Chapter 13

Psychology

Among the connections of reinforcement learning to other disciplines, its connec-
tions to the study of animal learning by psychologists are among the most extensive.
Many of the basic reinforcement learning algorithms were inspired by psychological
theories of animal learning, and reinforcement learning algorithms and theory are,
in turn, contributing back to psychology. There are detailed models of animal learn-
ing that use algorithmic ideas from reinforcement learning, and the theoretical and
computational perspectives of reinforcement learning are influencing psychologists in
designing new experiments and animal learning models.

In this chapter we discuss how concepts and algorithms from reinforcement learning
correspond, in certain ways, to theories of animal learning from psychology. These
correspondences should not be surprising. Of all the paradigms of machine learning,
we regard reinforcement learning as the closest to the kind of learning that humans
and other animals do. All machine learning paradigms are abstractions of situa-
tions in which humans and other animals learn, but some are more faithful to these
situations than others. The supervised and unsupervised learning paradigms are ab-
stractions of important components of animal learning, but in isolation they do not
do justice to the fact that animals learn goal-directed behavior while interacting with
dynamic environments. It is essential to keep in mind, however, that reinforcement
learning as developed here explores idealized situations from the perspective of an
artificial intelligence researcher or engineer—not from the perspective of an animal
learning researcher.

Our position outside of psychology makes it possible for us to sidestep the many
enduring controversies that have influenced its history. We can be selective in con-
necting with psychology because our goal is not to replicate animal behavior. For the
same reason not every feature of computational reinforcement learning corresponds
to a psychological finding or theory. Some findings from psychology have proven
valuable given our focus on computational effectiveness, while others have not. The
correspondences we describe mainly involve learning theories derived from labora-
tory experiments with animals. Despite the fact that its influence in contemporary
psychology has been overshadowed by emphasis on more cognitive aspects of intel-
ligence, the study of animal learning has established principles that are compelling
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from a computational perspective due to their combination of precision and gener-
ality. We think it would be unwise to neglect these principles in designing systems
that use learning methods in solving engineering problems.

This chapter is far too short to include all of the points of correspondence between
the theory presented in this book and even this subarea of psychology. For the most
part, the correspondences we describe are those of particular significance because
they connect ideas or mechanisms that arose independently in their respective fields.
We believe these points of correspondence improve our understanding of both compu-
tational and psychological learning principles. While we provide numerous references
in the final section of this chapter, many of the connections between reinforcement
learning and psychology remain beyond our treatment, including extensive research
that has borrowed from computational reinforcement learning with the psycholog-
ical goal of accounting for subtle experimental findings about animal learning and
decision making. We hope this chapter provides a useful context for the reader who
wishes to probe the subject more deeply.

13.1 Prediction and Control

The algorithms we describe in this book fall into two broad categories: algorithms
for prediction and algorithms for control. These categories arise naturally in solution
methods for the reinforcement learning problem presented in Chapter 3. In many
ways these categories respectively correspond to categories of learning extensively
studied by psychologists: classical, or Pavlovian, conditioning and instrumental con-
ditioning. Although not completely accidental because of psychology’s influence on
reinforcement learning, these correspondences are nevertheless striking because they
are the result of independent objectives.

The prediction algorithms presented in this book estimate quantities that depend
on how features of an agent’s environment are expected to unfold over the future.
We specifically focused on estimating the amount of reward an agent can expect to
receive over the future while it interacts with its environment. In this role, these
are policy evaluation algorithms, which are integral components of algorithms for
improving policies. Chapter 4 presents policy evaluation in the context of dynamic
programming, and Chapters 5 and 6 respectively present Monte Carlo and Tempo-
ral Difference (TD) policy evaluation methods. But prediction algorithms are not
limited to predicting future reward; they can predict any numerical-valued feature
of the environment, and they can be studied without considering their role in policy
improvement. The correspondence between prediction algorithms and classical con-
ditioning rests on the property they have in common of predicting upcoming stimuli,
where the stimuli are not necessarily rewards or penalties earned by previous actions.

Classical, or Pavlovian, conditioning experiments address how learning causes re-
flexes to be triggered by stimuli that reliably predict the natural triggering stimuli
of those reflexes. Roughly speaking, a stimulus, call it A, is a reliable predictor of
another stimulus, call it B, the predicted stimulus, if B regularly occurs shortly af-
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ter A and rarely occurs otherwise. A classical conditioning experiment exposes an
animal to stimuli in a predictive relationship, where the predicted stimulus reflex-
ively triggers a response. The animal learns to respond to the predicting stimulus
in a manner similar to how it responds to the predicted stimulus, thereby acting
in anticipation of the predicted stimulus. We discuss classical conditioning in more
detail below and here just point out two critical features. First, detecting predictive
relationships among events is at the core of this form of learning. Second, classical
conditioning experiments are set up to make this relationship independent of the
animal’s behavior. This means that the predicted stimulus follows the predicting
stimulus no matter what the animal does in response to the predictor. Although an
animal’s response may affect the impact on the animal of the predicted stimulus, the
animal does not control whether or not the predicted stimulus occurs.

The situation in an instrumental conditioning experiment is different. Here, the
experimental apparatus is set up so that an animal is given something it likes (a
reward) or something it dislikes (a penalty) depending on what the animal does.
The animal learns to increase its tendency to produce rewarded behavior, and to
decrease its tendency to produce penalized behavior. The reinforcing stimulus is
said to be contingent on the animal’s behavior, whereas in classical conditioning it is
not. Instrumental conditioning experiments are like those that inspired Thorndike’s
Law of Effect that we briefly discuss in Chapter 1. Control is at the core of this form
of learning, which corresponds to the operation of reinforcement learning’s policy-
improvement algorithms.

At this point, we should follow psychologists in pointing out that the distinction
between classical and instrumental conditioning is one between the experimental
setups (whether or not the experimental apparatus makes the reinforcing stimulus
contingent on the animal’s behavior). It is not necessarily a distinction between
different learning mechanisms. In practice, it is very difficult to remove all response
contingencies from an experiment, and the extent to which these types of experiments
engage different learning mechanisms is a complicated issue about which animal
learning theorists have differing views. Our engineering and artificial intelligence
perspective may shed some light on this issue. Algorithms for prediction clearly
differ from those for control, but many of the reinforcement learning methods we
present involve closely linked combinations of both. Animal learning mechanisms
likely follow this pattern as well.

We now take a closer look at classical conditioning and details of a particularly
close correspondence between animal behavior in these experiments and temporal-
difference prediction.

13.2 Classical Conditioning

The celebrated Russian physiologist and Nobel laureate Ivan Pavlov studied how
reflexes can come to be triggered by stimuli other than their innate triggers:

It is pretty evident that under natural conditions the normal animal must
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respond not only to stimuli which themselves bring immediate benefit or
harm, but also to other physical or chemical agencies—waves of sound,
light, and the like—which in themselves only signal the approach of these
stimuli; though it is not the sight and sound of the beast of prey which is
in itself harmful to the smaller animal, but its teeth and claws. (Pavlov,
1927, p. 14)

Pavlov (or more exactly, his translators) called inborn reflexes “unconditioned re-
flexes” and new reflexes triggered by predictive stimuli “conditioned reflexes.” This
terminology persists in describing classical conditioning experiments, where condi-
tioned stimuli (CSs), which are initially neutral in the sense that they do not normally
elicit a strong response, are set up to predict biologically significant events (such as
a taste of food, a shock, etc.), called unconditioned stimuli (USs), that reflexively
produce unconditioned responses (URs), such as salivation or an eye blink.

URs are often protective in some way, like an eye blink in response to something
irritating to the eye, or “freezing” in response to seeing a predator. Experiencing
the CS-US predictive relationship over a series of trials causes the animal to learn
to respond to the CS with a conditioned response (CR) that better protects the
animal from, or better prepares it for, the US. The CR tends to be similar to the UR
but begins earlier and sometimes differs in ways that increase its effectiveness. For
example in one intensively studied type of experiment, a tone CS reliably predicts
a puff of air to a rabbit’s eye (the US), triggering closure of a protective membrane
(the UR). With one or more trials, the tone comes to trigger a CR consisting of
membrane closure that begins before the air puff and eventually becomes timed
so that peak closure occurs just when the air puff is likely to occur. This CR,
being initiated in anticipation of the air puff and appropriately timed, offers better
protection than simply initiating closure in reaction to the irritating US. The ability
to act in anticipation of important events by learning about predictive relationships
among stimuli is so beneficial that it is widely present across the animal kingdom.

