
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

True Online TD(λ)

Abstract

TD(λ) is a core algorithm of modern rein-
forcement learning. The appeal of TD(λ)
comes from its clear and conceptually sim-
ple forward view, and the fact that it can be
implemented online in an inexpensive man-
ner. While offline TD(λ) matches the for-
ward view exactly, online TD(λ) — which is
more interesting for practical applications —
only approximates it. Up to now, it has been
an open question whether a version of on-
line TD(λ) could be made that matches the
forward view exactly. We introduce a new
online TD(λ) algorithm for function approxi-
mation, with the same complexity as the reg-
ular version, that achieves the forward view
exactly. Key to this is a refinement of the on-
line version of the forward view that is well
defined at each time step rather than only at
the end of an episode. We use this refined ver-
sion to derive the new algorithm. By adher-
ing more truly to the goal of matching the for-
ward view, the new algorithm performs much
better in practise. We demonstrate this on
several standard benchmark problems, where
it outperforms both accumulating and replac-
ing traces.

1. Why True Online TD(λ) Matters

Temporal-difference (TD) learning is a core learning
technique in modern reinforcement learning (Sutton,
1988; Kaelbling et al., 1996; Sutton & Barto, 1998;
Szepesvári, 2010). One of the main challenges in re-
inforcement learning is to make predictions, in an ini-
tially unknown environment, about the (discounted)
sum of future rewards, the return, based on currently
observed feature values and a certain behaviour policy.
With TD learning it is possible to learn good estimates
of the expected return quickly by bootstrapping from
other expected-return estimates. TD(λ) is a popular

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

TD algorithm that combines basic TD learning with
eligibility traces to further speed learning. The popu-
larity of TD(λ) can be explained by its simple imple-
mentation, its low computational complexity, and its
conceptually straightforward interpretation, given by
its forward view.

The forward view of the standard implementation of
TD(λ), which uses accumulating traces, interprets the
updates under TD(λ) as updates with the λ-return
as update target. The λ-return is an estimate of the
expected return based on rewards as well as other
expected-return estimates, with λ determining the ex-
act way they are combined.

In the offline case, where the expected-return esti-
mates are updated after all data has been collected,
the equivalence between TD(λ) and the forward view
is exact. However, in the more relevant online case,
where estimates are updated during data collection,
the equivalence only holds approximately. Because the
equivalence does not hold exactly, it is possible that
estimates diverge under online TD(λ), even for simple
tasks with bounded returns (we show an example in
Section 4.3).

To avoid divergence of estimates, an alternative imple-
mentation of TD(λ) is sometimes used, based on re-
placing traces (Singh et al., 1996), which prevents such
behaviour. However, this solution is far from ideal.
While it can prevent divergence of estimates, this can
come at the cost of losing all learning speed benefits
of eligibility traces. In particular, when a large frac-
tion of the features have a non-zero value, replacing
traces looses its effectiveness (we show an example in
Section 4.3.). In addition, in the control case, where
expected-return estimates are learned conditioned on
actions, there are two ways to implement replacing
traces (with or without clearing traces for non-selected
actions), while it is unclear which implementation is
best, adding an extra parameter.

In this paper, we present for the first time (to the
best our knowledge) an online version of TD(λ) that
is exactly equivalent to the forward view. That is, the
values computed by this version of TD(λ), which we
call true online TD(λ), are exactly the same as the val-
ues computed by the forward view, at every moment

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

True Online TD λ

in time. As a consequence, true online TD(λ) avoids
divergence of estimates that can occur under accumu-
lating traces, while it does not suffer from the negative
side-effects of replacing traces. We demonstrate this
empirically, by showing that true online TD(λ) is able
to perform well on a benchmark problem where both
accumulating and replacing traces are ineffective.

Key to our new implementation of TD(λ) is a refine-
ment of the forward view. The current forward view is
not well-defined in the online case, because its update
target assumes knowledge of rewards and states that
are not yet observed at the moment of the update. We
refined the forward view, such that it is well-defined
in the online case at all time steps.

