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True Online TD(λ)

Abstract

TD(λ) is a core algorithm of modern rein-
forcement learning. The appeal of TD(λ)
comes from its clear and conceptually sim-
ple forward view, and the fact that it can be
implemented online in an inexpensive man-
ner. While offline TD(λ) matches the for-
ward view exactly, online TD(λ) — which is
more interesting for practical applications —
only approximates it. Up to now, it has been
an open question whether a version of on-
line TD(λ) could be made that matches the
forward view exactly. We introduce a new
online TD(λ) algorithm for function approxi-
mation, with the same complexity as the reg-
ular version, that achieves the forward view
exactly. Key to this is a refinement of the on-
line version of the forward view that is well
defined at each time step rather than only at
the end of an episode. We use this refined ver-
sion to derive the new algorithm. By adher-
ing more truly to the goal of matching the for-
ward view, the new algorithm performs much
better in practise. We demonstrate this on
several standard benchmark problems, where
it outperforms both accumulating and replac-
ing traces.

1. Why True Online TD(λ) Matters

Temporal-difference (TD) learning is a core learning
technique in modern reinforcement learning (Sutton,
1988; Kaelbling et al., 1996; Sutton & Barto, 1998;
Szepesvári, 2010). One of the main challenges in re-
inforcement learning is to make predictions, in an ini-
tially unknown environment, about the (discounted)
sum of future rewards, the return, based on currently
observed feature values and a certain behaviour policy.
With TD learning it is possible to learn good estimates
of the expected return quickly by bootstrapping from
other expected-return estimates. TD(λ) is a popular

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

TD algorithm that combines basic TD learning with
eligibility traces to further speed learning. The popu-
larity of TD(λ) can be explained by its simple imple-
mentation, its low computational complexity, and its
conceptually straightforward interpretation, given by
its forward view.

The forward view of the standard implementation of
TD(λ), which uses accumulating traces, interprets the
updates under TD(λ) as updates with the λ-return
as update target. The λ-return is an estimate of the
expected return based on rewards as well as other
expected-return estimates, with λ determining the ex-
act way they are combined.

In the offline case, where the expected-return esti-
mates are updated after all data has been collected,
the equivalence between TD(λ) and the forward view
is exact. However, in the more relevant online case,
where estimates are updated during data collection,
the equivalence only holds approximately. Because the
equivalence does not hold exactly, it is possible that
estimates diverge under online TD(λ), even for simple
tasks with bounded returns (we show an example in
Section 4.3).

To avoid divergence of estimates, an alternative imple-
mentation of TD(λ) is sometimes used, based on re-
placing traces (Singh et al., 1996), which prevents such
behaviour. However, this solution is far from ideal.
While it can prevent divergence of estimates, this can
come at the cost of losing all learning speed benefits
of eligibility traces. In particular, when a large frac-
tion of the features have a non-zero value, replacing
traces looses its effectiveness (we show an example in
Section 4.3.). In addition, in the control case, where
expected-return estimates are learned conditioned on
actions, there are two ways to implement replacing
traces (with or without clearing traces for non-selected
actions), while it is unclear which implementation is
best, adding an extra parameter.

In this paper, we present for the first time (to the
best our knowledge) an online version of TD(λ) that
is exactly equivalent to the forward view. That is, the
values computed by this version of TD(λ), which we
call true online TD(λ), are exactly the same as the val-
ues computed by the forward view, at every moment
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in time. As a consequence, true online TD(λ) avoids
divergence of estimates that can occur under accumu-
lating traces, while it does not suffer from the negative
side-effects of replacing traces. We demonstrate this
empirically, by showing that true online TD(λ) is able
to perform well on a benchmark problem where both
accumulating and replacing traces are ineffective.

Key to our new implementation of TD(λ) is a refine-
ment of the forward view. The current forward view is
not well-defined in the online case, because its update
target assumes knowledge of rewards and states that
are not yet observed at the moment of the update. We
refined the forward view, such that it is well-defined
in the online case at all time steps.

Next, we present the main learning framework that we
consider in this paper.