Figure 12.1 shows the arrangement of stimuli in two types of classical conditioning
experiments: in delay conditioning, the US occurs while the CS is still present,
whereas in trace conditioning, the US begins after the CS ends. In trace conditioning,
the time interval between CS offset and US onset is called the trace interval. The
interstimulus interval, or ISI, is the time interval between CS onset and US onset.

The understanding that CRs anticipate USs eventually led to the development
of an influential model based on TD learning. This model, called the T'D model
of classical conditioning, or just the T'D model, extends what is arguably the most
widely-known and most influential model of classical conditioning: the Rescorla-
Wagner model (Rescorla and Wagner, 1972). Rescorla and Wagner created their
model in order to provide an account of what happens in classical conditioning with
compound CSs, that is, CSs that consist of several component stimuli, such as a
tone and a flashing light occurring together, where the animal’s history of experience
with each stimulus component can be manipulated in various ways. Experiments like
these demonstrate, for example, that if an animal has already learned to produce a
CR in response to a stimulus component that predicts a US, then learning to produce
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Figure 13.1: Arrangement of stimuli in two types of classical conditioning experi-
ments. In delay conditioning, the US occurs while the CS is present. In trace condi-
tioning, there is a time interval between CS offset and US onset. The interstimulus
interval (ISI) is the interval between CS onset and US onset.

a CR in response to a newly-added second stimulus is much reduced. This is called
blocking. Results like this challenge the idea that conditioning depends only on simple
temporal contiguity, that is, that the only requirement for conditioning is that a US
frequently follows a CS closely in time. In contrast, the core idea of the Rescorla-
Wagner model is that an organism only learns when events violate its expectations,
in other words, only when the organism is surprised (although without implying any
conscious expectation or emotion).

Here is how Rescorla and Wagner described their model. The model adjusts the
“associative strength” of each stimulus, which is a number representing the ampli-
tude of the CR elicited by the stimulus, or how reliably the stimulus elicits the CR.
Associative strengths can be positive or negative, with negative values meaning that
the stimulus inhibits the CR. When a compound CS consisting of several component
stimuli is presented on a trial of a classical conditioning experiment, the associative
strength of each component stimulus changes in a way that depends on an associative
strength associated with the entire stimulus compound, called the “aggregate asso-
ciative strength,” and not just on the current associate strength of each component
itself.

Rescorla and Wagner considered a stimulus compound AX, where the animal may
have already experienced stimulus A, and stimulus X might be new to the animal.
Let Vi, Vx, and Vax respectively denote the associative strengths of stimuli A, X,
and the compound AX. Suppose that on a trial the compound CS AX is followed
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by a US, which we label stimulus Y. Then the associative strengths of the stimulus
components change according to these expressions:

AVah = aaBy(Ay — Vax)
AVx = axPy(Ay — Vax),

where as By and axfy determine the learning rate, which depends on both the CS
and US, and Ay is the asymptotic level of associative strength that the US Y can
support. (This A is Rescorla and Wagner’s notation and does not correspond to the
A of the TD(A) family.) The model makes the further important assumption that
Vax = Va + Vx.

To complete the model one needs to define a way of mapping values of V' to CRs.
Since such a mapping would depend on details of the experimental situation, Rescorla
and Wagner did not specify a mapping but simply assumed that it would be order
preserving and that negative V's would generally correspond to the absence of a CR.

To connect this model to TD algorithms, think of the conditioning process as
one of learning to predict the “magnitude of the US” on a trial on the basis of the
stimulus compound present on that trial, where the magnitude of a US Y is the Ay
of the Rescorla-Wagner model as given above. Suppose the stimulus compound on a
trial ¢ consists of up to n component stimuli and is represented by a vector x; with
binary coordinates x¢(i), i = 1,...,n, where there is a one in coordinate 7 if stimulus
component ¢ is present on trial ¢ and a zero if that stimulus component is not present.
Denote the respective associative strengths of these stimulus components by weights
v(i), i = 1,...,n. Then the aggregate associative strength on trial ¢ is

n

V=Y or(i)a(i). (13.1)

=1

This corresponds to a wvalue estimate of reinforcement learning and is thought of it
as the US prediction.

As a result of a conditioning trial ¢, the weight vector, v;, is updated as follows:
Vitl = V¢ + aétxt, (132)

where « is the step-size parameter. For the Rescorla-Wagner model §; is the predic-
tion error

5=\t — Vi (13.3)

Here, \; is the ‘target’ of the prediction on trial ¢, that is, the magnitude of the
US, or in Rescorla and Wagner’s terms, the associative strength that the US on the
trial can support (where, again, this does not correspond to the A of TD()) family).
Note that the term x; in Equation 12.2 implies that only the associative strengths of
stimuli present on a trial are adjusted as a result of that trial. The prediction error
is considered to be a measure of surprise, with the aggregate associative strength
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representing the animal’s expectation that is violated when it does not match the
target US magnitude.

In this form, the Rescorla-Wagner model is recognizable as an error-correcting
supervised learning rule identical to the Widrow-Hoff Least Mean Square (LMS)
learning rule (Widrow and Hoff, 1960), with the exceptions that for LMS the input
vectors x; can have any real numbers as coordinates and the scalar step-size parame-
ter a does not depend on both the input vector and target value. The latter is a minor
deviation that more elaborate forms of the LMS rule can incorporate. Error correc-
tion provides a ready explanation for many of the phenomena observed in classical
conditioning with compound stimuli. For example, in a blocking experiment when a
new component is added to a stimulus compound to which the animal has already
been conditioned, further conditioning with the augmented compound produces lit-
tle or no increase in the associative strength of the added stimulus. Prior learning
blocks learning to the added stimulus component because the error has already been
reduced to zero, or to a low value. Because the occurrence of the US is already
predicted, no new surprise is introduced by adding the new stimulus component.

Although the Rescorla-Wagner model provides a simple and compelling account
of blocking and other features of behavior in classical conditioning experiments, it
is far from being a perfect or complete model. Different ideas account for a variety
of other observed effects, and progress is still being made toward understanding the
many counterintuitive subtleties of classical conditioning. One direction of exten-
sion concerns the timing of stimuli. A single time step in the above formulation
of Rescorla and Wagner’s model represents an entire conditioning trial. The model
does not apply to details about what happens during the time a trial is taking place.
Within each trial an animal might experience various stimuli whose onsets occur
at particular times and that have particular durations. These timing relationships
strongly influence learning. For example, one of Pavlov’s most reliable observations
was that the CS must begin before the US begins for learning to occur; when it is the
other way around, he observed no learning at all (although later researchers reported
a slight amount of learning for negative ISIs in certain cases).

The model of classical conditioning based on TD learning is a generalization of
the Rescorla-Wagner model. It accounts for all of the behavior accounted for by
that model but goes beyond it to account for how within-trial and between-trial
timing relationships among stimuli influence learning. The TD model of classical
conditioning is called a real-time model, as opposed to a trial-level model like the
Rescorla-Wagner model.

To describe the TD model we can begin with the formulation of the Rescorla-
Wagner model above, but we now interpret the time step ¢ as representing a small
interval of real time, say, 0.01 seconds, and we have to be a bit more precise about
the aggregate associative strength. Let ¢ and ¢’ be two possibly different time steps.
Then

n

Vi(xp) = > (i) (i) (13.4)

i=1
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is the aggregate associate strength at time step ¢ due to the stimulus compound
present at time step ¢. Then learning occurs according to this update:

Vitl = V¢ + aétet, (135)

where « is the step-size parameter, d; is the TD error defined below, and e; is a
vector of eligibility traces at time ¢t that accumulate according to the presence of
stimulus components and decay according to yA:

€1 =y\es + xq. (13.6)

Here + is the discount factor (between 0 and 1) and A is the eligibility trace-decay
parameter—not the Rescorla-Wagner ) in Equation 12.3.

Instead of the Rescorla-Wagner §; of Equation 12.3, the TD model uses the TD
prediction error to update the US prediction:

6 = re +YVi(xt) — Vi(xe-1), (13.7)

where v is the discount factor, and r; indicates the US strength at time ¢ instead of
the trial-level \; of the Rescorla-Wagner model. Note that if v = 0, the TD model
prediction error is identical to the prediction error of the Rescorla-Wagner model
(except for the single time-step delay of the stimulus compound).