Next, we present the main learning framework that we
consider in this paper.

2. Problem Setting and Notation

In this section, we present the main learning frame-
work that we consider and discuss TD(λ) and its for-
ward view. As a convention, we indicate random vari-
ables by capital letters (e.g., St, Rt), vectors by bold
letters (e.g., θ, φ), functions by small letters (e.g., v),
and sets by calligraphic font (e.g., S, A).

2.1. Markov Reward Processes

We focus in this paper primarily on discrete-time
Markov reward processes (MRPs), which can be de-
scribed as 4-tuples of the form 〈S, p, r, γ〉, consisting of
S, the set of all states; p(s′|s), the transition probabil-
ity function, giving for each state s ∈ S the probability
of a transition to state s′ ∈ S at the next step; r(s, s′),
the reward function, giving the expected reward after
a transition from s to s′. γ is the discount factor, spec-
ifying how future rewards are weighted with respect to
the immediate reward.

The return at time step t is the discounted sum of
rewards observed after time step t:

Gt =

∞∑
i=1

γi−1Rt+i ,

An MRP can contain terminal states, dividing the se-
quence of state transitions into episodes. When a ter-
minal state is reached the current episode ends and
the state is reset to the initial state. The return for an
episodic MRP is defined as:

Gt =

T−t∑
i=1

γi−1Rt+i ,

where T is the time step that the terminal state is
reached.

We are interested in learning the value-function v of
an MRP, which maps each state s ∈ S to the expected
value of the return:

v(s) = E{Gt |St = s} .

Next, we discuss function approximation.

2.2. Function Approximation

In the general case, the state-space can be huge or
even continuous. In such cases it is not possible to
represent the value function v exactly. In this case,
or when data-generalization is required, function ap-
proximation is used to represent v. The approximate
value-function v̂(s,θt) gives the approximate value of
state s, given the weight vector θ at time step t. As a
shorthand, we indicate this value by v̂t(s).

A common approach is to use linear function approxi-
mation, in which case the value of a state is the inner
product between the weight vector θ and a feature vec-
tor φ. In this case, the value of state s at time step t
is approximated by:

v̂t(s) = θ>t φ(s) =
∑
i

θi,t φi(s)

where φi(s) is the value of feature i in state s, and θi,t
is the weight of that feature at time step t.

One of the main technique for improving the value
function estimate v̂ is by means of gradient descent,
which involves incremental adjustments of the weight
vector θ in the direction of the gradient:

θt+1 = θt + α [Ut − v̂t(St)]∇θt v̂t(St) , (1)

where ∇θt
v̂t(St) is the gradient of v̂ with respect to θt.

In case of linear function approximation, this gradient
has a particularly simple form:

∇θt v̂t(s) = φ(s) .

There are many ways to construct an update target Ut
from observed states and rewards. For example, Monte
Carlo methods use the full return as the update target:

Ut = Gt .

TD methods use an update target that is based on
value estimates of other states. For example, the
TD(0) update target is:

Ut = Rt+1 + γv̂t(St+1) . (2)

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

True Online TD λ

The update shown in Equation (1) is an online update,
referring to the fact that the weight vector is updated
at every time step t. Alternatively, the weight vector
can be updated offline. With offline updating, the
weight vector stays constant during an episode, and
instead the weight corrections are collected on the side.
Let the weight vector for episode k be θk. The weight
correction for time step t of this episode is:

∆t = α [Ut − v̂k(St)]∇θk
v̂k(St) .

After the episode has terminated, the weight vector
is updated by adding all weight corrections collected
during the episode:

θk+1 = θk +

T−1∑
t=0

∆t .

Online updating not only has the advantage that it
can be applied to non-episodic tasks, but it will in
general also produce better value-function estimates
under temporal-difference learning. The reason is that
under online learning the update targets, which boot-
strap from the values of other states, use more recent
value estimates.