2. Problem Setting and Notation

In this section, we present the main learning frame-
work that we consider and discuss TD(λ) and its for-
ward view. As a convention, we indicate random vari-
ables by capital letters (e.g., St, Rt), vectors by bold
letters (e.g., θ, φ), functions by small letters (e.g., v),
and sets by calligraphic font (e.g., S, A).

2.1. Markov Reward Processes

We focus in this paper primarily on discrete-time
Markov reward processes (MRPs), which can be de-
scribed as 4-tuples of the form 〈S, p, r, γ〉, consisting of
S, the set of all states; p(s′|s), the transition probabil-
ity function, giving for each state s ∈ S the probability
of a transition to state s′ ∈ S at the next step; r(s, s′),
the reward function, giving the expected reward after
a transition from s to s′. γ is the discount factor, spec-
ifying how future rewards are weighted with respect to
the immediate reward.

The return at time step t is the discounted sum of
rewards observed after time step t:

Gt =

∞∑
i=1

γi−1Rt+i ,

An MRP can contain terminal states, dividing the se-
quence of state transitions into episodes. When a ter-
minal state is reached the current episode ends and
the state is reset to the initial state. The return for an
episodic MRP is defined as:

Gt =

T−t∑
i=1

γi−1Rt+i ,

where T is the time step that the terminal state is
reached.

We are interested in learning the value-function v of
an MRP, which maps each state s ∈ S to the expected
value of the return:

v(s) = E{Gt |St = s} .

Next, we discuss function approximation.

2.2. Function Approximation

In the general case, the state-space can be huge or
even continuous. In such cases it is not possible to
represent the value function v exactly. In this case,
or when data-generalization is required, function ap-
proximation is used to represent v. The approximate
value-function v̂(s,θt) gives the approximate value of
state s, given the weight vector θ at time step t. As a
shorthand, we indicate this value by v̂t(s).

A common approach is to use linear function approxi-
mation, in which case the value of a state is the inner
product between the weight vector θ and a feature vec-
tor φ. In this case, the value of state s at time step t
is approximated by:

v̂t(s) = θ>t φ(s) =
∑
i

θi,t φi(s)

where φi(s) is the value of feature i in state s, and θi,t
is the weight of that feature at time step t.

One of the main technique for improving the value
function estimate v̂ is by means of gradient descent,
which involves incremental adjustments of the weight
vector θ in the direction of the gradient:

θt+1 = θt + α [Ut − v̂t(St)]∇θt v̂t(St) , (1)

where ∇θt
v̂t(St) is the gradient of v̂ with respect to θt.

In case of linear function approximation, this gradient
has a particularly simple form:

∇θt v̂t(s) = φ(s) .

There are many ways to construct an update target Ut
from observed states and rewards. For example, Monte
Carlo methods use the full return as the update target:

Ut = Gt .

TD methods use an update target that is based on
value estimates of other states. For example, the
TD(0) update target is:

Ut = Rt+1 + γv̂t(St+1) . (2)
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The update shown in Equation (1) is an online update,
referring to the fact that the weight vector is updated
at every time step t. Alternatively, the weight vector
can be updated offline. With offline updating, the
weight vector stays constant during an episode, and
instead the weight corrections are collected on the side.
Let the weight vector for episode k be θk. The weight
correction for time step t of this episode is:

∆t = α [Ut − v̂k(St)]∇θk
v̂k(St) .

After the episode has terminated, the weight vector
is updated by adding all weight corrections collected
during the episode:

θk+1 = θk +

T−1∑
t=0

∆t .

Online updating not only has the advantage that it
can be applied to non-episodic tasks, but it will in
general also produce better value-function estimates
under temporal-difference learning. The reason is that
under online learning the update targets, which boot-
strap from the values of other states, use more recent
value estimates.

2.3. TD(λ)

Under linear function approximation, the TD(0)
method, based on update target (2), performs at time
step t+ 1 the following update:

θt+1 = θt + α δtφ(St)

where
δt = Rt+1 + γv̂t(St+1)− v̂t(St)

is called the TD error. This update only affects the
weights θi for which φi is non-zero. The idea behind
TD(λ) is to update weights for which φi was non-zero
in the (near) past as well. This is implemented by
means of an eligibility vector e, which reflects how
much each feature is ‘eligible’ for the current TD error.
TD(λ) performs an update of each θi, with the current
TD error, proportional to its trace value ei:

1

θt+1 = θt + δtet .