Like the Rescorla-Wagner model, the TD model does not specify a particular
response generation mechanism that converts the US prediction into a behavioral
response that can be compared to an animal’s CR. One can simply let the time course
of the US prediction V directly represent the time course of the CR, as has been done
in a number of modeling studies. With this assumption, one can see by comparing the
description above with our account of TD learning with linear function approximation
in Chapter 9 that the TD model of classical conditioning is the backward view of
the gradient-descent TD(\) algorithm for the case of linear function approximation.
The only difference is that in modeling classical conditioning, r; represents the US
strength at time step t instead of the reward signal at time step t as it does when the
algorithm is used as a component of a policy-improvement algorithm. The TD model
with more complicated response generation mechanisms have also been studied. One
example is a thresholded leaky integrator used by Ludvig, Sutton, and Kehoe (2012).

Missing from this description of the TD model is a description of how the various
stimuli should be represented to best account for animal data. The TD model is a
real-time model, so the representation used in the Rescorla-Wagner model—a one if
a stimulus component is present on a trial and a zero otherwise—is not adequate.
One has to specify how stimuli appear as extended over time within trials. Moreover,
since the convergence of TD learning relies on the idea of states, in fact, on Marko-
vian states, one has to make assumptions about the sequence of states an animal’s
nervous system passes through during the multiple trials of a classical conditioning
experiment.

It would be ideal to base these assumptions on what is known about the activity
of neural circuits during conditioning, but since knowledge of this activity is not
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sufficiently detailed, the usual practice is to investigate the behavior predicted by
the model under a variety of assumptions. This allows researchers both to explore
the nature of the model’s operation and to provide varying levels of support for
different hypotheses about what the neural activity might actually be like. Ludvig
et al. (2012) describe three representations (Figure 12.2) that make different pre-
dictions when combined with the TD model together with their thresholded leaky
integrator response generator: the presence representation, the complete serial com-
pound (CSC) representation, and the microstimulus (MS) representation. These
differ along a temporal generalization gradient, referring to the degree to which they
allow generalization among nearby time points during which a stimulus is present.
The presence representation allows complete generalization, the complete serial com-
pound representation allows no generalization, and the generalization allowed by the
microstimulus representation falls between the other two. In modeling an experiment
involving more than one stimulus, a light and a tone for example, each stimulus is
given its own representation (each of which is usually of the same type).

The presence representation is like the one used in the Rescorla-Wagner model but
where the representation has value one throughout the time period during which a
stimulus is present and value zero when it is absent (the third column of Figure 12.2).
Despite its simplicity, simulations show that the TD model with this stimulus rep-
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Figure 13.2: Three stimulus representations used with the TD model. Each row
represents a component of the stimulus vector. From Ludvig et al. (2012), permission
pending.
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resentation can produce qualitatively good facsimiles of a wide range of phenomena
observed in classical conditioning experiments. These include all of the phenom-
ena produced by the Rescorla-Wagner model, such as blocking, which we described
above, and overshadowing, which is when simultaneous conditioning with two stimuli
results in the more salient stimulus producing the stronger response.

In addition to the features of classical conditioning produced by the Rescorla-
Wagner model, the TD model with the presence representation (and other represen-
tations as well) produces facsimiles of phenomena that involve the relative timing of
stimuli. Foremost among these is a conspicuous feature of classical conditioning that
the US generally must begin after the onset of a neutral stimulus for conditioning
to occur. In other words, conditioning generally requires a positive ISI. This follows
from the fact that the model’s behavior parallels animal behavior in how the asymp-
totic level of conditioning (e.g., the percentage of CRs elicited by a CS) depends on
the ISI. The overall shape of this dependency varies substantially across species and
response systems, but it is nearly always zero for zero or negative ISIs, increases to a
maximum at a positive IST where conditioning is most effective (often some fraction
of a second), and then decreases to zero after an interval that varies widely with re-
sponse systems. The precise shape of this dependency for the model depends on its
parameter values and the details of its input representation, but these basic features
are core properties of the TD model.

Another feature of the TD model’s behavior involving stimulus timing deserves
attention because the model correctly predicted a feature of animal learning that
had not been observed at the time of the model’s introduction. The TD model with
a presence representation (as well as with more complex representations) predicts
that blocking is reversed if in a third stage of a blocking experiment the blocked
stimulus is moved earlier in time so that its onset occurs before the onset of the
blocking stimulus. The simulated three-stage procedure involving two CS stimuli, A
and B, and a US is shown in Figure 12.3. For the first 10 trials CS A is presented
alone followed by the US, and its associative strength, V4, increases as shown in
the graph. Trials 11-20 correspond to the second stage of a blocking experiment: A
has already been conditioned and now B is introduced with the same time course
a A, followed by the US. The model shows complete blocking, with Vp remaining
at its initial value of zero during these trials. For the third stage, trials 21-35, B is
extended so that its onset precedes A’s onset. B is now an earlier predictor of the US
than A. Not only does B’s associative strength increase over these trials, A actually
loses associate strength. The model’s prediction led Kehoe, Scheurs, and Graham
(1987) to conduct the experiment using the well-studied rabbit eye-blink conditioning
paradigm (actually the rabbit learns to retract its eyeball in anticipation of an air puff
or small shock near its eye so that a protective membrane, the nictitating membrane,
moves over the eye.) They observed the key features of the model’s prediction and
noted that other theories have considerable difficulty explaining their data.

The TD model with a presence representation (and other representations as well)
can also generate a facsimile of second-order conditioning—something that the Rescorla-
Wagner model cannot do. This is the phenomenon in which a previously-conditioned
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Figure 13.3: Temporal primacy overrides blocking. From Sutton and Barto (1990),
permission pending.

CS can act as if it were a US in conditioning another initially neutral stimulus. Pavlov
described an experiment in which his assistant conditioned a dog to salivate to the
sound of a metronome that predicted a food US. Then a number of trials were con-
ducted in which a black square, to which the dog was initially indifferent, was placed
in the dog’s line of vision followed by the sound of the metronome—and this was not
followed by food. In just ten trials, the dog began to salivate just upon seeing the
back square, despite the fact that it had never been paired with food. The sound
of the metronome itself acted as reinforcement for the salivation response to the
black square. Learning analogous to second-order conditioning occurs in instrumen-
tal tasks, where a stimulus that consistently predicts reward (or penalty) becomes
rewarding (or penalizing) itself, producing what is called secondary, or conditioned,
reinforcement. This happens whether the predicted reinforcing stimulus is a primary
reinforcing stimulus or another secondary reinforcing stimulus.

The presence of Vi(x;) — Vi(x¢—1) in the TD error (Equation 12.7) means that
the error can be non-zero as a result of previous learning that made Vi(x;) differ
from Vi(x¢—1) (a temporal difference). This difference has the same status as the
reward signal in the TD error, implying that as far as learning is concerned there
is no difference between a temporal difference and a reward signal. In fact, this
feature of the TD algorithm is one of the major reasons for its development, which
we now understand through its connection to dynamic programming as described in
Chapter 6. Backing-up values is intimately related to second-order, and higher-order,
conditioning.
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Where the presence representation has a single element for each stimulus, the CSC
representation has a separate element for each moment of time during which a stim-
ulus is present (the first column of Figure 12.2). This means that a single stimulus
is represented—in the discrete-time case—by a vector having as many elements as
there are time steps in the duration of the stimulus, where each element is ‘on’ for ex-
actly one of those time steps. If multiple stimuli are involved in a simulation, each is
represented by a separate vector. The CSC representation completely differentiates
every moment of a stimulus’s duration so that there is no temporal generalization.
This representation was devised to allow different versions of the TD model to ‘show
off’ their behavior while being as unconstrained as possible by the stimulus represen-
tation. It is as if a sequence of distinct states is passed through during a conditioning
trial, with the resulting US predictions (comprising a value function) being stored in
what is essentially a lookup table whose contents are the associative strengths of the
various stimulus elements.

The name serial compound comes from classical conditioning experiments in which
an animal is exposed to multiple external stimuli strung out over time like the el-
ements of a CSC representation. Here, though, we think of the elements of a CSC
vector as being a collection of internal microstimuli generated by the nervous system
in response to the presentation of a single external stimulus, such as the stimulus
shown in the top row of Figure 12.2. Although not particularly plausible from a neu-
ral perspective, the CSC representation has been widely used in studying TD models
of both classical conditioning and the activity of dopamine producing neurons, the
latter discussed in Chapter 13. Ludvig et al. (2012) call the CSC representation a
‘useful fiction’.

