TD(λ)
update equations from it.

16

True Online Temporal-Difference Learning

6.1 The forward view of TD(λ)

In Section 2, the general update rule for linear function approximation was presented (Equa-
tion 1), which is based on the update rule for stochastic gradient descent. The update
equations for TD(λ), however, are of a different form (Equations 3, 4 and 5). The forward
view of TD(λ) relates the TD(λ) equations to Equation 1. Specifically, the forward view of
TD(λ) specifies that TD(λ) approximates the λ-return algorithm. This algorithm performs
a series of updates of the form of Equation 1 with the λ-return as update target:

θt+1 = θt + α [Gλt − θ>t φt]φt , for 0 ≤ t < T,

where T is the end of the episode, and Gλt is the λ-return at time t.
The λ-return is a multi-step update target based on a weighted average of all future

state values, with λ determining the weight distribution. Specifically, the λ-return at time
t is defined as:

Gλt = (1− λ)
∞∑
n=1

λn−1G
(n)
t (θt)

with G
(n)
t (θ) is the n-step return, defined as:

G
(n)
t (θ) = Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γn−1Rt+n + γn θ>φt+n .

For episodic tasks, G
(n)
t (θ) is equal to the full return, Gt, if t + n ≥ T , and the λ-return

can be written as:

Gλt = (1− λ)
T−t−1∑
n=1

λn−1G
(n)
t (θt) + λT−t−1Gt. (10)

The forward view offers a particularly straightforward interpretation of the λ-parameter.
For λ = 0, Gλt reduces to the TD(0) update target, while for λ = 1, Gλt reduces to the full
return. In other words, for λ = 0 the update target has maximum bias and minimum
variance, while for λ = 1, the update target is unbiased, but has maximum variance. For λ
in between 0 and 1, the bias and variance are between these two extremes. So, λ enables
control over the trade-off between bias and variance.

While the λ-return algorithm has a very clear intuition, there is only an exact equivalence
for the offline case. That is, the offline variant of TD(λ) computes the same value estimates
as the offline variant of the λ-return algorithm. For the online case, there is only an
approximate equivalence. Specifically, the weight vector at time T , computed by accumulate
TD(λ) closely approximates the weight vector at time T computed by the online λ-return
algorithm for appropriately small values of the step-size parameter (Sutton and Barto,
1998).

That the forward view only applies to the weight vector at the end of an episode, even
in the online case, is a limitation that is often overlooked. It is related to the fact that the
λ-return for St is constructed from data stretching from time t+1 all the way to time T , the
time that the terminal state is reached. A consequence is that the λ-return algorithm can
compute its weight vectors only in hindsight, at the end of an episode. This is illustrated
by Figure 7, which maps each weight vector θt to the earliest time that it can be computed.
‘Time’ in this case refers to the time of data-collection: time t is defined as the moment

17

van Seijen, Mahmood, Pilarski, Machado, Sutton

that sample φt is observed. By contrast, TD(λ) uses only data up to time t to compute the
weight vector θt. Hence, TD(λ) can compute its weight vectors without delay (see Figure
8). To denote this important property, we use the term real-time. TD(λ) is a real-time
algorithm, while the λ-return algorithm is not. A consequence is that even though both
algorithms compute a sequence of T weight vectors, a meaningful comparison can only be
made for θT , because only at time T does TD(λ) have access to the same data as the λ-
return algorithm. This limits the usefulness of the λ-return algorithm as an intuitive way
to view TD(λ). In the next section, we address this limitation.

θ1

1
2
3

T

time

θ2 θTθ3
…

…

Figure 7: The weight vectors of the λ-return algorithm mapped to the earliest time that
they can be computed.

θ11
2
3

T

time

θ2

θT

θ3… …

Figure 8: The weight vectors of TD(λ) mapped to the earliest time that they can be
computed.

6.2 The Real-Time Forward View

The conventional forward view explains how the weight vector at the end of an episode,
computed by TD(λ), can be interpreted as the result of a sequence of updates with a
particular multi-step update target, the λ-return. We want to give a similar explanation for

18

True Online Temporal-Difference Learning

weight vectors during an episode. In other words, we want to construct a real-time forward
view that explains the weight vectors, computed by TD(λ), at all time steps.