For the standard implementation, which uses accumu-
lating traces, et is initialized as the zero vector, 0, and
updated according to:

et = γλet−1 + αφ(St) ,

where λ is the trace-decay parameter. Note that for
λ = 0, the TD(λ) update reduces to the TD(0) update.
Algorithm 1 shows pseudocode for TD(λ).

1We fold the step-size α in the eligibility vector.

Algorithm 1 linear TD(λ)

initialize θ arbitrarily
loop {over episodes}

initialize e = 0
initialize S
repeat {for each step in the episode}

generate reward R and next state S′ for S
δ ← R+ γ θ>φ(S′)− θ>φ(S)
e← γλe+ αφ(S)
θ ← θ + δe
S ← S′

until S is terminal
end loop

It is well-known that for TD(λ) with accumulating
traces values sometimes diverge, even on simple tasks
with bounded returns. For this reason, a second im-
plementation of TD(λ) is sometimes used, based on
replacing traces (Singh et al., 1996). With replacing
traces, e is updated as follows:

ei,t =

{
γλei,t−1 if φi(St) = 0

αφi(St) if φi(St) 6= 0
for all i .

While replacing traces prevents divergence of values,
its application is limited. The fundamental limitation
of replacing traces is that it treats zero as a special
case. When there are only a small number of features
with a value of zero, TD(λ) with replacing traces ap-
proaches TD(0), even for high λ values. If all features
are non-zero, et = αφ(St) and the TD(λ) replacing-
traces update is equal to the TD(0) update.

2.4. The Forward View

The forward view relates TD(λ) (with accumulating
traces) to the λ-return algorithm. This algorithm per-
forms at each time step a standard update (as in Equa-
tion (1)) with the λ-return as update target. The λ-
return Gλt is an estimate of the expected return based
on a combinations of rewards and other value esti-
mates:

Gλt = (1− λ)

∞∑
n=1

λn−1G
(n)
t ,

with G
(n)
t the n-step return:

G
(n)
t =

n∑
i=1

γi−1Rt+i + γn v̂t(St+n) .

For an episodic task, the λ-return is defined as:

Gλt = (1− λ)

T−t−1∑
n=1

λn−1G
(n)
t + λT−t−1G

(T−t)
t , (3)
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where T is the time step that the terminal state is
reached. Because the value of a terminal state is al-
ways 0, the last λ-return in this equation is equal to
the full return:

G
(T−t)
t =

T−t∑
i=1

γi−1Rt+i = Gt .

Note that for λ = 0, Gλt is equal to Rt+1 + γv̂t(St+1),
the TD(0) update target. On the other hand, for λ =
1, Gλt is equal to the full return Gt. For λ in between
0 and 1, some mix between the TD(0) update target
and the Monte Carlo update target is obtained.

It has been shown that offline TD(λ) is equal to the
offline λ-return algorithm (Sutton, 1988; Sutton &
Barto, 1998). However, online TD(λ) is only approx-
imately equal to the online λ-return algorithm. In
fact, no version of online TD(λ) can be constructed
that matches the online λ-return algorithm exactly,
because the λ-return uses rewards and states beyond
the current time step. Therefore, in the next section,
we refine the forward view such that it can be imple-
mented online.

3. True Online Forward View

The problem with the current forward view is that it
cannot be implemented online, because the update at
times step t + 1, based on λ-return Gλt , uses rewards
and states beyond time step t+ 1 (in fact, potentially
from infinitely far in the future). Hence, in order to
make an online TD(λ) version that is truly equivalent
to the forward view, the forward view should be ex-
tended such that it has a well-defined, implementable,
online version.

To construct an implementable forward view, we start
by generalizing the λ-return to a version that is trun-
cated at a specific time step. Let t be the time step the
λ-return is truncated and τ < t be the time step from
which the λ-return starts. The truncated λ-return Gλτ,t
is defined as:

Gλτ,t = (1− λ)

t−τ−1∑
n=1

λn−1G
(n)
τ,τ ′(n) + λt−τ−1G

(t−τ)
τ,τ ′(t−τ) .