The second column of Figure 12.2 illustrates the MS representation which, like the
CSC representation, consists of a vector whose elements are also thought of as inter-
nal microstimuli, but in this case they are not of such limited and non-overlapping
form. Several examples of MS representations have been studied in the literature,
and their details need not concern us here. The important point is that this kind of
representation, by being situated between the presence representation—which per-
mits complete generalization among the different moments of a CS’s presence—and
the CSC representation—which permits no such generalization—produces a limited
form of temporal generalization that allows the behavior of the TD model to be re-
lated to a broader collection of phenomena observed in animal experiments. Notable
examples of these phenomena involve the timing and shape of CRs and how these
change throughout the course of learning.

The TD model of classical conditioning, when combined with a particular response-
generation mechanism and stimulus representation, is able to account for a surpris-
ingly wide range of phenomena observed in classical conditioning experiments, but
it is far from being a perfect model. To generate other details of classical condition-
ing the model needs to be extended by, for example, adding model-based elements
and mechanisms for adaptively altering some of its parameters. Other approaches to
modeling classical conditioning depart significantly from the Rescorla-Wagner style
error-correction process. Bayesian models, for example, work within a probabilistic
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framework in which experience revises probability estimates. All of these models
usefully contribute to our understanding of classical conditioning.

Perhaps the most notable feature of the TD model is that it is based on a theory—
the theory we have described in this book—that suggests an account of what an
animal’s nervous system is {rying to do while undergoing conditioning: it is trying
to form accurate predictions of the long-term return over the animal’s future, con-
sistent with the limitations imposed by the way stimuli are represented and how the
nervous system works. In other words, it suggests a normative account of classical
conditioning in which long-term, instead of immediate, prediction is a key feature.

The development of the TD model of classical conditioning is one instance in which
the explicit goal was to model details of animal learning behavior. In addition to its
standing as an algorithm, then, TD learning is also the basis of this model of aspects
of biological learning. As we discuss in Chapter 13, TD learning has also turned out
to underlie an influential model of the activity of dopamine producing neurons in the
brain. These are instances in which reinforcement learning theory makes detailed
contact with animal behavioral or neurophysiological data.

We now turn to considering correspondences between reinforcement learning and
animal behavior in instrumental conditioning experiments, the other major type of
laboratory learning experiment studied by psychologists.

13.3 Instrumental Conditioning

Instrumental conditioning experiments differ from classical conditioning experiments
in that the delivery of a reinforcing stimulus depends on the animal’s behavior,
whereas in a classical conditioning experiment the reinforcing stimulus—the US—is
delivered independently of what the animal does. The roots of instrumental con-
ditioning go back to experiments performed by the American psychologist Edward
Thorndike one hundred years before publication of the first edition of this book.

Thorndike observed the behavior of cats when they were placed in “puzzle boxes”
from which they could escape by appropriate actions (Figure 12.4). For example,
a cat could open the door of one box by performing a sequence of three separate
actions: depressing a platform at the back of the box, pulling a string by clawing at
it, and pushing a bar up or down. When first placed in such a box, with food visible
outside, all but a few of Thorndike’s cats displayed “evident signs of discomfort” and
extraordinarily vigorous activity “to strive instinctively to escape from confinement”
(Thorndike, 1898).

In experiments with different cats and boxes with different escape mechanisms,
Thorndike recorded the amounts of time each cat took to escape over multiple ex-
periences in each box. He observed that the time almost invariably decreased with
successive experiences, for example, from 300 seconds to 6 or 7 seconds. He described
cats’ behavior in a box (with a simpler escape mechanism) like this:

The cat that is clawing all over the box in her impulsive struggle will
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probably claw the string or loop or button so as to open the door. And
gradually all the other non-successful impulses will be stamped out and
the particular impulse leading to the successful act will be stamped in
by the resulting pleasure, until, after many trials, the cat will, when
put in the box, immediately claw the button or loop in a definite way.
(Thorndike 1898, p. 13)

These and other experiments (some with dogs, chicks, monkeys, and even fish) led
Thorndike to formulate a number of “laws” of learning, the most influential being
the Law of Effect that we quoted in Chapter 1. This law describes what is generally
known as learning by trial and error. As mentioned in Chapter 1, many aspects of
the Law of Effect have generated controversy and its details have been modified over
the years. Still the law—in one form or another—expresses an enduring principle of
learning.

Essential features of reinforcement learning algorithms correspond to features of
animal learning described by the Law of Effect. First, reinforcement learning al-
gorithms are selectional, meaning that these algorithms try alternatives and select
among them by comparing their consequences. Second, reinforcement learning algo-
rithms are associative, meaning that the alternatives found by selection are associ-
ated with particular situations, or states, to form the agent’s policy. Like learning
described by the Law of Effect, reinforcement learning is not just the process for
finding actions that produce a lot of reward, but also for connecting them to situ-
ations or states. Thorndike used the phrase learning by “selecting and connecting”
(Hilgard, 1956). Natural selection in evolution is a prime example of a selectional
process, but it is not associative (at least as it is commonly understood); supervised
learning is associative, but it is not selectional because it relies on instructions that
directly tell the agent how to change its behavior.

Figure 13.4: One of Thorndike’s puzzle boxes. Copyright 2001 Psychology Press
Ltd. permission pending.
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In computational terms, the Law of Effect describes an elementary way of com-
bining search and memory: search in the form of trying and selecting among many
actions in each situation, and memory in the form of associations linking situations
with the actions found to work best in those situations. Search and memory are es-
sential components of all reinforcement learning algorithms, whether memory takes
the form of an agent’s policy, value function, or environment model.

A reinforcement learning algorithm’s need to search means that it has to explore
in some way. Animal’s clearly explore as well, and early animal learning researchers
disagreed about the degree of guidance an animal uses in selecting its actions in sit-
uations like Thorndike’s puzzle boxes. Are actions the result of “absolutely random,
blind groping” (Woodworth, 1938, p. 777), or is there some degree of guidance, either
from prior learning, reasoning, or other means? Although some thinkers, including
Thorndike, seem to have taken the former position, others disagreed. In fact, in
some problem-solving experiments animals were said to demonstrate insight because
the animals found a solution rather suddenly, sometimes after periods not involving
physical exploratory activity during which the animal seemed to “figure out” the so-
lution. Reinforcement learning algorithms allow wide latitude for how much guidance
an agent can employ in selecting actions. The forms of exploration we have used in
the algorithms presented in this book, such as e-greedy and upper-confidence-bound
action selection, are merely among the simplest. More sophisticated methods are pos-
sible, with the only stipulation being that there has to be some form of exploration
for the algorithms to work effectively.

The feature of our treatment of reinforcement learning allowing the set of ac-
tions available at any time to depend on the environment’s current state also echoes
something Thorndike observed in his cats’ puzzle-box behavior. They selected ac-
tions from those that they instinctively perform in their current situation, which
Thorndike called their “instinctual impulses.” First placed in a puzzle box, a cat in-
stinctively scratches, claws, and bites with great energy: a cat’s instinctual responses
to finding itself in a confined space. Successful actions are selected from these and
not from every possible action or activity. This corresponds to the feature of our for-
malism where the action selected from a state s belongs to a set of available actions,
A(s). Specifying these sets is an important aspect of reinforcement learning because
it can radically simplify learning. They are like an animal’s instinctual impulses.

Among the most prominent animal learning researchers influenced by the Law of
Effect were Cark Hull (e.g., Hull, 1943) and B. F. Skinner (e.g., Skinner, 1938). At
the center of their research was the idea of selecting behavior on the basis of its
consequences. Reinforcement learning has features in common with Hull’s theory,
which included eligibility-like mechanisms and secondary reinforcement to account
for the ability to learn when there is a significant time interval between an action
and the consequent reinforcing stimulus (see Section 12.4). Randomness also played
a role in Hull’s theory through what he called “behavioral oscillation” to introduce
exploratory behavior.

Skinner did not fully subscribe to the memory aspect of the Law of Effect, be-
ing averse to the idea of associative linkage and emphasizing instead selection from
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spontaneously-emitted behavior. He introduced the term “operant” to emphasize the
key role of an action’s effects on an animal’s environment. Unlike the experiments
of Thorndike and others, which consisted of sequences of separate trials, Skinner’s
operant conditioning experiments allowed animal subjects to behave for extended
periods of time without interruption. He invented the operant conditioning cham-
ber, now called a “Skinner box,” the most basic version of which contains a lever
or key that an animal can press to obtain a reward, such as food or water, which
would be delivered according to a well-defined rule, called a reinforcement schedule.
By recording the cumulative number of lever presses as a function of time, Skinner
and his followers could investigate the effect of different reinforcement schedules on
the animal’s rate of lever-pressing. Operant conditioning is often regarded as being
the same as instrumental conditioning, but Skinner’s original intent was to study the
effects of reinforcement on behavior in environments more like animals’ natural envi-
ronments. It is fair to say that an animal in an instrumental conditioning experiment
faces what we call an episodic task, whereas in an operant conditioning experiment,
it faces what we call a continuing task.