The dilemma that arises when trying to construct a real-time forward view is that the
update targets should contain data from many time steps ahead, but the real-time aspect
prohibits the use of data beyond the current time step. The solution to this dilemma is
to have update targets that grow over time. In other words, rather than defining a fixed
update target for each visited state, the update target depends on the time step up to which
data is observed. We call such an update target an interim update target, and the time step
up to which data is observed the data-horizon. We will use a superscript to indicate the
data-horizon h of an update target: Uht . A simple example of an interim update target is
an update target that consists of the discounted sum of rewards up to the data-horizon:

U h
t = Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γh−t−1Rh .

A direct consequence of having update targets that depend on the data-horizon is that
a real-time forward view specifies an update sequence for each data-horizon. Below, we
show the update sequences based on an interim update target Uht for horizons 1, 2 and 3
(θh0 := θinit, for all h).

h = 1 : θ11 = θ10 + α
[
U1
0 − (θ10)>φ0

]
φ0 ,

h = 2 : θ21 = θ20 + α
[
U2
0 − (θ20)>φ0

]
φ0 ,

θ22 = θ21 + α
[
U2
1 − (θ21)>φ1

]
φ1 ,

h = 3 : θ31 = θ30 + α
[
U3
0 − (θ30)>φ0

]
φ0 ,

θ32 = θ31 + α
[
U3
1 − (θ31)>φ1

]
φ1 ,

θ33 = θ32 + α
[
U3
2 − (θ32)>φ2

]
φ2 ,

More generally, the update sequence for horizon h is defined by:

θht+1 = θht + α
[
Uht − (θht)>φt

]
φt , for 0 ≤ t < h . (11)

Figure 9 maps each weight vector to the earliest time it can be computed. Ultimately,
the weight-vector sequence of interest is not the sequence at a particular horizon. Rather,
it is the sequence consisting of the final weight vector at each horizon: θ11,θ

2
2,θ

2
3, . . . ,θ

T
T .

Because θtt can be computed at time t, we call the forward view a real-time forward view.

In principle, Equation (11) can be combined with any interim update target definition
to form a real-time forward view. However, to get the real-time forward view that belongs
to TD(λ) a horizon-dependent version of the λ-return is needed. A version of the λ-return
that corresponds with horizon h should not use data beyond this horizon. In other words,
the highest n-step return that should be involved is the (h − t)-step return. This can be
achieved by replacing each n-step return with n > h − t with the (h − t)-step return. We

19

van Seijen, Mahmood, Pilarski, Machado, Sutton

1
2
3

T

time

…

…

1θ1
2θ1
3θ1

2θ2
3θ2

3θ3

Tθ1
Tθ2

TθT
Tθ3

Figure 9: The weight vectors of the new forward view mapped to the earliest time that they
can be computed.

call this version of the λ-return the interim λ-return, and use the notation G
λ|h
t to indicate

the interim λ-return depending on horizon h. G
λ|h
t can be written as follows:

G
λ|h
t = (1− λ)

h−t−1∑
n=1

λn−1G
(n)
t + (1− λ)

∞∑
n=h−t

λn−1G
(h−t)
t

= (1− λ)

h−t−1∑
n=1

λn−1G
(n)
t +G

(h−t)
t ·

[
(1− λ)

∞∑
n=h−t

λn−1
]

= (1− λ)
h−t−1∑
n=1

λn−1G
(n)
t +G

(h−t)
t ·

[
λh−t−1(1− λ)

∞∑
k=0

λk
]

= (1− λ)
h−t−1∑
n=1

λn−1G
(n)
t + λh−t−1G

(h−t)
t (12)

Equation 12 fully specifies the interim λ-return, except for one small detail: the weight
vector that should be used for the value estimates in the n-step returns has not been specified

yet. The regular λ-return uses G
(n)
t (θt) (see Equation 10). For the real-time forward view,

however, all weight vectors have two indices, so simply using θt does not work in this case.
So which double-indexed weight vector should be used? The two guiding principles on
deciding which weight vector to use is that we want the forward view to be an approximation
of accumulate TD(λ) and that an efficient implementation should be possible. One option

is to use G
(n)
t (θht). While with this definition the update-sequence at data-horizon T is

exactly the same as the sequence of updates from the λ-return algorithm (basically, the
λ-return implicitly uses a data-horizon of T), it prohibits efficiently computation of θh+1

h+1

from θhh. For this reason, we use G
(n)
t (θt+n−1t+n−1), which does allow for efficient computation,

and forms a good approximation of accumulate TD(λ) as well (as we show below). Using

20

True Online Temporal-Difference Learning

this weight vector, the full definition of G
λ|h
t becomes:

G
λ|h
t := (1− λ)

h−t−1∑
n=1

λn−1G
(n)
t

(
θt+n−1t+n−1

)
+ λh−t−1G

(h−t)
t

(
θh−1h−1

)
. (13)

We call this the interim λ-return. We call the algorithm that combines the interim λ-return
with Equation 11 the interim λ-return algorithm.