Note that the n-step returns in this definition also have
a second time-step subscript: τ ′(n). This time step
refers to the time step of the state value used in the
n-step return:

G
(n)
τ,τ ′ =

n∑
i=1

γi−1Rτ+i + γn v̂τ ′(Sτ+n) (4)

Having this second time step allows us to define n-
step returns that use more recent value estimate than

the one from time step τ (note: G
(n)
τ,τ = G

(n)
τ ). For

an episodic task terminating at time step T , Gλτ,T is

equal to the regular λ-return Gλτ (see Equation 3) if
τ ′(n) = τ for 1 ≤ n ≤ t − τ . We come back to the
specific definition of τ ′(n) at the end of this section.

The idea behind the new online forward view is in
essence a simple one: at each time step, the truncated
λ-returns from all previous time steps are updated,
such that they are now truncated at the current time
step; the weight vector of the current time step is de-
termined by sequentially performing TD backups, us-
ing the updated λ-returns, starting from the initial
weight vector, θinit. The weight vectors for the first
three time steps are shown below. We use a second in-
dex for θ to indicate at which time step the λ-returns
that are used to construct it are truncated.2

θ0,0 : θ0,0 = θinit ,

θ1,1 : θ0,1 = θinit

θ1,1 = θ0,1 + α0

[
Gλ0,1 − θ

>
0,1 φ(S0)

]
φ(S0) ,

θ2,2 : θ0,2 = θinit

θ1,2 = θ0,2 + α0

[
Gλ0,2 − θ

>
0,2 φ(S0)

]
φ(S0) ,

θ2,2 = θ1,2 + α1

[
Gλ1,2 − θ

>
1,2 φ(S1)

]
φ(S1) ,

θ3,3 : θ0,3 = θinit

θ1,3 = θ0,3 + α0

[
Gλ0,3 − θ

>
0,3 φ(S0)

]
φ(S0) ,

θ2,3 = θ1,3 + α1

[
Gλ1,3 − θ

>
1,3 φ(S1)

]
φ(S1) ,

θ3,3 = θ2,3 + α2

[
Gλ2,3 − θ

>
2,3 φ(S2)

]
φ(S2) ,

More generally, the weight vector at time step t, θt,t,
is:

θ0,t = θinit

θ1,t = θ0,t

+α0

[
Gλ0,t − (θ0,t)

>φ(S0)
]
φ(S0)

...

θt,t = θt−1,t

+αt−1

[
Gλt−1,t − (θt−1,t)

>φ(St−1)
]
φ(St−1) .

2For ease of exposition, we focus on the linear case.
However, our approach can be easily extended to the non-
linear case.
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Note that θi,j for i 6= j are temporary ‘helper’ vec-
tors. The value estimate of state s at time step t is
determined by θt,t:

v̂t(s) = θt,tφ(s) .

Similarly, v̂τn , used by the the n-step return in Equa-
tion 4, makes use of θτn,τn .

So far, we have not yet specified τ ′(n), used by the
truncated λ-return Gλτ,t. It might seem logical to de-

fine τ ′(n) = τ for all n, such that G
(n)
τ,τ ′(n) reduces to

the standard n-step return G
(n)
τ . However, this would

not only reduce the accuracy (older value estimates
are used), it is also highly impractical: the θ vectors
from all previous time steps would have to be stored.
Instead, we use

τ ′(n) = τ + n− 1 , for 1 ≤ n ≤ t− τ . (5)

With this definition each new n-step return uses the
most recent θ vector, and enables efficient implemen-
tation (as we demonstrate in the next section).

We call the algorithm that computes θt,t at each time
step t the truncated λ-return algorithm. Note that at
the end of an episode, the values computed by the
truncated λ-return algorithm are the same as the val-
ues computed by the online λ-return algorithm. How-
ever, the values during an episode are different. Be-
cause of this, the truncated λ-return algorithm can be
implemented fully online, in contrast to the λ-return
algorithm.

While it is possible to implement the truncated λ-
return algorithm online, it is an expensive method and
requires storage of all observed states and rewards. In
the next section, we introduce true online TD(λ) which
implements the true online forward view efficiently us-
ing eligibility traces.