Another of Skinner’s notable contributions was his recognition of the effectiveness
and importance of training an animal by reinforcing successive approximations of the
desired behavior, a process he called shaping. Although this technique had been used
by others, including Skinner himself, its significance was impressed upon him when
he and colleagues were attempting to train a pigeon to bowl by swiping a wooden
ball with its beak. After waiting for a long time without seeing any swipe that they
could reinforce, they

... decided to reinforce any response that had the slightest resemblance
to a swipe—perhaps, at first, merely the behavior of looking at the ball—
and then to select responses which more closely approximated the final
form. The result amazed us. In a few minutes, the ball was caroming off
the walls of the box as if the pigeon had been a champion squash player.
(Skinner, 1958, p. 94)

Not only did the pigeon learn a behavior that is unusual for pigeons, it learned
quickly through an interactive process in which its behavior and the reinforcement
contingencies changed in response to each other. Skinner compared the process of
altering reinforcement contingencies to the work of a sculptor shaping clay into a de-
sired form. Shaping is a powerful technique for computational reinforcement learning
systems as well. When it is difficult for an agent to receive any non-zero reward sig-
nal sat all, either due to sparseness of rewarding situations or their inaccessibility
given initial behavior, starting with an easier problem and incrementally increasing
its difficulty as the agent learns can be an effective, and sometimes indispensable,
strategy.

Being able to shape behavior to be uncharacteristic of an animal’s natural behavior
appears to be at odds with Thorndike’s observation that his cats’ puzzle box activity
was selected from their “instinctual impulses.” This discrepancy is more apparent
than real because the process of shaping successively changes the situations the ani-
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mal experiences. Activity that is instinctual in situations occurring early in learning
leads to new situations in which different collections of activities are instinctual. In
some situations, the set of actions upon which selection can work may shrink to a
single reflexive response, as has been observed in animal training where even with
careful shaping some behaviors seemed impossible to obtain. (Breland and Breland,
1961, provide a famous account of some of their failed animal training experiences.)

A concept emphasized by psychologists that is especially relevant in the context
of instrumental conditioning is motivation, which refers to processes that influence
the direction and strength, or vigor, of behavior. Thorndike’s cats, for example,
were motivated to escape from puzzle boxes because they wanted the food that was
sitting just outside. Obtaining this goal was rewarding to them and reinforced their
escapes. We do not use the term motivation in presenting reinforcement learning,
but it clearly corresponds to elements of the theory. For most of the reinforcement
agents we have discussed, value functions are the main driving force determining the
agent’s direction of behavior: one might say that an agent is motivated to ascend the
gradient of the its value function.

Psychologists say that the effect of reward depends on an animal’s motivational
state. For example, an animal will be more rewarded by eating (as measured by its
rate of learning) when it is hungry than when it has just finished a satisfying meal.
In reinforcement learning, the generation of reward signals depends on the state
of a reinforcement learning agent’s environment in addition to the agent’s actions,
and this environment is everything outside of the reinforcement agent, which can
include information analogous to an animal’s motivational state. The concept of
state dependence is broad enough to allow for many types of modulating influences
on the generation of reward signals.

We turn now to the subject of learning when reinforcing stimuli occur well after the
events they reinforce. The mechanisms used by reinforcement learning algorithms
to enable learning with delayed reinforcement—eligibility traces and TD learning—
closely correspond to psychologists’ hypotheses about the means animals use to learn
under these conditions.

13.4 Delayed Reinforcement

The Law of Effect requires a backward effect on connections, and some early critics
of the law could not conceive of how the present could affect something that was
past. This concern is amplified by the fact that learning can even occur when there
is a considerable delay between an action and the consequent reward or penalty.
Similarly, in classical conditioning, learning can occur when US onset follows CS offset
by a non-negligible time interval. We call this the problem of delayed reinforcement,
which is related to what Minsky (1961) called the “credit-assignment problem for
learning systems.” The reinforcement learning algorithms presented in this book
include two basic mechanisms for addressing this problem. The first is the use of
eligibility traces, and the second is the use of TD methods to learn value functions
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from which nearly immediate evaluations of actions can be extracted. Both of these
methods correspond to similar mechanisms proposed in theories of animal learning.

Pavlov pointed out that every stimulus must leave a trace in the nervous system
that persists for some time after the stimulus ends. He regarded learning when there
is a temporal gap between the CS offset and the US onset as dependent on stimulus
traces, and to this day conditioning under these conditions is called trace conditioning
(Figure 12.1). Assuming a trace of the CS remains when the US arrives, learning
occurs through the simultaneous presence of the trace and the US. We discuss some
proposals for trace mechanisms in the nervous system in Chapter 13.

Stimulus traces were also proposed as a means for bridging the time interval be-
tween actions and consequent rewards or penalties in instrumental conditioning. In
Hull’s influential learning theory, for example, “molar stimulus traces” accounted
for what he called an animal’s goal gradient, a description of how the maximum
strength of an instrumentally conditioned response decreases with increasing delay
of reinforcement (Hull, 1932, 1943). Hull hypothesized that an animal’s actions left
internal stimuli whose traces decayed exponentially as functions of time since an
action was taken. Looking at the animal learning data available at the time, he
hypothesized that the traces effectively reach zero after 30 to 40 seconds.

The eligibility traces used in the algorithms described in this book are like Hull’s
traces: they are decaying traces of past state visitations, or of past state-action pairs.
Eligibility traces were Introduced by Klopf (1972) in his neuronal theory in which
they are temporally-extended traces of past activity at synapses, the connections
between neurons. Klopf’s traces are more complex than the exponentially-decaying
traces our algorithms use, and we discuss this more when we take up his neuronal
theory in Chapter 13.

To account for goal gradients that extend over longer longer time periods than
spanned by stimulus traces, Hull (1943) proposed that longer gradients result from
secondary reinforcement passing backwards from the goal, a process acting in con-
junction with his molar stimulus traces. Animal experiments showed that if condi-
tions favor the presence of secondary reinforcement during a delay period, learning
does not decrease with increased delay as much as it does under conditions that ob-
struct secondary reinforcement. The more favorable the conditions are for secondary
reinforcement, the slower this decrease will be and the longer it will take the gradient
to fall to zero. He therefore envisioned that there is a primary gradient based on
the delay of the primary reinforcement mediated by stimulus traces, and that this is
progressively modified, and lengthened, by secondary reinforcement.

Algorithms presented in this book that use both eligibility traces and value func-
tions to enable learning with delayed reinforcement correspond to Hull’s hypothesis
about how animals are able to learn under these conditions. The actor-critic archi-
tecture discussed in Section 10.1 illustrates this correspondence most clearly. The
critic uses a TD algorithm to learn a value function associated with the system’s
current behavior, that is, to predict the current policy’s return. The actor updates
the current policy based on the critic’s predictions, or more exactly, in changes in
the critic’s predictions. The TD error produced by the critic acts as a secondary
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reward signal for the actor, providing an immediate evaluation of performance even
when the primary reward signal itself is considerably delayed. Algorithms that esti-
mate action-value functions, such as Q-learning and Sarsa, similarly use TD learning
principles to enable learning with delayed reinforcement by means of secondary re-
inforcement. The close parallel between TD learning and the activity of dopamine
producing neurons that we discuss in Chapter 13 lends additional strength to the
consistency between reinforcement learning algorithms and this aspect of Hull’s in-
fluential learning theory.

13.5 Cognitive Maps

Model-based reinforcement learning algorithms use environment models that have
elements in common with what psychologists call cognitive maps. Recall from our
discussion of planning and learning in Chapter 8 that by an environment model we
mean anything that an agent can use to predict how its environment will respond
to its actions in terms of state transitions and rewards, and by planning we mean
any process that computes a policy from such a model. Environment models consist
of two parts: the state-transition part encodes knowledge about the effect of actions
on state changes, and the reward model part encodes knowledge about the reward
signals expected for each state (or, more generally, for each state-action-next state
triple). To decide on an action a model-based algorithm uses the model to predict
the consequences of actions in terms of future states and the rewards expected from
them. The simplest kind of planning is to compare the predicted consequences of a
collection of “imagined” sequences of decisions.