2.3. TD(λ)

Under linear function approximation, the TD(0)
method, based on update target (2), performs at time
step t+ 1 the following update:

θt+1 = θt + α δtφ(St)

where
δt = Rt+1 + γv̂t(St+1)− v̂t(St)

is called the TD error. This update only affects the
weights θi for which φi is non-zero. The idea behind
TD(λ) is to update weights for which φi was non-zero
in the (near) past as well. This is implemented by
means of an eligibility vector e, which reflects how
much each feature is ‘eligible’ for the current TD error.
TD(λ) performs an update of each θi, with the current
TD error, proportional to its trace value ei:

1

θt+1 = θt + δtet .

For the standard implementation, which uses accumu-
lating traces, et is initialized as the zero vector, 0, and
updated according to:

et = γλet−1 + αφ(St) ,

where λ is the trace-decay parameter. Note that for
λ = 0, the TD(λ) update reduces to the TD(0) update.
Algorithm 1 shows pseudocode for TD(λ).

1We fold the step-size α in the eligibility vector.

Algorithm 1 linear TD(λ)

initialize θ arbitrarily
loop {over episodes}

initialize e = 0
initialize S
repeat {for each step in the episode}

generate reward R and next state S′ for S
δ ← R+ γ θ>φ(S′)− θ>φ(S)
e← γλe+ αφ(S)
θ ← θ + δe
S ← S′

until S is terminal
end loop

It is well-known that for TD(λ) with accumulating
traces values sometimes diverge, even on simple tasks
with bounded returns. For this reason, a second im-
plementation of TD(λ) is sometimes used, based on
replacing traces (Singh et al., 1996). With replacing
traces, e is updated as follows:

ei,t =

{
γλei,t−1 if φi(St) = 0

αφi(St) if φi(St) 6= 0
for all i .

While replacing traces prevents divergence of values,
its application is limited. The fundamental limitation
of replacing traces is that it treats zero as a special
case. When there are only a small number of features
with a value of zero, TD(λ) with replacing traces ap-
proaches TD(0), even for high λ values. If all features
are non-zero, et = αφ(St) and the TD(λ) replacing-
traces update is equal to the TD(0) update.

2.4. The Forward View

The forward view relates TD(λ) (with accumulating
traces) to the λ-return algorithm. This algorithm per-
forms at each time step a standard update (as in Equa-
tion (1)) with the λ-return as update target. The λ-
return Gλt is an estimate of the expected return based
on a combinations of rewards and other value esti-
mates:

Gλt = (1− λ)

∞∑
n=1

λn−1G
(n)
t ,

with G
(n)
t the n-step return:

G
(n)
t =

n∑
i=1

γi−1Rt+i + γn v̂t(St+n) .

For an episodic task, the λ-return is defined as:

Gλt = (1− λ)

T−t−1∑
n=1

λn−1G
(n)
t + λT−t−1G

(T−t)
t , (3)

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

True Online TD λ

where T is the time step that the terminal state is
reached. Because the value of a terminal state is al-
ways 0, the last λ-return in this equation is equal to
the full return:

G
(T−t)
t =

T−t∑
i=1

γi−1Rt+i = Gt .

Note that for λ = 0, Gλt is equal to Rt+1 + γv̂t(St+1),
the TD(0) update target. On the other hand, for λ =
1, Gλt is equal to the full return Gt. For λ in between
0 and 1, some mix between the TD(0) update target
and the Monte Carlo update target is obtained.

It has been shown that offline TD(λ) is equal to the
offline λ-return algorithm (Sutton, 1988; Sutton &
Barto, 1998). However, online TD(λ) is only approx-
imately equal to the online λ-return algorithm. In
fact, no version of online TD(λ) can be constructed
that matches the online λ-return algorithm exactly,
because the λ-return uses rewards and states beyond
the current time step. Therefore, in the next section,
we refine the forward view such that it can be imple-
mented online.