4. True Online TD(λ)

This section present the online TD(λ) method that
matched the new online forward view exactly. First
the algorithm itself is presented, then its equivalence
to the truncated λ-return algorithm is proven. The
section finishes with empirical results demonstrating
the benefits of the algorithm.

4.1. The Algorithm

True online TD(λ) forms the backward view of the
truncated λ-return algorithm. Like traditional TD(λ),
it updates feature weights proportional to a decaying
eligibility trace.

We start by specifying the very first backup. All traces
have a value of 0 at this point. Therefore, the backup
is simply a TD(0) update:

θ1 = θ0 + α0[R1 + γθ>0 φ(S1)− θ>0 φ(S0)]φ(S0)

For t ≥ 1, θ receives a TD(0)-like update (note the
subtle difference in the weight vector used for St+1

and St), preceded by an update of θ proportional to
the trace value at the previous time step, decayed by
γλ:

θ′t = θt + γλδtet−1

θt+1 = θ′t + αt[Rt+1 + θt
>φ(St+1)− θ′t

>
φ(St)]φ(St) ,

with

δt = Rt+1 + θ>t φ(St+1)− θ>t−1φ(St) . (6)

Note that δt makes use of v̂t−1(St), instead of v̂t(St),
as with traditional TD(λ).

Substituting the expression for θ′t in the expression for
θt+1 gives:

θt+1 = θt + γλδtet−1 + αt[Rt+1 + θ>t φ(St+1)]φ(St)

−αt[(θt + γλδtet−1)>φ(St)]φ(St)

= θt + γλδtet−1 + αt[δt + θ>t−1φ(St)]φ(St)

−αt[θ>t φ(St) + γλδte
>
t−1 φ(St)]φ(St)

= θt + γλδtet−1 + αtδt φ(St)

−αtγλδt[e>t−1 φ(St)]φ(St)

+αt[θ
>
t−1φ(St)− θ>t φ(St)]φ(St)

= θt + δt et + αt[θ
>
t−1φ(St)− θ>t φ(St)]φ(St)

with

et = γλet−1 + αtφ(St)− αtγλ[e>t−1 φ(St)]φ(St) (7)

The equations above define how θ is updated for true
online TD(λ). Algorithm 2 shows pseudo-code that
implements these updates.

4.2. Equivalence with Online Forward View

In this section, we prove that the values computed
by true online TD(λ) are exactly the same as those
computed by the truncated λ-return algorithm. That
is, we prove that θt,t = θt for all t, where θt,t are
the weights computed by the truncated λ-return algo-
rithm, and θt are the weights computed by the true
online TD(λ) algorithm.

That θ1,1 = θ1 is true can be easily checked. We now
prove that if

θτ,τ = θτ−1,τ−1 + δτ−1 eτ−1 + ετ−1φ(Sτ−1) (8)
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Algorithm 2 true online TD(λ)

initialize θ arbitrarily
loop {over episodes}

initialize e = 0
initialize S
v̂S ← θ>φ(S)
repeat {for each step in the episode}

generate reward R and next state S′ for S
v̂S′ ← θ>φ(S′)
δ ← R+ γv̂S′ − v̂S
e← γλe+ α

[
1− γλ e>φ(S)

]
φ(S)

θ ← θ + δe+ α
[
v̂S − θ>φ(S)

]
φ(S)

v̂S ← v̂S′

S ← S′

until S is terminal
end loop

with

ετ−1 = ατ−1[θ>τ−2,τ−2φ(Sτ−1)− θ>τ−1,τ−1φ(Sτ−1)]

and

δτ−1 = Rτ + θ>τ−1,τ−1φ(Sτ )− θ>τ−2,τ−2φ(Sτ−1) ,

and eτ given by (7) holds for all τ ≤ t, then it holds
for τ = t+ 1. Note that this is sufficient to prove that
θt,t = θt holds for all t.

By substituting the helper θ vectors in the expression
for θt,t given in Section 3, the recursive definition of
θt,t can be rewritten to a single expression of the form:

θt,t = c0 + c1G
λ
0,t + c2G

λ
1,t + ...+ ctG

λ
t−1,t , (9)

with the ci vectors are constructed from the vec-
tors θinit, φ(S0) through φ(St−1) and step-sizes α0

through αt−1. In other words, the ci vectors contain
no weight values or rewards. Similarly, the (helper)
vector θt,t+1 can be rewritten as

θt,t+1=c0 + c1G
λ
0,t+1 + c2G

λ
1,t+1 + ...+ ctG

λ
t−1,t+1 .