6.3 Derivation

In this subsection, we derive the update equations of true online TD(λ) directly from the
real-time forward view, defined by equations (11) and (13) (and θh0 := θinit). The derivation
is based on expressing θh+1

h+1 in terms of θhh.

We start by writing θhh directly in terms of the initial weight vector and the interim
λ-returns. First, we rewrite (11), with the interim λ-return as update target, as:

θht+1 = (I− αφtφ>t)θht + αG
λ|h
t

with I the identity matrix. Now, consider θht for t = 1 and t = 2:

θh1 = (I− αφ0φ
>
0)θinit + αφ0G

λ|h
0

θh2 = (I− αφ1φ
>
1)θh1 + αφ1G

λ|h
1

= (I− αφ1φ
>
1)(I− αφ0φ

>
0)θinit + α(I− αφ1φ

>
1)φ0G

λ|h
0 + αφ1G

λ|h
1

For general t ≤ h, we can write:

θht = At−1
0 θinit + α

t∑
i=1

At−1
i φi−1G

λ|h
i−1 ,

where Aj
i is defined as:

Aj
i := (I− αφjφ>j)(I− αφj−1φ>j−1) . . . (I− αφiφ>i), for j ≥ i ,

and Aj
j+1 := I. We are now able to express θhh as:

θhh = Ah−1
0 θinit + α

h∑
i=1

Ah−1
i φi−1G

λ|h
i−1 , (14)

Because for the derivation of true online TD(λ), we only need (14) and the definition of

G
λ|h
t , we can drop the double indices for the weight vectors and use θh := θhh.

21

van Seijen, Mahmood, Pilarski, Machado, Sutton

We now derive a compact expression for the difference G
λ|h+1
t −Gλ|ht .

G
λ|h+1
t −Gλ|ht = (1− λ)

h−t∑
n=1

λn−1Gt+nt (θt+n−1) + λh−tGh+1
t (θh)

− (1− λ)
h−t−1∑
n=1

λn−1Gt+nt (θt+n−1)− λh−t−1Ght (θh−1)

= (1− λ)λh−t−1Ght (θh−1) + λh−tGh+1
t (θh)− λh−t−1Ght (θh−1)

= λh−tGh+1
t (θh)− λh−tGht (θh−1)

= λh−t
[
Gh+1
t (θh)−Ght (θh−1)

]
= λh−t

[h+1−t∑
i=1

γi−1Rt+i + γh+1−tθ>h φh+1 −
h−t∑
i=1

γi−1Rt+i − γh−tθ>h−1φh
]

= λh−t
[
γh−tRh+1 + γh+1−tθ>h φh+1 − γh−tθ>h−1φh

]
= (λγ)h−t

[
Rh+1 + γ θ>h φh+1 − θ>h−1φh

]

Note that the difference G
λ|h+1
t −Gλ|ht is naturally expressed using a term that looks like a

TD error but with a modified time step. We call this the modified TD error, δ′h:

δ′h := Rh+1 + γ θ>h φh+1 − θ>h−1φh.

Using this definition, the difference G
λ|h+1
t −Gλ|ht can be compactly written as:

G
λ|h+1
t −Gλ|ht = (λγ)h−tδ′h (15)

Note that δ′h relates to the regular TD error, δh, as follows:

δ′h = Rh+1 + γ θ>h φh+1 − θ>h−1φh
= Rh+1 + γ θ>h φh+1 − θ>h φh + θ>h φh − θ>h−1φh
= δh + θ>h φh − θ>h−1φh . (16)

22

True Online Temporal-Difference Learning

To get the update rule, we have to express θh+1 in terms of θh. This is done below,
using (14), (15) and (16).

