
Chapter 13

Neuroscience

Neuroscience is the multi-disciplinary study of nervous systems: how they keep
animals’ bodies functioning, how they control behavior, how they change over
time, and how the underlying chemistry and physics makes all of this possible.
Computer science and engineering are among many disciplines taking part in
neuroscience through contributions to theories, models, and experimental tech-
nology. At the same time, neuroscience is contributing to computer science and
engineering by inspiring the design of brain-like architectures for computing and
engineering applications.

Neuroscience research has long tried to answer questions about how an ani-
mal’s nervous system makes learning possible. Many different types of learning
can be studied, ranging from animal learning in the laboratory to the learning
we wish occurs in our schools. Not surprisingly, the former has received the
most attention in neuroscience due to the relative ease of controlling conditions
and making observations. Neuroscience research on learning has had a particu-
larly strong influence on computer science and engineering, notably leading to
artificial neural networks that implement learning algorithms using brain-like
mechanisms. As we recounted in Section ??, many aspects of the computa-
tional approach to reinforcement learning were inspired by what neuroscience
tells us about brain mechanisms underlying learning.

It has turned out that computational reinforcement learning is having a
remarkable influence in the other direction. Reinforcement learning theory
and algorithms are providing neuroscientists with conceptual tools for thinking
about reward-based learning in the brain. They are inspiring a literal flood
of experiments investigating how reward-related processes actually work in the
brains of vertebrate and invertebrate animals. In addition to its impact on the
neuroscience of learning, reinforcement learning is among several disciplines
contributing to the neuroscience of decision making in humans and non-human
primates. Together with economics, evolutionary biology, and mathematical
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psychology, reinforcement learning theory is helping to formulate quantitative
models of the neural mechanisms of choice.

At the root of reinforcement learning’s influence on neuroscience is its em-
brace of learning scenarios that relate well to those faced by animals, combined
with well-defined algorithmic structures that suggest a wealth of questions that
lend themselves to experimental investigation. The most striking link between
the computational study of reinforcement learning and neuroscience is the par-
allel between TD algorithms for predicting future reward and some properties
of the mammalian dopamine system. The neurotransmitter dopamine had long
been thought to transmit reward signals throughout the brain, but experiments
in the 1990s revealed that story to be too simple. TD learning—which had been
developed many years earlier for its computational properties—was quickly rec-
ognized as a ready-made model able to account for many of these new obser-
vations. Closely coupled to this is reinforcement learning’s account of how a
widely broadcast signal, like the brain’s dopamine signal, can shape the behav-
ior of a collection of many learning elements. Although the actions of dopamine
are still not understood, computational reinforcement learning provides a com-
pelling framework that is illuminating important aspects of dopamine’s function
as a widely distributed neuromodulator in the brain.

This chapter’s objective is to provide the basic background needed to ap-
preciate these and other correspondences responsible for the influence that
reinforcement learning is having on neuroscience—and that it is likely to have
over the future. But the chapter is too short to cover all the relevant corre-
spondences. Neuroscience specifically focusing on brain reward processes is an
extremely vast and fast-moving field. The correspondences we include here are
those accounting for the strongest impact reinforcement learning has had, and
is continuing to have, on neuroscience. But we can only provide a glimpse into
this fascinating story.

It hardly needs emphasizing that this chapter is also too short to delve very
deeply into the enormous complexity of the neural systems underlying reward-
based learning and decision making. We provide a brief introduction to con-
cepts and terminology from neuroscience that the reader needs for our discus-
sion, but our treatment is very simplified from a neuroscience perspective. We
do not attempt to describe—or even to name—the very many brain structures
and pathways, or any of the molecular mechanisms, believed to be involved in
these processes. We also do not do justice to the variety of hypotheses and
models that represent alternative views.

The literature contains many excellent publications covering links between
reinforcement learning and neuroscience at various levels and from various per-
spectives. Our treatment differs from most of these because we assume the
reader is familiar with reinforcement learning as presented in the earlier chap-



13.1. LEVELS OF EXPLANATION 3

ters of this book, and we do not assume any knowledge of neuroscience. This
chapter’s final section provides information about the sources of our remarks
along with commentary on how the various links between the computational
theory and neuroscience developed.