The ci vectors in this equation are the same vectors
as those in Equation (9). To compute θt,t+1 from θt,t
each involved λ-return should be truncated one time
step later.

To see what happens when a truncated λ-return is
extended by one time step, consider Gλτ,t+1−Gλτ,t. Gλτ,t
is defined as (using (5)):

Gλτ,t = (1− λ)

t−τ−1∑
i=1

λn−1G
(n)
τ,τ+n−1 + λt−τ−1G

(t−τ)
τ,t−1,

and Gλτ,t+1 is:

Gλτ,t+1 = (1− λ)

t−τ∑
i=1

λn−1G
(n)
τ,τ+n−1 + λt−τG

(t+1−τ)
τ,t ,

Subtracting Gλτ,t from Gλτ,t+1 yields

Gλτ,t+1 −Gλτ,t = λt−τ [G
(t+1−τ)
τ,t −G(t−τ)

τ,t−1] . (10)

Similarly, it can be shown that subtracting Ĝ
(t−τ)
τ,t from

Ĝ
(t+1−τ)
τ,t−1 yields:

Ĝ
(t+1−τ)
τ,t − Ĝ(t−τ)

τ,t−1 = γt−τRt+1 + γt+1−τ v̂t(St+1)

− γt−τ v̂t−1(St)

= γt−τδt .

Substituting this result in (10) yields:

Gλτ,t+1 −Gλτ,t = (λγ)t−τδt . (11)

Gλτ,t is a value constructed from a weighted sum of
rewards and different state values, ending with a term
involving the value of St:

Gλτ,t = · · ·+ λt−τ−1γt−τ v̂t−1(St)

From this and (11) it follows that:

Gλτ,t+1 = Gλτ,t + (λγ)t−τδt .

· · ·+ λt−τ−1γt−τ v̂t−1(St) + (λγ)t−τδt

· · ·+ λt−τ−1γt−τ [v̂t−1(St) + λδt]

This demonstrates that increasing the truncated λ-
return Gλτ,t by one time step simply means submitting
the value v̂t−1(St) with the value v̂t−1(St) + λδt.

Each truncated λ-return in Equation (9) ends with
a term containing v̂t−1(St) in it (because they are all
truncated at time step t). Because we assume (8) holds
for τ = t, we have a simple expression that shows the
relation between θt,t and v̂t−1(St):

θt,t = θt−1,t−1 + et−1δt−1 + εt−1φ(St−1)

= θt−1,t−1 + εt−1φ(St−1)

+et−1[Rt + γv̂t−1(St)− v̂t−2(St−1)]

Replacing v̂t−1(st) by vt−1(st) + λδt in the right-hand
side of this equation gives θt,t+1. Hence:

θt,t+1 = θt,t + γλet−1δt . (12)
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From Section 3 it follows that θt+1,t+1 is computed
from θt,t+1 as follows:

θt+1,t+1 = θt,t+1

+αt

[
Gλt,t+1 − (θt,t+1)>φ(St)

]
φ(St) .

= θt,t+1 + αt
[
Rt+1 + γv̂t(St)

−(θt,t+1)>φ(St)
]
φ(St) (13)

By following the same derivation used in Section 4.1
to derive Equation (7), it follows that by substituting
(12) in (13) yields Equation (8) with τ = t+ 1.

4.3. Empirical Results

We compare the performance of true online TD ver-
sus traditional TD with accumulating and replacing
traces on a random walk task. The random walk task
is shown in Figure 1 for N = 6 (N being the total
number of states, including the terminal state). In
our experiment we use N = 11. p, the transition prob-
ability in the direction of the terminal state, is set to
0.9. Initial θ is 0.