θh+1 = Ah
0 θ0 + α

h+1∑
i=1

Ah
i φi−1G

λ|h+1
i−1

= Ah
0θ0 + α

h∑
i=1

Ah
i φi−1G

λ|h+1
i−1 + αφhG

λ|h+1
h

= Ah
0θ0 + α

h∑
i=1

Ah
i φi−1G

λ|h
i−1 + α

h∑
i=1

Ah
i φi−1

[
G
λ|h+1
i−1 −Gλ|hi−1

]
+ αφhG

λ|h+1
h

= (I− αφhφ>h)
[
Ah−1

0 θ0 + α

h∑
i=1

Ah−1
i φi−1G

λ|h
i−1

]
+α

h∑
i=1

Ah
i φi−1

[
G
λ|h+1
i−1 −Gλ|hi−1

]
+ αφhG

λ|h+1
h

= (I− αφhφ>h)θh + α
h∑
i=1

Ah
i φi−1

[
G
λ|h+1
i−1 −Gλ|hi−1

]
+ αφhG

λ|h+1
h

= (I− αφhφ>h)θh + α

h∑
i=1

Ah
i φi−1(γλ)h+1−iδ′h + αφh

[
Rh+1 + γθh

>φh+1

]
= θh + α

h∑
i=1

Ah
i φi−1(γλ)h+1−iδ′h + αφh

[
Rh+1 + γθh

>φh+1 − θhφh
]

= θh + α

h∑
i=1

Ah
i φi−1(γλ)h+1−iδ′h

+αφh
[
Rh+1 + γθh

>φh+1 − θh−1φh + θh−1φh − θhφh
]

= θh + α

h∑
i=1

Ah
i φi−1(γλ)h+1−iδ′h + αφhδ

′
h + αφh

[
θh−1φh − θhφh

]
= θh + α

h+1∑
i=1

Ah
i φi−1(γλ)h+1−iδ′h + αφh

[
θh−1φh − θhφh

]
= θh + αehδ

′
h + αφh

[
θh−1φh − θhφh

]
with eh :=

h+1∑
i=1

Ah
i φi−1(γλ)h+1−i

= θh + αeh
[
δh + θ>h φh − θ>h−1φh

]
+ αφh

[
θ>h−1φh − θ>h φh

]
= θh + αehδh + α

[
θ>h φh − θ>h−1φh

]
[eh − φh] (17)

23

van Seijen, Mahmood, Pilarski, Machado, Sutton

We now have the update rule for θh, in addition to an explicit definition of eh. Next, using
this explicit definition, we derive an update rule to compute eh from eh−1.

eh =

h+1∑
i=1

Ah
i φi−1(γλ)h+1−i

=
h∑
i=1

Ah
i φi−1(γλ)h+1−i + φh

= (I− αφhφ>h)γλ
h∑
i=1

Ah−1
i φi−1(γλ)h−i + φh

= (I− αφhφ>h)γλeh−1 + φh

= γλeh−1 + φh + αγλ(e>h−1φh)φh (18)

Equations (17) and (18), together with the definition of δh, form the true online TD(λ)
update equations.

7. Other True Online Methods

In the previous section, we showed that the true online TD(λ) equations can be derived
directly from the real-time forward view equations. By using different real-time forward
views, new true online methods can be derived. Sometimes, small changes in the real-time
forward view, like using a time-dependent step-size, can result in surprising changes in the
true online equations. In this section, we look at a number of such variations.

7.1 True Online TD(λ) with Time-Dependent Step-size

When using a time-dependent step-size in the base equation of the forward view (Equation
11) and deriving the update equations following the procedure from Section 6.3, it turns
out that a slightly different trace definition appears. We indicate this new trace using a ‘+’
superscript: e+. For fixed step-size, this new trace definition is equal to:

e+t = αet , for all t.

Of course, using e+t , instead of et also changes the weight vector update slightly. Below,
the full set of update equations is shown:

δt = Rt+1 + γθ>t φt+1 − θ>t φt
e+t = γλe+t−1 + αtφt − αtγλ[(e+t−1)

>φt]φt

θt+1 = θt + δt e
+
t + [θ>t φt − θ>t−1φt][e+t − αtφt]

In addition, e+−1 := 0. We can simplify the weight update equation slightly, by using

δ′t = δt + θ>t φt − θ>t−1φt ,

24

True Online Temporal-Difference Learning

which changes the update equations to:

δ′t = Rt+1 + γθ>t φt+1 − θ>t−1φt
e+t = γλe+t−1 + αtφt − αtγλ[(e+t−1)

>φt]φt

θt+1 = θt + δ′t e
+
t − αt[θ>t φt − θ>t−1φt]φt .