Questions about whether or not animals use environment models, and if so, how
these models are learned, have played influential roles in the history of animal learning
research. Some researchers challenged the then-prevailing stimulus-response (S-R)
view of learning and behavior, which corresponds to the simplest model-free way
to learn policies, by demonstrating latent learning. In the earliest latent learning
experiment, two groups of rats were run in a maze. For the experimental group,
there was no reward during the first stage of the experiment, but food was suddenly
introduced into the goal-box of the maze at the start of the second stage. For the
control group food was in the goal-box throughout both stages. The interest was
in whether or not rats in the experimental group had learned anything during the
first stage in the absence of food reward. Although these rats did not appear to
learn much during the first, unrewarded, stage, as soon as food was introduced in
the second stage, they rapidly caught up with the rats in the control group. It was
concluded that “during the non-reward period, the rats [in the experimental group]
were developing a latent learning of the maze which they were able to utilize as soon
as reward was introduced” (Blodgett, 1929).

Latent learning is most closely associated with the psychologist Edward Tolman,
who interpreted this and results like it as showing that animals could learn a cognitive
map in the absence of rewards or penalties, and that they used the map later when
they were motivated to reach a goal (Tolman, 1948). A cognitive map could also
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allow a rat to plan a route to the goal that was different from the one it it had
used in its initial exploration. Explanations of results like these led to the enduring
controversy lying at the heart the behaviorist/cognitive dichotomy in psychology. In
modern terms, cognitive maps are not restricted to models of spatial layouts but
are more generally environment models, or models of an animal’s “task space” (e.g.,
Wilson, Takahashi, Schoenbaum, and Niv, 2014). The cognitive map explanation of
latent learning experiments is analogous to the claim that animals use model-based
algorithms and that environment models can be learned without explicit rewards or
penalties. Models are then used for planning when the animal is motivated by the
appearance of rewards or penalties.

Tolman’s account of how animals learn cognitive maps was that they learn stimulus-
stimulus, or S—S, associations by experiencing successions of stimuli as they explore
an environment in the absence of reward. In psychology this is called expectancy the-
ory: given S—S associations, the occurrence of a stimulus generates an expectation
about the stimulus to come next. This is much like what control engineers call system
identification, in which a model of a system with unknown dynamics is learned from
labeled training examples. In the simplest discrete-time versions, training examples
are S-S’ pairs, where S is a state and S’, the subsequent state, is the label. When S is
observed, the model creates the “expectation” that S’ will be observed next. Models
more useful for planning involve actions as well, so that examples look like SA-S’,
where S’ is expected when action A is executed in state S. It is also useful to learn
how the environment generates rewards. In this case, examples are of the form S—r
or SA—r, where r is a reward signal associated with S or the SA pair. These are all
forms of supervised learning by which an agent can acquire cognitive-like maps in the
absence of reward signals. Researchers have also proposed that environment models
can be learned via Bayesian methods that extract environment structure from the
statistics of varied experiences through what is more like an unsupervised learning
process.

13.6 Habitual and Goal-Directed Behavior

The distinction between model-free and model-based reinforcement learning algo-
rithms corresponds to the distinction psychologists make between habitual and goal-
directed control of behavior. Habits are behavior patterns triggered by appropriate
stimuli and then performed more-or-less automatically, whereas goal-directed be-
havior is purposeful in the sense that it is controlled by knowledge of the value of
goals and the relationship between actions and their consequences. Habits are said
to be controlled by antecedent stimuli, whereas goal-directed behavior is said to be
controlled by its consequences. Goal-directed control has the advantage that it can
rapidly change an animal’s behavior when the environment changes how it responds
to the animal’s actions. While habitual behavior can produce rapid responses, it is
unable to quickly adjust when the environmental contingencies change. The develop-
ment of goal-directed behavioral control was likely a major advance in the evolution
of animal intelligence.
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Figure 12.5 illustrates the difference between model-free and model-based decision
strategies in a hypothetical task requiring a rat to navigate a maze with distinctive
goal boxes, each having an associated reward of the magnitude shown (Panel a).
Starting at S;, the rat has to first select left (L) or right (R) and then has to choose
between L and R again at So or S3 to reach one of the goal boxes. The goal boxes are
the terminal states of the rat’s episodic task. A model-free strategy (Panel b) relies
on stored (cached) values for state-action pairs. These action values (Q-values) are
estimates of the return expected for each action taken from each (nonterminal) state.
They are obtained over many trials of running the maze from start to finish. To make
decisions the rat just has to select at each state the action with the largest action
value for that state. In this case, when the action-value estimates become accurate
enough, the rat selects L from S; and R from S5 to obtain the maximum return of 4.
Alternatively, a model-free strategy might simply rely on a cached policy instead of
action values, making direct links from S; to L and from Ss to R. In neither case do
decisions rely on an environment model. There is no need to consult a state-transition
model, and no connection is required between the features of the goal boxes and the
rewards they deliver.

Figure 12.5 Panel (c) illustrates a model-based strategy. It uses an environment
model consisting of a state-transition model and a reward model. The state-transition
model is shown as a decision tree, and the reward model associates the distinctive
features of the goal boxes with the rewards to be found in each. (The rewards
associated with states Si, So, and Sz are also part of the reward model, but here
they are zero and are not shown.) A model-based agent can decide which way to
turn at each state by using the model to simulate possible action choices to find a
path yielding the highest return. In this case the return is the reward obtained from
the outcome at the end of the path. Here with a sufficiently accurate model, the rat
would select L and then R to obtain reward of 4. Comparing the predicted returns
of simulated paths is a simple form of planning, which can be done in a variety of
ways as discussed in Chapter 8.

For a model-free agent to change its behavior when its environment changes how it
responds to actions, the agent has to acquire new experience in the changed environ-
ment during which it can update its policy and/or value function. In the model-free
strategy shown in Panel (b) of Figure 12.5, for example, if one of the goal boxes were
to somehow shift to delivering a different reward, the rat would have to traverse the
magze, possibly many times, to experience the new reward upon reaching that goal
box, while updating either its policy or its action-value function (or both) based on
this experience. The key point is that for a model-free agent to change the action its
policy specifies for a state, or to change an action value associated with a state, it has
to act—possibly many times—in that state and experience its actions’ consequences.

A model-based agent can accommodate changes in its environment without this
kind of ‘personal experience’ with the states and actions affected by the change.
A change in its model automatically (through planning) changes its policy. While
new experience in an altered environment is one way that a model can change, it
is not the only way. Just observing the environment, or observing the activities of
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(b) Model-Free () Model-Based

Figure 13.5: Model-based and model-free strategies to solve a hypothetical sequential
action-selection problem. (a) A rat navigates a maze with distinctive goal boxes, each
associated with a reward having the value shown. (b) A model-free strategy relies
on stored (cached) action values for all the state-action pairs obtained over many
learning trials. These are estimates of the return to be obtained if that action is
taken from that state. To make decisions the rat just has to select at each state the
action with the largest action value for that state. (c¢) In a model-based strategy, the
rat learns an environmental model, consisting of knowledge of state-action-next state
transitions and a reward model consisting of knowledge of the the reward associated
with each distinctive goal box. The rat can decide which way to turn at each state
by using the model to simulate possible action choices to find a path yielding the
highest return. Adapted from Figure 1 of Niv, Joel, and Dayan (2006), permission
pending..
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other agents in the environment, is enough for a model-learning process to revise
a model to account for these observations. Moreover, planning can determine the
consequences of environmental changes that have never been linked together in the
agent’s own experience. For example, again referring to the maze task of Figure 12.5,
the rat’s reward model will change if it learns to associate one of the goal boxes with
a different reward in circumstances that do not involve the action choices required
to find that goal box in the maze. The planning process will bring knowledge of the
new reward to bear on maze running without the need for additional experience in
the maze.

Exactly this logic is the basis of goal devaluation experiments with animals. Results
from these experiments provide insight into whether an animal has learned a habit
or if its behavior is under goal-directed control. Reward-devaluation experiments are
like latent-learning experiments in that the reward signaling changes from one stage
to the next, but they are designed to provide finer-grained information about the
animal’s mode of behavior. After an initial rewarded stage of learning, the reward
value of an outcome is decreased, including being shifted to zero or even to a negative
value.

The first experiment of this type was conducted by Adams and Dickinson (1981).
They trained rats via instrumental conditioning until the rats energetically pressed
a lever for food pellets in a training chamber. The rats were then placed in the same
chamber with the lever retracted and allowed non-contingent food, meaning that
pellets were made available to them independently of their actions. After 15-minutes
of this free-access to the food, rats in one group were injected with the nausea-
inducing poison lithium chloride. This was repeated for three sessions, in the last of
which none of the injected rats consumed any of the non-contingent pellets, indicating
that the reward value of the pellets had been decreased—they had been devalued.
In the next stage taking place a day later, the rats were again placed in the chamber
and given a session of extinction training, meaning that the response lever was back
in place but disconnected from the pellet dispenser so that pressing it did not release
pellets. Finally, the lever was reconnected to the pellet dispenser to compare how
the rats in the two groups would reacquire lever pressing. The results were that the
injected rats had significantly lower response rates than the non-injected rats right
from the start of the extinction trials, and unlike the non-injected rats, they did not
reacquire lever pressing in the last stage.