13.1 Levels of Explanation

Understanding complex systems involves multiple levels of explanation, a per-
spective that is a valuable guide to understanding parallels between compu-
tational reinforcement learning and neuroscience. The three levels at which
complex information-processing systems can be understood proposed by David
Marr have proven to be useful in organizing thinking in both neuroscience and
artificial intelligence (Marr, 1982). The computational theory level, the most
abstract, is about what problem the system is solving and and theory related to
that problem. The representation and algorithm level addresses how the system
solves the problem in terms of representations and algorithms. The hardware
implementation level, the most concrete, is about the physical substrate that
actually performs the computation. There are no unique correspondences be-
tween these levels. Many different representations and algorithms are capable
of solving any given problem, and many different physical substrates can im-
plement any representation and algorithm.

At the computational theory level, reinforcement learning’s focus on pre-
diction and control in the context of stochastic sequential decisions problems
is as applicable to animals as it is to artificial intelligence. Its emphasis on
observing, predicting, and controlling in continual real-time interaction with
an environment in order to achieve goals under conditions of uncertainty is a
powerful guide to thinking in both cases. Reinforcement learning thus has an
advantage over many other approaches to thinking about intelligence because
it addresses a problem not unlike the problem that has driven the evolution of
animal intelligence. At the computational level, therefore, the parallel between
reinforcement learning and animal intelligence has a strong footing.

But the strongest parallels may be at the representation and algorithm level,
the level of this chapter’s focus. We have presented algorithms whose main
features are numerical reward signals, value functions, TD errors, eligibility
traces, environment models, and adjustable parameters, or weights. Here we
examine parallels between these elements and what neuroscience tells us about
how nervous systems address the kinds of problems in which we are interested.

Reinforcement learning theory has less to say at Marr’s hardware implemen-
tation level. We describe algorithms using mathematics and computer code
without paying attention to how they could be implemented in computational
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hardware. Nevertheless, some features of reinforcement learning algorithms
were inspired by hypotheses about neural learning mechanisms, and some algo-
rithms have proven to be highly suggestive about how neural hardware could
implement them. We discuss hypothetical neural implementations of these
features and algorithms, especially those that have influenced neuroscientists
in their efforts to understand implementation-level information about reward-
based learning and decision making.

Throughout all of what follows it is important to keep in mind that something
at one level of analysis can be realized in many different ways at more detailed
levels. Different algorithms can solve stochastic sequential decision problems,
and each can be implemented with different hardware. A construct useful
on one level may not correspond in a unique way to a construct at a more
detailed level. For example, it can be useful for neuroscientists to think about
a single real-valued reward signal even if there is no literal counterpart among
the signals produced by any single neuron.

Despite the fact that any algorithm can be implemented in many differ-
ent ways, hardware realizations are not arbitrary. Constraints from a number
of sources narrow the set of plausible implementations. Energy requirements,
signal timing, wiring efficiency and other aspects of packaging place strong con-
straints at the hardware implementation level. Computational efficiency and
complexity, in both time and space, constrain the set of feasible algorithms
for solving computational problems. The concern of reinforcement learning re-
search with comparing algorithms in terms performance and complexity mirrors
the role these same constraints played in the evolution of the algorithms im-
plemented by animal nervous systems. We believe this is the reason that many
features of reinforcement learning algorithms align well with what neuroscience
is discovering about learning in animal brains.

13.2 Some Neuroscience Basics

Understanding some of the the very basics of neuroscience will help in fol-
lowing the content of this chapter. We briefly cover what is needed in this
section, which can easily be skipped if you already know something about neu-
roscience. As is true in most introductions to the principal features of nervous
systems, we describe just the most typical versions of various neural building
blocks. Nervous systems employ an enormous range of variations of these basic
elements.

Neurons, the main components of nervous systems, are cells specialized for
processing and transmitting information using electrical and chemical signals.
They come in many forms, but a neuron typically has a cell body, dendrites,
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and a single axon. Dendrites are fibers branching from the cell body to receive
input from other neurons (or to receive external signals in the case of sensory
neurons). A neuron’s axon is a fiber that delivers the neuron’s output to other
neurons (or to muscles or glands). The output consists of sequences of electrical
pulses called action potentials that travel along the axon. Action potentials are
also called spikes, and a neuron is said to fire when it generates one. In models
of neural networks it is common to use a real number to represent a neuron’s
firing rate.

A synapse is a structure generally at the termination of an axon branch that
mediates the communication of one neuron to another. A synapse transmits
information from the presynaptic neuron’s axon to a dendrite or cell body of
the postsynaptic neuron. Of major interest here are synapses that release a
chemical neurotransmitter upon the arrival of an action potential from the
presynaptic neuron. Neurotransmitter molecules bind to receptors on the sur-
face of the postsynaptic neuron to excite or inhibit its spike-generating activity,
or to modulate its behavior in other ways. A given neurotransmitter may bind
to several different types of receptors, with each producing a different effect on
the postsynaptic neuron. For example, there are at least five different recep-
tor types by which the neurotransmitter dopamine can affect a postsynaptic
neuron.