Algorithm 2 shows the corresponding pseudocode. Of course, this pseudocode can also be
used for constant step-size.

Algorithm 4 true online TD(λ) for time-dependent step-size

INPUT: λ,θinit, αt for t ≥ 0
θ ← θinit, v̂old ← 0, t← 0
Loop (over episodes):

obtain initial φ
e+ ← 0
While terminal state is not reached, do:

obtain next feature vector φ′, γ and reward R
v̂ ← θ>φ
v̂′ ← θ>φ′

δ′ ← R+ γ v̂′ − v̂old
e+ ← γλe+ + αtφ− αtγλ((e+)>φ)φ
θ ← θ + δ′e+ − αt(v̂ − v̂old)φ
v̂old ← v̂′

φ← φ′

t← t+ 1

7.2 True online version of Watkins’s Q(λ)

So far, we just considered on-policy methods, that is, methods that evaluate a policy that
is the same as the policy that generates the samples. However, the true online principle can
also be applied to off-policy methods, for which the evaluation policy is different from the
behaviour policy. As a simple example, consider Watkins’s Q(λ) (Watkins, 1989). This is
an off-policy method that evaluates the greedy policy given an arbitrary behaviour policy.
It does this by combining accumulating traces with a TD error that uses the maximum
state-action value of the successor state:

δt = Rt+1 + max
a

q̂(St, a)− q̂(St, At) .

In addition, traces are reset to 0 whenever a non-greedy action his taken.
From a real-time forward-view perspective, the strategy of Watkins’s Q(λ) method can

be interpreted as a growing update target that stops growing once a non-greedy action is
taken. Specifically, let τ be the first time step after time step t that a non-greedy action is
taken, then the interim update target for time step t can be defined as:

Uht := (1− λ)

z−t−1∑
n=1

λn−1G
(n)
t

(
θt+n−1t+n−1

)
+ λz−t−1G

(z−t)
t

(
θz−1z−1

)
, z = min{h, τ} ,

25

van Seijen, Mahmood, Pilarski, Machado, Sutton

with

G
(n)
t (θ) = Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γn−1Rt+n + γn max

a
θ>ψ(St+n, a) .

Algorithm 5 shows the pseudocode for the true online method that corresponds with
this update target definition.

Algorithm 5 true online version of Watkins’s Q(λ)

INPUT: α, λ, γ,θinit,Ψ
θ ← θinit, q̂old ← 0
Loop (over episodes):

obtain initial state S
select action A based on state S (for example ε-greedy)
ψ ← features corresponding to S,A
e← 0
While terminal state has not been reached, do:

take action A, observe next state S′ and reward R
select action A′ based on state S′

A∗ ← argmaxa[θ
>ψ(S′, a)] (if A′ ties for the max, then A∗ ← A′)

ψ′ ← features corresponding to S′, A∗ (if S′ is terminal state, ψ′ ← 0)
q̂ ← θ>ψ
q̂′ ← θ>ψ′

δ ← R+ γ q̂′ − q̂
e← γλe+ψ − αγλ[e>ψ]ψ
θ ← θ + αδ e+ α(q̂ − q̂old)(e−ψ)
if A∗ 6= A′ : e← 0
q̂old ← q̂′

ψ ← ψ′ ; A← A′

A problem with Watkins’s Q(λ) is that if the behaviour policy is very different from
the greedy policy, then traces are reset very often, reducing the overall effect of the traces.
Sutton et al. (2014) present a more advanced off-policy method based on the true online
approach.

7.3 Tabular True Online TD(λ)

Tabular features are a special case of linear function approximation (with one binary feature
corresponding to each state). Hence, the update equations for true online TD(λ) that are
presented so far also apply to the tabular case. However, we discuss it here separately,
because the simplicity of this special case can provide extra insight.