Adams and Dickinson concluded that the injected rats associated lever pressing
and consequent nausea, and hence in the extinction trials they “knew” that the
consequences of pressing the lever would be something they did not want, and so
they reduced their lever pressing right from the start. The important point is that
they reduced lever pressing without ever having experienced lever pressing directly
followed by being sick: no lever was present when they were made sick. They seemed
able to combine knowledge of the outcome of a behavioral choice (pressing the level
will be followed by getting a pellet) with the reward value of the outcome (pellets
are to be avoided) and hence could alter their behavior accordingly. Not every
psychologist agrees with this “cognitive” account of experiments like this, and it is
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not the only possible way to explain these results, but the model-based planning
explanation is widely accepted.

Nothing prevents an agent from using both model-free and model-based algo-
rithms, and there are good reasons for doing this. We know from our own experience
that with enough repetition, goal-directed behavior tends to turn into habitual be-
havior. Experiments show that this happens for rats too. In one recent example
Smith and Graybiel (2013) conducted a reward-devaluation experiment in which,
simplifying a bit, two groups of rats were trained to run a T-magze, each rat starting
at the start gate and turning right or left depending on an auditory cue. If they
followed the cue correctly they found food reward at the end of the arm, otherwise
there was no reward. Rats in one group were trained until they made the correct
turn about 75% of the time, while rats in another group—the overtrained group—
received additional training until they were correct about 90% of the time. After
this training, the reward was devalued by allowing each rat access to the reward in
its home cage and then making it sick by an injection of lithium chloride. After
devaluation, the rats were again placed at the start gate of the maze to see what
they would do when they heard the instruction cue, but now there was no reward
at the end of either arm. The rats that were not overtrained reduced their running
to the devalued arm by about 50%. Overtrained rats, on the other hand, continued
running to the devalued arm as they had done before undergoing the devaluation
procedure. This result suggests that while the non-overtrained rats were acting in
a goal-directed manner sensitive to their knowledge of the outcome of their actions,
the overtrained rats had developed a habit of running to the instructed arm: their
behavior had become insensitive to the reward devaluation.

Viewing this and other results like it from a computational perspective provides
insight as to why one might expect animals to behave habitually in some circum-
stances, in a goal-directed way in others, and why they shift from one mode of
control to another as they continue to learn. While animals undoubtedly use algo-
rithms that do not exactly match those we have presented in this book, one can gain
insight into animal behavior by considering the tradeoffs that various reinforcement
learning algorithms imply.

An idea developed by computational neuroscientists Daw, Niv, and Dayan (2005) is
that animals use both model-free and model-based processes. Each process proposes
an action, and the action chosen for execution is the one proposed by the process
judged to be the more trustworthy of the two as determined by measures of confidence
that are maintained throughout learning. Early in learning the planning process of
a model-based system is more trustworthy because it chains together short-term
predictions which can become accurate with less experience than cached long-term
predictions of the model-free process. But with continued experience, the model-free
process becomes more trustworthy because planning is prone to making mistakes
due to model inaccuracies and short-cuts necessary to make planning feasible, such
as various forms of tree-pruning. According to this idea one would expect a shift
from goal-directed behavior to habitual behavior as more experience accumulates.
Other ideas have been proposed for how animals arbitrate between goal-directed
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and habitual control, and both behavioral and neuroscience research continues to
examine this and related questions.

The distinction between model-free and model-based algorithms is proving to be
useful for this research. One can examine the computational implications of these
algorithms in abstract settings that expose basic advantages and limitations of each
type. This serves both to suggest and to sharpen questions that guide the design
of experiments necessary for increasing psychologists’ understanding of habitual and
goal-directed behavior.

13.7 Extrinsic and Intrinsic Motivation

Psychologists distinguish between eztrinsic motivation, which means doing some-
thing because of some specific rewarding outcome, and intrinsic motivation, which
refers to doing something “for its own sake.” Intrinsic motivation leads organisms to
engage in exploration, play, and other behavior driven by curiosity in the absence of
externally-supplied rewards. Something like this distinction exists for reinforcement
learning systems.

The usual way to apply reinforcement learning to problem solving is to provide the
agent with a reward signal determined by the degree of success it has in solving the
problem. For example, in the tic-tac-toe illustration in Chapter 1, the agent receives
a reward of 1 when it wins a game and otherwise receives a reward of 0. This way
of generating a reward signal makes the agent behave like an extrinsically motivated
animal. Reward signaling is set up to get the agent to solve a particular problem.
This reward signal is like giving a shiny sticker to a student or a tasty treat to a pet
when they perform well at something you want them to do.

In contrast to this are ways of generating reward signals that make an agent be-
have more like it is intrinsically motivated. One example is the “exploration bonus”
described in Chapter 8. Instead of being tied to a specific task, this kind of reward
signal encourages exploration in general, that is, out of the context of any specific
task. Another example is the proposal by Schmidhuber (1991a, b) for how something
like curiosity would result from defining reward signals in a certain way. He proposed
a reinforcement learning agent that contains a module using supervised learning to
learn a model of the agent’s environment. Prediction errors both drive model learn-
ing and generate reward signals that the reinforcement learning module uses to learn
a policy for directing the agent’s actions. In particular, positive reward signals are
generated to the extent that prediction errors decrease over time. This means that
the agent will prefer experiences that enable it to improve its environment model,
which implies that it will try to avoid regions of the state space where learning to
predict is difficult or where it has already learned to make accurate predictions. As a
consequence, the preferences of this “curious agent” will continue to change as it im-
proves its predictive model, attempting to remain in regions where this improvement
is most rapid. One might say that the agent is intrinsically motivated to efficiently
learn an environment model. Here, again, this is not a particular task posed by an
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outside entity but rather a general one that, in some sense, the agent is posing for
itself.

Reinforcement learning algorithms “don’t care” how reward signals are generated.
They do not have to be the result of something in the agent’s external environment
that approves of, or disapproves of, the agent’s behavior. They can depend on a
wide range of information maintained by the device whose behavior the agent is con-
trolling, including memories of past sensations, actions, and rewards; representations
of goals and the state of progress in achieving them; and even the agent’s current
policy, value function estimate, and environment model.

Psychologists view Intrinsically motivated behavior as an essential part of an ani-
mal’s developmental process. The benefits an animal derives from intrinsically mo-
tivated behavior unfold over the long term of its lifetime. When young animals,
including humans, play and explore, they are learning skills they will need in many
different contexts throughout their lives. The same is true for reinforcement learning
systems that are expected to face many different problems over extended periods
of time. Considerable research is being devoted to developing analogs of intrinsic
motivation for reinforcement learning agents, some of which we cite in Section 12.9
below.

13.8 Summary

Our goal in this chapter has been to discuss correspondences between reinforcement
learning and the experimental study of animal learning in psychology. We emphasized
at the outset that reinforcement learning as described in this book is not intended
to model details of animal behavior. It is an abstract computational framework
that explores idealized situations from the perspective of artificial intelligence and
engineering. But many of the basic reinforcement learning algorithms were inspired
by psychological theories, and in some cases, these algorithms have in fact formed
the basis of animal learning models. This chapter describes the most conspicuous of
these correspondences.