We used linear function approximation with two types
of features, resulting in two different tasks. The fea-
ture values of these two tasks are shown in Table 1
(for N = 6). In task 1, there are (at most) 3 non-zero
features for each state. In task 2, the number of non-
zero features is between 1 and N −1. For the terminal
state all features have value 0. The L2-norm of φ(s)
is 1 for all non-terminal states.

s2s1 s3 s4 s5 s6
+1

p 

1-p 

Figure 1. Random walk for N = 6. Transition probability
to the right is p; transition probability to the left is 1 − p.
All rewards are 0, except transition to the terminal state
(s6), which results in a reward of +1. The initial state is
s1.

Figure 2 shows the performance on both tasks for α
from 0 to 1 with steps of 0.01 and λ from 0 to 0.9
with steps of 0.1 and from 0.9 to 1.0 with steps of
0.25. Figure 3 shows the performance for the different
λ values at the best α value.

While the return has an upper bound of 1, accumulat-
ing traces get errors above 1 on both tasks, indicating
divergence of values. While replacing traces does not
result in divergence of values, its has no effect in the
second task. True TD is the only method that achieves
a performance benefit (with respect to TD(0)) on both
tasks, clearly demonstrating the strength of true online
TD(λ).

Table 1. Feature values for random walk task 1 and task 2
for N = 6.

s1 s2 s3 s4 s5 s6
Task 1 φ1 1 1/

√
2 1/

√
3 0 0 0

φ2 0 1/
√

2 1/
√

3 1/
√

3 0 0

φ3 0 0 1/
√

3 1/
√

3 1/
√

3 0

φ4 0 0 0 1/
√

3 1/
√

3 0

φ5 0 0 0 0 1/
√

3 0

Task 2 φ1 1 1/
√

2 1/
√

3 1/
√

4 1/
√

5 0

φ2 0 1/
√

2 1/
√

3 1/
√

4 1/
√

5 0

φ3 0 0 1/
√

3 1/
√

4 1/
√

5 0

φ4 0 0 0 1/
√

4 1/
√

5 0

φ5 0 0 0 0 1/
√

5 0
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Figure 3. RMS error of state values at the end of each
episode, averaged over the first 10 episodes, as well as 1000
independent runs, for different values of λ at the best value
of α.

5. Control

The true online TD(λ) algorithm (Algorithm 2) can
be easily modified for control. Simply using a feature
vector consisting of state-action features (i.e., using
φ(s, a) instead of φ(s)), and changing the definition
of δt to:

δt = Rt+1 + γq̂(St+1, At+1)− γq̂(St, At)

changes the algorithm to a true Sarsa(λ) algorithm.

Figure 4 compares true Sarsa(λ) with the other
Sarsa(λ) implementations on the standard mountain
car task (Sutton & Barto, 1998), using 10 tilings of
each 10× 10 tiles. Results are plotted for λ = 0.9 and
a step-size

α = α0/10

for α0 from 0.2 to 2.0 with steps of 0.2. Clearing/no
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Figure 2. RMS error of state values at the end of each episode, averaged over the first 10 episodes, as well as 1000
independent runs, for different values of the step-size α and λ.

clearing refers to whether the trace values of non-
selected actions are set to 0 (clearing) or not (no clear-
ing), in case of replacing traces. The results demon-
strate that the true online TD approach is also effective
in a control setting.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−550

−500

−450

−400

−350

−300

−250

−200

−150

α
0

re
tu

rn

 

 

Sarsa(λ), replacing, clearing

Sarsa(λ), replacing, no clearing

Sarsa(λ), accumulating

true Sarsa(λ)

Figure 4. Average return over first 20 episodes on moun-
tain car task for λ = 0.9 and different α0. Results are
averaged over 100 independent runs.

6. Conclusion

We solved an important open question in temporal-
difference learning: whether it is possible to construct
an online TD(λ) algorithm that is exactly equivalent to
the forward view. We showed that not only is this pos-
sible, but an implementation can be made with a sim-
ilar computational cost as the traditional TD(λ) im-
plementation. Empirically, we demonstrated that this
new implementation of TD(λ), which we call true on-
line TD(λ), avoids divergence of value estimates that
can occur under accumulating traces, while it does not
suffer from the negative side-effects of replacing traces.
In addition, we demonstrated that our approach is also
effective in the control case. Based on the stability and
consistent performance edge of true online TD(λ) over
the traditional implementations, we expect that it will
become the algorithm of choice for researchers relying
on temporal-difference learning.
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