3. True Online Forward View

The problem with the current forward view is that it
cannot be implemented online, because the update at
times step t + 1, based on λ-return Gλt , uses rewards
and states beyond time step t+ 1 (in fact, potentially
from infinitely far in the future). Hence, in order to
make an online TD(λ) version that is truly equivalent
to the forward view, the forward view should be ex-
tended such that it has a well-defined, implementable,
online version.

To construct an implementable forward view, we start
by generalizing the λ-return to a version that is trun-
cated at a specific time step. Let t be the time step the
λ-return is truncated and τ < t be the time step from
which the λ-return starts. The truncated λ-return Gλτ,t
is defined as:

Gλτ,t = (1− λ)

t−τ−1∑
n=1

λn−1G
(n)
τ,τ ′(n) + λt−τ−1G

(t−τ)
τ,τ ′(t−τ) .

Note that the n-step returns in this definition also have
a second time-step subscript: τ ′(n). This time step
refers to the time step of the state value used in the
n-step return:

G
(n)
τ,τ ′ =

n∑
i=1

γi−1Rτ+i + γn v̂τ ′(Sτ+n) (4)

Having this second time step allows us to define n-
step returns that use more recent value estimate than

the one from time step τ (note: G
(n)
τ,τ = G

(n)
τ). For

an episodic task terminating at time step T , Gλτ,T is

equal to the regular λ-return Gλτ (see Equation 3) if
τ ′(n) = τ for 1 ≤ n ≤ t − τ . We come back to the
specific definition of τ ′(n) at the end of this section.

The idea behind the new online forward view is in
essence a simple one: at each time step, the truncated
λ-returns from all previous time steps are updated,
such that they are now truncated at the current time
step; the weight vector of the current time step is de-
termined by sequentially performing TD backups, us-
ing the updated λ-returns, starting from the initial
weight vector, θinit. The weight vectors for the first
three time steps are shown below. We use a second in-
dex for θ to indicate at which time step the λ-returns
that are used to construct it are truncated.2

θ0,0 : θ0,0 = θinit ,

θ1,1 : θ0,1 = θinit

θ1,1 = θ0,1 + α0

[
Gλ0,1 − θ

>
0,1 φ(S0)

]
φ(S0) ,

θ2,2 : θ0,2 = θinit

θ1,2 = θ0,2 + α0

[
Gλ0,2 − θ

>
0,2 φ(S0)

]
φ(S0) ,

θ2,2 = θ1,2 + α1

[
Gλ1,2 − θ

>
1,2 φ(S1)

]
φ(S1) ,

θ3,3 : θ0,3 = θinit

θ1,3 = θ0,3 + α0

[
Gλ0,3 − θ

>
0,3 φ(S0)

]
φ(S0) ,

θ2,3 = θ1,3 + α1

[
Gλ1,3 − θ

>
1,3 φ(S1)

]
φ(S1) ,

θ3,3 = θ2,3 + α2

[
Gλ2,3 − θ

>
2,3 φ(S2)

]
φ(S2) ,

More generally, the weight vector at time step t, θt,t,
is:

θ0,t = θinit

θ1,t = θ0,t

+α0

[
Gλ0,t − (θ0,t)

>φ(S0)
]
φ(S0)

...

θt,t = θt−1,t

+αt−1

[
Gλt−1,t − (θt−1,t)

>φ(St−1)
]
φ(St−1) .

2For ease of exposition, we focus on the linear case.
However, our approach can be easily extended to the non-
linear case.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

True Online TD λ

Note that θi,j for i 6= j are temporary ‘helper’ vec-
tors. The value estimate of state s at time step t is
determined by θt,t:

v̂t(s) = θt,tφ(s) .

Similarly, v̂τn , used by the the n-step return in Equa-
tion 4, makes use of θτn,τn .