26

True Online Temporal-Difference Learning

For tabular features, the update equations are:

δt = Rt+1 + γv̂(St+1)− v̂(St)

et(s) =

{
γλ(1− α)et−1(s) + 1 if s = St

γλet−1(s) if s 6= St

v̂t+1(s) =

{
v̂t(s) + αδt + α

[
v̂t(St)− v̂t−1(St)

]
(et(s)− 1) if s = St

v̂t(s) + α
[
δt + v̂t(St)− v̂t−1(St)

]
et(s) if s 6= St

What is interesting about the tabular case is that the dutch-trace update reduces to a
particularly simple form. In fact, for the tabular case, a dutch-trace update is equal to the
weighted average between an accumulating-trace update and a replacing-trace update, with
the weight of the former (1 − α) and the latter α. Algorithm 6 shows the corresponding
pseudocode.

Algorithm 6 tabular true online TD(λ)

initialize v(s) for all s
vold ← 0
Loop (over episodes):

initialize S
e(s)← 0 for all s
While S is not terminal, do:

obtain next state S′ and reward R
∆v ← v(S)− vold
vold ← v(S′)
δ ← R+ γ v(S′)− v(S)
e(S)← (1− α)e(S) + 1
For all s:

v(s)← v(s) + α(δ + ∆v)e(s)
e(s)← γλe(s)

v(S)← v(S)− α∆v
S ← S′

7.4 Non-Linear Function Approximation

An interesting direction for future work is to explore true online methods based on non-
linear function approximation. This is especially interesting given the increasing interest in
combining reinforcement learning with deep learning (for example, see Mnih et al., 2015).
Being able to use higher λ-values reduces the bias of update targets, which moves the policy
evaluation task more towards a supervised learning task, on which deep learning excels.

Constructing a real-time forward view for non-linear function approximation is straight-
forward. The interim λ-return can simply be combined with a non-linear base equation.
Let v̂(s,θ) be the value estimate of s given weight vector θ. Then, the following non-linear
base equation can be used:

θht+1 = θht + α
[
Uht − v̂(St,θ

h
t)
]
∇θv̂(St,θ

h
t) , (19)

27

van Seijen, Mahmood, Pilarski, Machado, Sutton

where ∇θv(s,θht) is the gradient of v̂ with respect to θ in point (St,θ
h
t). However, it is an

open question whether an efficient backward view can be constructed that computes θt+1
t+1

from θtt.

8. Conclusions

We tested the hypothesis that true online TD(λ) (and true online Sarsa(λ)) dominates
TD(λ) (and Sarsa(λ)) with accumulating as well as with replacing traces by performing
experiments over a wide range of domains. Our extensive results support this hypothesis.
In terms of computational cost, TD(λ) has a slight advantage. In the worst case, true online
TD(λ) is twice as expensive. In the typical case of sparse features, it is only fractionally more
expensive than TD(λ). Memory requirements are the same. In terms of learning speed, true
online TD(λ) was often better, but never worse than TD(λ) with either accumulating or
replacing traces, across all domains/representations that we tried. Our analysis showed that
especially on domains with relatively low stochasticity and frequent revisits of features a
large difference in learning speed can be expected. Furthermore, true online TD(λ) has the
advantage over TD(λ) with replacing traces that it can be used with non-binary features,
and it has the advantage over TD(λ) with accumulating traces that it is less sensitive with
respect to its parameters. Finally, we outlined an approach for deriving new true online
methods, based on rewriting the equations of a real-time forward view. This may lead to
new, interesting methods in the future.

9. Acknowledgements

The authors thank Hado van Hasselt for extensive discussions leading to the refinement
of these ideas. This work was supported by grants from Alberta Innovates Technology
Futures and the National Science and Engineering Research Council of Canada. Computing
resources were provided by Compute Canada through WestGrid.

28

True Online Temporal-Difference Learning

Appendix A. Detailed Results Random MRPs

MSE

MSE

MSE MSE

λ λ λ

replace TD(λ)

true-online TD(λ)

accumulate TD(λ)

true-online TD(λ)

accumulate TD(λ)

replace TD(λ)

true-online TD(λ)

accumulate TD(λ) replace TD(λ)

λ=1

λ=0

step-size

tabular features

tabular features, accumulate TD(λ)

MSE

λ=1

λ=0

step-size

tabular features, replace TD(λ)

MSE

λ=1

λ=0

step-size

tabular features, true-online TD(λ)

binary features normal features

MSE
λ=1 λ=0

step-size

binary features, accumulate TD(λ)

MSE λ=1

λ=0

step-size

normal features, accumulate TD(λ)

MSE

λ=1

λ=0

step-size

binary features, replace TD(λ)

MSE

step-size

normal features, replace TD(λ)

MSE

λ=1

λ=0

step-size

binary features, true-online TD(λ)

MSE

λ=0

λ=1

step-size

normal features, true-online TD(λ)

Figure 10: Results on a random MRP with k = 10, b = 3 and σ = 0.1. MSE is the mean
squared error averaged over the first 100 time steps, as well as 50 runs, and normalized
using the initial error. The top graphs summarize the results from the graphs below it; it
shows the MSE error, for each λ, at the best step-size.