The distinction in reinforcement learning between algorithms for prediction and
algorithms for control parallels animal learning theory’s distinction between classi-
cal, or Pavlovian, conditioning and instrumental conditioning. The key difference
between instrumental and classical conditioning experiments is that in the former
the reinforcing stimulus is contingent upon the animal’s behavior, whereas in the
latter it is not. Learning to predict via a TD algorithm corresponds to classical con-
ditioning, and we described the T'D model of classical conditioning as one instance in
which reinforcement learning principles account for some details of animal learning
behavior. This model generalizes the influential Rescoral-Wagner model by includ-
ing the temporal dimension where events within individual trials influence learning,
and it provides an account of secondary conditioning, where predictors of reinforcing
stimuli become reinforcing themselves. It also is the basis of an influential view of
the activity of dopamine neurons in the brain, something we take up in Chapter 13.
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Learning by trial and error is at the base of the control aspect of reinforcement
learning. We gave some details about Thorndike’s experiments with cats and other
animals that led to his Law of Effect, which we discussed here and in Chapter 1.
We pointed out that in reinforcement learning exploration need not be limited to
“blind groping”; trials can be generated by sophisticated methods using innate and
previously learned knowledge as long as there is some exploration. The sets A(s)
specifying the actions available in a state s, correspond to the an animal’s repertoire
of responses to a given situation, what Thorndike called “instinctual impulses.” We
discussed the training method B. F. Skinner called shaping in which reward contin-
gencies are progressively altered to train an animal to successively approximate a
desired behavior. Shaping is not only indispensable for animal training, it is also an
effective tool for training reinforcement learning agents. There is also a connection
to the idea of an animal’s motivational state, which influences what an animal will
approach or avoid and what it learns from the experience. Both the state of a re-
inforcement learning agent’s environment and the agent’s actions influence reward
signaling, and the state can include information analogous to an animal’s motiva-
tional state.

The reinforcement learning algorithms presented in this book include two basic
mechanisms for addressing the problem of delayed reinforcement: eligibility traces
and value functions learned via TD algorithms. Both mechanisms have antecedents
in theories of animal learning. Eligibility traces are similar to stimulus traces of early
theories, and value functions correspond to the role of secondary reinforcement in
providing nearly immediate evaluative feedback.

The next correspondence the chapter addressed is that between reinforcement
learning’s enwvironment models what and psychologists sometimes call “cognitive
maps.” Experiments in the mid 20th century challenged the then prevailing S-R
view of animal learning by purporting to demonstrate latent learning: learning in
the absence of rewards or penalties a cognitive map which the animal later uses to
guide its behavior when rewards or penalties are introduced. Environment models
in reinforcement learning are like cognitive maps in that they can be learned by su-
pervised learning methods without the need for reward signals, and then they can
be used to plan behavior in order to obtain reward.

Reinforcement learning’s distinction between model-free and model-based algo-
rithms corresponds to the distinction in psychology between habitual and goal-directed
behavior. Model-free algorithms make decisions by accessing information that has
been cached in a policy or an action-value function, whereas model-based methods
select actions as the result of planning ahead using a model of the agent’s environ-
ment. Goal-devaluation experiments provide information about whether an animal’s
behavior is habitual or under goal-directed control. Reinforcement learning theory
has helped clarify thinking about these issues.

The final correspondence addressed in this chapter centers on psychologists’ dis-
tinction between extrinsic motivation, which refers to doing something to achieve
some specific rewarding outcome, and intrinsic motivation, which refers to doing
something “for its own sake.” A distinction like this exists for reinforcement learning
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systems. Exploration bonuses and reward signals linked to improvements in an envi-
ronmental model are examples of reward signals that make an agent behave as if it
were intrinsically motivated to explore or to model its environment. Unlike reward
signals based on the success, or lack thereof, in performing a specific task, these kinds
of signals encourage behavior that is useful for many different tasks the agent may
encounter during its “lifetime.” Psychologists view Intrinsically motivated behavior
as essential to an animal’s development, and the same reasoning is relevant to efforts
to develop artificial learning systems that are expected to operate over long periods
of time in varying situations.

13.9 Conclusion

In this chapter we discussed how some concepts and algorithms from reinforcement
learning correspond to theories of animal learning from psychology. We emphasized
that reinforcement learning as developed here explores idealized situations from the
perspective of an artificial intelligence researcher or engineer—not from the perspec-
tive of an animal learning researcher. As a type of machine learning, the goal of
reinforcement learning is not to replicate animal behavior but to design and under-
stand effective learning algorithms. Animal learning clearly informs much of our
perspective, but we have been selective in connecting with psychological studies of
animal learning. We placed priority on aspects of animal learning that relate in clear
ways to methods for solving prediction and control problems. As a result of this
selectivity, we did not venture into many of the behavioral details and controversies
that have occupied the attention of animal learning researchers. As research in com-
putational reinforcement learning continues, it is likely that further development and
refinement of theory and algorithms will be inspired by some of these details, but
only to the extent that their computational significance becomes apparent.

Despite this purposeful detachment from psychology, reinforcement learning as de-
veloped here is giving back to psychology. The TD model of classical conditioning is
one instance where computational principles led to a theory of some details of animal
behavior that other theories have considerable difficulty explaining. The examina-
tion of habitual and goal-directed behavior in terms of model-free and model-based
reinforcement learning algorithms is another case where computational principles
from reinforcement learning are informing psychological theories. There are other
instances—too numerous to have covered here—where reinforcement learning has
suggested fresh ways to think about animal decision making and learning.

We have not been surprised by the fruitful two-way flow of ideas between rein-
forcement learning and psychology. Of all the paradigms of machine learning, re-
inforcement learning addresses problems that are the most like those that animals
have to face in their natural environments. Without a doubt, the supervised and
unsupervised learning paradigms are abstractions of important aspects of animal
learning, but they do not encompass the whole problem of learning how to interact
with a dynamic environment in order to achieve goals. For its part, reinforcement
learning also does not encompass this whole problem, but it includes some of its
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essential elements that are missing from other paradigms. Reinforcement learning’s
focus on these essential elements of animals’ natural problems is the main reason
behind the many correspondences we have discussed in this chapter. If the problems
that animals face are well modeled as stochastic sequential decision problems—as we
think they are—it would be surprising if effective algorithms bore no relationship to
the methods that have evolved enabling animals to deal with the problems they face
over their lifetimes.

As a final comment, we note that the correspondences between reinforcement learn-
ing and animal learning described in this chapter center on behavior observed in
laboratory settings rather than in the “wild” of an animal’s natural environment.
Most of animal learning theory addresses data from laboratory experiments because
this setting allows intricate control of conditions and relative ease of observation.
Learning principles uncovered in the laboratory hold in natural settings as well, but
ethologists and behavioral ecologists focus on ecological and evolutionary aspects
of behavior: how animals relate to one another and to their physical surroundings,
and how their behavior contributes to evolutionary fitness. Many features of our
treatment of reinforcement learning also correspond to the perspective and methods
of ethology and behavioral ecology. Optimization, MDPs, and dynamic program-
ming figure prominently in these fields, and our emphasis on agent interaction with
dynamic environments connects to the study of agent behavior in complex “ecolo-
gies.” We do not address agent-agent interaction because we do not cover multi-agent
reinforcement learning in this book, but this area has connections to how animals
interact with one another. Furthermore, reinforcement learning should by no means
be interpreted as dismissing evolutionary perspectives. Nothing about reinforcement
learning implies a tabula rasa view of learning and behavior. Indeed, experience with
engineering applications has highlighted the importance of building into reinforce-
ment learning systems knowledge that is analogous to what evolution provides to
animals.
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policies.

Spence, Hull’s student and collaborator at Yale, elaborated the role of secondary
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the time of its publication. Ljung (1998) provides an overview of model learning,
or system identification, techniques in engineering, and Gopnik, Glymour, Sobel,
Schulz, Kushnir, and Danks (2004) discuss a Bayesian theory about how children
learn models.
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and Dayan (2006) proposed that motivation can be thought of as the mapping that
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Robinson (1998) is the expected future reward, that is, that it is given by a value
function.
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with which it is executed. See also Niv et al. (2007).
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of internal state on dopamine signaling, Burke, Dreher, Seymour, and Tobler (2014)
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an English translation) and to prospect theory (Kahneman and Tversky, 1979).

Ryan and Deci (2000) provide a psychological introduction to intrinsic motiva-
tion. Barto, Singh, and Chentanez (2004) and Singh, Barto, and Chentanez (2004)
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hierarchical reinforcement learning. The first instance we know of that would be
characterized as intrinsically motivated reinforcement learning is Schmidhuber’s pro-
posal for endowing an agent with a kind of curiosity (Schmidhuber, 1991a, 1991b;
Schmidhuber, Storck, and Hochreiter, 1994; Storck, Hochreiter, and Schmidhuber,
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Singh, Lewis, Barto, and Sorg (2010) provide an evolutionary perspective on in-
trinsic motivation by considering what kinds of reward signaling confer analogs of
high evolutionary fitness to agents whose learning is guided by those reward func-
tions (see also Singh, Lewis, and Barto, 2009). Sorg, Singh, and Lewis (2010) and
Sorg (2011) used this approach to argue that good reward functions for reinforce-
ment learning systems can mitigate a variety bounds under which the system must
operate. The argument implies that the designer of a reinforcement learning system
should not necessarily make his or her own objective the objective of the learning
system.