So far, we have not yet specified τ ′(n), used by the
truncated λ-return Gλτ,t. It might seem logical to de-

fine τ ′(n) = τ for all n, such that G
(n)
τ,τ ′(n) reduces to

the standard n-step return G
(n)
τ . However, this would

not only reduce the accuracy (older value estimates
are used), it is also highly impractical: the θ vectors
from all previous time steps would have to be stored.
Instead, we use

τ ′(n) = τ + n− 1 , for 1 ≤ n ≤ t− τ . (5)

With this definition each new n-step return uses the
most recent θ vector, and enables efficient implemen-
tation (as we demonstrate in the next section).

We call the algorithm that computes θt,t at each time
step t the truncated λ-return algorithm. Note that at
the end of an episode, the values computed by the
truncated λ-return algorithm are the same as the val-
ues computed by the online λ-return algorithm. How-
ever, the values during an episode are different. Be-
cause of this, the truncated λ-return algorithm can be
implemented fully online, in contrast to the λ-return
algorithm.

While it is possible to implement the truncated λ-
return algorithm online, it is an expensive method and
requires storage of all observed states and rewards. In
the next section, we introduce true online TD(λ) which
implements the true online forward view efficiently us-
ing eligibility traces.

4. True Online TD(λ)

This section present the online TD(λ) method that
matched the new online forward view exactly. First
the algorithm itself is presented, then its equivalence
to the truncated λ-return algorithm is proven. The
section finishes with empirical results demonstrating
the benefits of the algorithm.

4.1. The Algorithm

True online TD(λ) forms the backward view of the
truncated λ-return algorithm. Like traditional TD(λ),
it updates feature weights proportional to a decaying
eligibility trace.

We start by specifying the very first backup. All traces
have a value of 0 at this point. Therefore, the backup
is simply a TD(0) update:

θ1 = θ0 + α0[R1 + γθ>0 φ(S1)− θ>0 φ(S0)]φ(S0)

For t ≥ 1, θ receives a TD(0)-like update (note the
subtle difference in the weight vector used for St+1

and St), preceded by an update of θ proportional to
the trace value at the previous time step, decayed by
γλ:

θ′t = θt + γλδtet−1

θt+1 = θ′t + αt[Rt+1 + θt
>φ(St+1)− θ′t

>
φ(St)]φ(St) ,

with

δt = Rt+1 + θ>t φ(St+1)− θ>t−1φ(St) . (6)

Note that δt makes use of v̂t−1(St), instead of v̂t(St),
as with traditional TD(λ).

Substituting the expression for θ′t in the expression for
θt+1 gives:

θt+1 = θt + γλδtet−1 + αt[Rt+1 + θ>t φ(St+1)]φ(St)

−αt[(θt + γλδtet−1)>φ(St)]φ(St)

= θt + γλδtet−1 + αt[δt + θ>t−1φ(St)]φ(St)

−αt[θ>t φ(St) + γλδte
>
t−1 φ(St)]φ(St)

= θt + γλδtet−1 + αtδt φ(St)

−αtγλδt[e>t−1 φ(St)]φ(St)

+αt[θ
>
t−1φ(St)− θ>t φ(St)]φ(St)

= θt + δt et + αt[θ
>
t−1φ(St)− θ>t φ(St)]φ(St)

with

et = γλet−1 + αtφ(St)− αtγλ[e>t−1 φ(St)]φ(St) (7)

The equations above define how θ is updated for true
online TD(λ). Algorithm 2 shows pseudo-code that
implements these updates.

4.2. Equivalence with Online Forward View

In this section, we prove that the values computed
by true online TD(λ) are exactly the same as those
computed by the truncated λ-return algorithm. That
is, we prove that θt,t = θt for all t, where θt,t are
the weights computed by the truncated λ-return algo-
rithm, and θt are the weights computed by the true
online TD(λ) algorithm.