29

van Seijen, Mahmood, Pilarski, Machado, Sutton

MSE MSE MSE

λ λ λ

replace TD(λ)

true-online TD(λ)

accumulate TD(λ)

true-online TD(λ)accumulate TD(λ)

replace TD(λ)

true-online TD(λ)

accumulate TD(λ)

replace TD(λ)

tabular features

MSE

λ=1

λ=0

step-size

tabular features, accumulate TD(λ)

MSE

λ=1

λ=0

step-size

tabular features, replace TD(λ)

MSE

λ=1

λ=0

step-size

tabular features, true-online TD(λ)

binary features normal features

MSE

λ=1

λ=0

step-size

binary features, accumulate TD(λ)

MSE

λ=1

step-size

normal features, accumulate TD(λ)

MSE

λ=1

λ=0

step-size

binary features, replace TD(λ)

MSE

step-size

normal features, replace TD(λ)

MSE

λ=1

λ=0

step-size

binary features, true-online TD(λ)

MSE

λ=1

step-size

normal features, true-online TD(λ)

λ=0

Figure 11: Results on a random MRP with k = 100, b = 10 and σ = 0.1. MSE is the mean
squared error averaged over the first 1000 time steps, as well as 50 runs, and normalized
using the initial error.

30

True Online Temporal-Difference Learning

MSE MSE MSE

λ λ λ

replace TD(λ)

true-online TD(λ)

accumulate TD(λ)

true-online TD(λ)

accumulate TD(λ)

replace TD(λ)

true-online TD(λ)

accumulate TD(λ)

replace TD(λ)

tabular features binary features normal features

MSE

λ=1

λ=0

binary features, accumulate TD(λ)

step-size

MSE

λ=1

λ=0

binary features, replace TD(λ)

step-size

MSE

λ=1

λ=0

binary features, true-online TD(λ)

step-size

MSE

λ=1

λ=0

normal features, accumulate TD(λ)

step-size

MSE

normal features, replace TD(λ)

step-size

MSE

λ=0

λ=1

normal features, true-online TD(λ)

step-size

MSE

λ=1

λ=0

tabular features, accumulate TD(λ)

step-size

MSE

λ=1

λ=0

tabular features, replace TD(λ)

step-size

MSE

λ=1

λ=0

tabular features, true-online TD(λ)

step-size

Figure 12: Results on a random MRP with k = 100, b = 3 and σ = 0. MSE is the mean
squared error averaged over the first 1000 time steps, as well as 50 runs, and normalized
using the initial error.

31

van Seijen, Mahmood, Pilarski, Machado, Sutton

Appendix B. Detailed Results for Myoelectric Prosthetic Arm

van Seijen, Sutton

ANGLE PREDICTION FORCE PREDICTION

BEST

TOTD

RTraces

ATraces

Figure 5: Analysis of TOTD with respect to accumulating and replacing traces on prosthetic
data from the single amputee subject described in Pilarski et al. (2013), for the prediction of
servo motor angle (left column) and grip force (right column) as recorded from the amputee’s
myoelectrically controlled robot arm during a grasping task.

16

van Seijen, Sutton

ANGLE PREDICTION FORCE PREDICTION

BEST

TOTD

RTraces

ATraces

Figure 5: Analysis of TOTD with respect to accumulating and replacing traces on prosthetic
data from the single amputee subject described in Pilarski et al. (2013), for the prediction of
servo motor angle (left column) and grip force (right column) as recorded from the amputee’s
myoelectrically controlled robot arm during a grasping task.

16

van Seijen, Sutton

ANGLE PREDICTION FORCE PREDICTION

BEST

TOTD

RTraces

ATraces

Figure 5: Analysis of TOTD with respect to accumulating and replacing traces on prosthetic
data from the single amputee subject described in Pilarski et al. (2013), for the prediction of
servo motor angle (left column) and grip force (right column) as recorded from the amputee’s
myoelectrically controlled robot arm during a grasping task.