That θ1,1 = θ1 is true can be easily checked. We now
prove that if

θτ,τ = θτ−1,τ−1 + δτ−1 eτ−1 + ετ−1φ(Sτ−1) (8)

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

True Online TD λ

Algorithm 2 true online TD(λ)

initialize θ arbitrarily
loop {over episodes}

initialize e = 0
initialize S
v̂S ← θ>φ(S)
repeat {for each step in the episode}

generate reward R and next state S′ for S
v̂S′ ← θ>φ(S′)
δ ← R+ γv̂S′ − v̂S
e← γλe+ α

[
1− γλ e>φ(S)

]
φ(S)

θ ← θ + δe+ α
[
v̂S − θ>φ(S)

]
φ(S)

v̂S ← v̂S′

S ← S′

until S is terminal
end loop

with

ετ−1 = ατ−1[θ>τ−2,τ−2φ(Sτ−1)− θ>τ−1,τ−1φ(Sτ−1)]

and

δτ−1 = Rτ + θ>τ−1,τ−1φ(Sτ)− θ>τ−2,τ−2φ(Sτ−1) ,

and eτ given by (7) holds for all τ ≤ t, then it holds
for τ = t+ 1. Note that this is sufficient to prove that
θt,t = θt holds for all t.

By substituting the helper θ vectors in the expression
for θt,t given in Section 3, the recursive definition of
θt,t can be rewritten to a single expression of the form:

θt,t = c0 + c1G
λ
0,t + c2G

λ
1,t + ...+ ctG

λ
t−1,t , (9)

with the ci vectors are constructed from the vec-
tors θinit, φ(S0) through φ(St−1) and step-sizes α0

through αt−1. In other words, the ci vectors contain
no weight values or rewards. Similarly, the (helper)
vector θt,t+1 can be rewritten as

θt,t+1=c0 + c1G
λ
0,t+1 + c2G

λ
1,t+1 + ...+ ctG

λ
t−1,t+1 .

The ci vectors in this equation are the same vectors
as those in Equation (9). To compute θt,t+1 from θt,t
each involved λ-return should be truncated one time
step later.

To see what happens when a truncated λ-return is
extended by one time step, consider Gλτ,t+1−Gλτ,t. Gλτ,t
is defined as (using (5)):

Gλτ,t = (1− λ)

t−τ−1∑
i=1

λn−1G
(n)
τ,τ+n−1 + λt−τ−1G

(t−τ)
τ,t−1,

and Gλτ,t+1 is:

Gλτ,t+1 = (1− λ)

t−τ∑
i=1

λn−1G
(n)
τ,τ+n−1 + λt−τG

(t+1−τ)
τ,t ,

Subtracting Gλτ,t from Gλτ,t+1 yields

Gλτ,t+1 −Gλτ,t = λt−τ [G
(t+1−τ)
τ,t −G(t−τ)

τ,t−1] . (10)

Similarly, it can be shown that subtracting Ĝ
(t−τ)
τ,t from

Ĝ
(t+1−τ)
τ,t−1 yields:

Ĝ
(t+1−τ)
τ,t − Ĝ(t−τ)

τ,t−1 = γt−τRt+1 + γt+1−τ v̂t(St+1)

− γt−τ v̂t−1(St)

= γt−τδt .

Substituting this result in (10) yields:

Gλτ,t+1 −Gλτ,t = (λγ)t−τδt . (11)

Gλτ,t is a value constructed from a weighted sum of
rewards and different state values, ending with a term
involving the value of St:

Gλτ,t = · · ·+ λt−τ−1γt−τ v̂t−1(St)

From this and (11) it follows that:

Gλτ,t+1 = Gλτ,t + (λγ)t−τδt .

· · ·+ λt−τ−1γt−τ v̂t−1(St) + (λγ)t−τδt

· · ·+ λt−τ−1γt−τ [v̂t−1(St) + λδt]

This demonstrates that increasing the truncated λ-
return Gλτ,t by one time step simply means submitting
the value v̂t−1(St) with the value v̂t−1(St) + λδt.

Each truncated λ-return in Equation (9) ends with
a term containing v̂t−1(St) in it (because they are all
truncated at time step t). Because we assume (8) holds
for τ = t, we have a simple expression that shows the
relation between θt,t and v̂t−1(St):

θt,t = θt−1,t−1 + et−1δt−1 + εt−1φ(St−1)

= θt−1,t−1 + εt−1φ(St−1)

+et−1[Rt + γv̂t−1(St)− v̂t−2(St−1)]

Replacing v̂t−1(st) by vt−1(st) + λδt in the right-hand
side of this equation gives θt,t+1. Hence:

θt,t+1 = θt,t + γλet−1δt . (12)

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

True Online TD λ

From Section 3 it follows that θt+1,t+1 is computed
from θt,t+1 as follows:

θt+1,t+1 = θt,t+1

+αt

[
Gλt,t+1 − (θt,t+1)>φ(St)

]
φ(St) .

= θt,t+1 + αt
[
Rt+1 + γv̂t(St)

−(θt,t+1)>φ(St)
]
φ(St) (13)

By following the same derivation used in Section 4.1
to derive Equation (7), it follows that by substituting
(12) in (13) yields Equation (8) with τ = t+ 1.

4.3. Empirical Results

We compare the performance of true online TD ver-
sus traditional TD with accumulating and replacing
traces on a random walk task. The random walk task
is shown in Figure 1 for N = 6 (N being the total
number of states, including the terminal state). In
our experiment we use N = 11. p, the transition prob-
ability in the direction of the terminal state, is set to
0.9. Initial θ is 0.

We used linear function approximation with two types
of features, resulting in two different tasks. The fea-
ture values of these two tasks are shown in Table 1
(for N = 6). In task 1, there are (at most) 3 non-zero
features for each state. In task 2, the number of non-
zero features is between 1 and N −1. For the terminal
state all features have value 0. The L2-norm of φ(s)
is 1 for all non-terminal states.

s2s1 s3 s4 s5 s6
+1

p

1-p

Figure 1. Random walk for N = 6. Transition probability
to the right is p; transition probability to the left is 1 − p.
All rewards are 0, except transition to the terminal state
(s6), which results in a reward of +1. The initial state is
s1.

Figure 2 shows the performance on both tasks for α
from 0 to 1 with steps of 0.01 and λ from 0 to 0.9
with steps of 0.1 and from 0.9 to 1.0 with steps of
0.25. Figure 3 shows the performance for the different
λ values at the best α value.

While the return has an upper bound of 1, accumulat-
ing traces get errors above 1 on both tasks, indicating
divergence of values. While replacing traces does not
result in divergence of values, its has no effect in the
second task. True TD is the only method that achieves
a performance benefit (with respect to TD(0)) on both
tasks, clearly demonstrating the strength of true online
TD(λ).

Table 1. Feature values for random walk task 1 and task 2
for N = 6.

s1 s2 s3 s4 s5 s6
Task 1 φ1 1 1/

√
2 1/

√
3 0 0 0

φ2 0 1/
√

2 1/
√

3 1/
√

3 0 0

φ3 0 0 1/
√

3 1/
√

3 1/
√

3 0

φ4 0 0 0 1/
√

3 1/
√

3 0

φ5 0 0 0 0 1/
√

3 0

Task 2 φ1 1 1/
√

2 1/
√

3 1/
√

4 1/
√

5 0

φ2 0 1/
√

2 1/
√

3 1/
√

4 1/
√

5 0

φ3 0 0 1/
√

3 1/
√

4 1/
√

5 0

φ4 0 0 0 1/
√

4 1/
√

5 0

φ5 0 0 0 0 1/
√

5 0

0 0.5 1
0.05

0.1

0.15

0.2

0.25

0.3

λ

RMS
error

Task 1

TD, replacing

tru
e
 T

D

T
D

, a
ccu

m
u
la

tin
g

0 0.5 1
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

λ

RMS
error

Task 2

true TD

T
D

,
a
cc

u
m

u
la

tin
g

TD, replacing

Figure 3. RMS error of state values at the end of each
episode, averaged over the first 10 episodes, as well as 1000
independent runs, for different values of λ at the best value
of α.