16

van Seijen, Sutton

ANGLE PREDICTION FORCE PREDICTION

BEST

TOTD

RTraces

ATraces

Figure 5: Analysis of TOTD with respect to accumulating and replacing traces on prosthetic
data from the single amputee subject described in Pilarski et al. (2013), for the prediction of
servo motor angle (left column) and grip force (right column) as recorded from the amputee’s
myoelectrically controlled robot arm during a grasping task.

16

angle prediction force prediction

angle prediction, accumulate TD(λ) force prediction, accumulate TD(λ)

angle prediction, replace TD(λ) force prediction, replace TD(λ)

angle prediction, true online TD(λ) force prediction, true online TD(λ)

replace TD(λ)
replace TD(λ)

 true online TD(λ) true online TD(λ)

accumulate TD(λ)

accumulate TD(λ)

Figure 13: Results on prosthetic data from the single amputee subject described in Pilarski
et al. (2013), for the prediction of servo motor angle (left column) and grip force (right
column) as recorded from the amputee’s myoelectrically controlled robot arm during a
grasping task.

32

True Online Temporal-Difference Learning

References

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279.

Dayan, P. (1992). The convergence of TD(λ) for general λ. Machine Learning, 8(3):341–362.

Defazio, A. and Graepel, T. (2014). A comparison of learning algorithms on the arcade
learning environment. In arXiv:1410.8620.

Hebert, J. S., Olson, J. L., Morhart, M. J., Dawson, M. R., Marasco, P. D., Kuiken,
T. A., and Chan, K. M. (2014). Novel targeted sensory reinnervation technique to restore
functional hand sensation after transhumeral amputation. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 22(4):763–773.

Kaelbling, L. P., Littman, M. L., and Moore, A. P. (1996). Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237–285.

Maei, H. R. (2011). Gradient temporal-difference learning algorithms. PhD thesis, University
of Alberta, Canada.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., Kumaran, H. K. D., Wierstra, D., Legg, S., and Hassabis, D. (2015).
Human-level control through deep reinforcement learning. Nature, 518:529–533.

Modayil, J., White, A., and Sutton, R. S. (2014). Multi-timescale nexting in a reinforcement
learning robot. Adaptive Behavior, 22(2):146–160.

Parker, P., Englehart, K. B., , and Hudgins, B. (2006). Myoelectric signal processing
for control of powered limb prostheses. Journal of Electromyography and Kinesiology,
16(6):541–548.

Pilarski, P. M., Dawson, M. R., Degris, T., Carey, J. P., Chan, K. M., Hebert, J. S., and
Sutton, R. S. (2013). Adaptive artificial limbs: A real-time approach to prediction and
anticipation. IEEE Robotics & Automation Magazine, 20(1):53–64.

Schapire, R. E. and Warmuth, M. K. (1996). On the worst-case analysis of temporal-
difference learning algorithms. Machine Learning, 22((1/2/3):95–121.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine
Learning, 3(1):9–44.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT
Press, Cambridge.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, C., and
Wiewiora, E. (2009a). Fast gradient-descent methods for temporal-difference learning
with linear function approximation. In Proceedings of the 26th International Conference
on Machine Learning (ICML), pages 993–1000.

33

van Seijen, Mahmood, Pilarski, Machado, Sutton

Sutton, R. S., Maei, H. R., and Szepesvári, C. (2009b). A convergent O(n) algorithm for
off-policy temporal-difference learning with linear function approximation. In Proceedings
of Advances in Neural Information Processing Systems 21 (NIPS), pages 1609–1616.

Sutton, R. S., Mahmood, A. R., Precup, D., and van Hasselt, H. (2014). A new Q(λ)
with interim forward view and Monte Carlo equivalence. In Proceedings of the 31st
International Conference on Machine Learning (ICML).

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., and Precup, D.
(2011). Horde: A scalable real-time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In Proceedings of the 10th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pages 761–768.

Szepesvári, C. (2010). Algorithms for reinforcement learning. Morgan and Claypool.

van Seijen, H. H. and Sutton, R. S. (2014). True online TD(λ). In Proceedings of the 31th
international conference on Machine learning (ICML).

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, Cambridge
University, Cambridge, England.

34