5. Control

The true online TD(λ) algorithm (Algorithm 2) can
be easily modified for control. Simply using a feature
vector consisting of state-action features (i.e., using
φ(s, a) instead of φ(s)), and changing the definition
of δt to:

δt = Rt+1 + γq̂(St+1, At+1)− γq̂(St, At)

changes the algorithm to a true Sarsa(λ) algorithm.

Figure 4 compares true Sarsa(λ) with the other
Sarsa(λ) implementations on the standard mountain
car task (Sutton & Barto, 1998), using 10 tilings of
each 10× 10 tiles. Results are plotted for λ = 0.9 and
a step-size

α = α0/10

for α0 from 0.2 to 2.0 with steps of 0.2. Clearing/no

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

True Online TD λ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

step−size

RMS
error

TD, accumulating traces − Task 1

λ = 1

λ = 0.95

λ = 0

λ = 0.1

λ = 0.2 λ = 0.975

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

step−size

RMS
error

TD, replacing traces − Task 1

λ = 0

λ = 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

step−size

RMS
error

true TD − Task 1

λ =1

λ = 0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

step−size

RMS
error

TD, accumulating traces − Task 2

λ = 1

λ = 0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

step−size

RMS
error

TD, replacing traces − Task 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

step−size

RMS
error

true TD − Task 2

λ = 0

λ = 1

Figure 2. RMS error of state values at the end of each episode, averaged over the first 10 episodes, as well as 1000
independent runs, for different values of the step-size α and λ.

clearing refers to whether the trace values of non-
selected actions are set to 0 (clearing) or not (no clear-
ing), in case of replacing traces. The results demon-
strate that the true online TD approach is also effective
in a control setting.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−550

−500

−450

−400

−350

−300

−250

−200

−150

α
0

re
tu

rn

Sarsa(λ), replacing, clearing

Sarsa(λ), replacing, no clearing

Sarsa(λ), accumulating

true Sarsa(λ)

Figure 4. Average return over first 20 episodes on moun-
tain car task for λ = 0.9 and different α0. Results are
averaged over 100 independent runs.

6. Conclusion

We solved an important open question in temporal-
difference learning: whether it is possible to construct
an online TD(λ) algorithm that is exactly equivalent to
the forward view. We showed that not only is this pos-
sible, but an implementation can be made with a sim-
ilar computational cost as the traditional TD(λ) im-
plementation. Empirically, we demonstrated that this
new implementation of TD(λ), which we call true on-
line TD(λ), avoids divergence of value estimates that
can occur under accumulating traces, while it does not
suffer from the negative side-effects of replacing traces.
In addition, we demonstrated that our approach is also
effective in the control case. Based on the stability and
consistent performance edge of true online TD(λ) over
the traditional implementations, we expect that it will
become the algorithm of choice for researchers relying
on temporal-difference learning.

References

Kaelbling, L.P., Littman, M.L., and Moore, A.P. Rein-
forcement Learning: A Survey. Journal of Artificial
Intelligence Research, 4:237–285, 1996.

Sutton, R.S. Learning to predict by the methods of
temporal differences. Machine Learning, 3(1):9–44,
1988.

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

True Online TD λ

Singh, S.P., and Sutton, R.S. Reinforcement learning
with replacing eligibility traces. Machine Learning,
22(1):123–158, 1996.

Sutton, R.S. and Barto, A.G. Reinforcement Learn-
ing: An Introduction. MIT Press, Cambridge, Mas-
sachussets, 1998.

Szepesvári, C. (2010). Algorithms for reinforcement
learning. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, 4(1):1–103.