Neurons typically exhibit a background level of activity either when they are
not being activated by synaptic input or their synaptic input is not related
to task-specific brain activity. Background activity can be irregular as the
result of noise within the neuron or its synapses, or it can be periodic due
to dynamic processes intrinsic to the neuron. A neuron’s phasic activity, in
contrast, consists of bursts of spiking activity usually generated by synaptic
input.

A neuron’s axon can widely branch so that action potentials reach many
targets. The branching structure of a neuron’s axon is called the neuron’s
axonal arbor. Since the conduction of an action potential is an active process
not unlike the burning of a fuse, when an action potential arrives at an axonal
branching point it “lights up” action potentials on all the outgoing branches.
This implies that a neuron with a large axonal arbor can exert approximately
equal influence onto many target sites.

Neurotransmitters are called neuromodulators if they are distributed widely
throughout the brain instead of targeting specific synapses. Brains contain sev-
eral different neuromodulation systems consisting of clusters of neurons with
widely branching axonal arbors, with each system using a different neurotrans-
mitter. Neuromodulation can alter the function of neural circuits and mediate
motivation, arousal, attention, memory, mood, emotion, sleep, and body tem-
perature. Important here is that a neuromodulatory system can distribute
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something like a scalar signal, such as a reinforcement signal, to alter the op-
eration of synapses in widely distributed sites critical for learning.

The strength or effectiveness by which a synapse’s neurotransmitter release
influences the postsynaptic neuron is the synapse’s efficacy. One way a nervous
system can change through experience is through changes in synaptic efficacies
as a function of combinations of presynaptic, postsynaptic, and neuromodu-
latory activity. The ability of synaptic efficacies to change is called synaptic
plasticity. It is a primary mechanism responsible for learning. The parameters,
or weights, adjusted by learning algorithms correspond to synaptic efficacies.
As we detail below, modulation of synaptic plasticity via dopamine is a plau-
sible mechanism for how the brain might implement learning algorithms like
many of those described in this book.

13.3 Reward Signals, Values, Prediction Er-

rors, and Reinforcement Signals

Links between neuroscience and computational reinforcement learning begin by
drawing parallels between neural signals and signals playing prominent roles in
reinforcement learning algorithms. These include reward signals, values, pre-
diction errors, and reinforcement signals. Searching for neural analogs of any
of these involves many challenges. Signals related to reward processing can be
found in nearly every part of the brain, but since representations of different
reward-related signals tend to be highly correlated with one another it is diffi-
cult to interpret results unambiguously. Experiments need to be very carefully
designed to create conditions under which one of these signals might be distin-
guished from the others—or from an abundance of other types of signals—with
any degree of certainty. Despite these difficulties, many experiments have been
conducted with the aim of reconciling aspects of reinforcement learning the-
ory with neural mechanisms, and some compelling links have been established.
In preparation for discussing these links, in this section we remind the reader
of what various reward-related signals mean according to reinforcement learn-
ing theory, and we include some preliminary comments about how they might
relate to signals in the brain.

The reward signal, R, as we define it, specifies what is intrinsically good or
bad for an agent. It provides an immediate assessment of the desirability of a
state, or of an action taken in a state. The reward signal defines the problem
an agent is learning to solve. Relating this to biology, R signals what for an
an animal would be primary reward, meaning the quality an animal attaches
to biologically significant sensations or events, including those necessary for
survival and reproduction, such as eating, sexual contact, and successful escape
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or aggression. While reinforcement learning theory focuses only on R’s role in
learning, neural signals related to primary rewards have many effects in addition
their role in learning: they can produce subjective sensations of pleasure or pain
(hedonic reactions), and they can activate and invigorate behavior (their role
in engaging motivational systems). As we shall see, a unitary master primary
reward signal like R may not exist in an animal’s brain. In relating R to neural
signals it is best to think of it as an abstraction summarizing the overall effect of
a multitude of neural signals generated by multiple sources of primary reward.

Values, V , specify what is good or bad for the agent over the long run. They
are estimates of the total reward an agent can expect to accumulate over the
future. Values are attached to states or to state-action pairs. Agents make
good decisions by selecting actions with the largest values for a current state,
or by selecting actions leading to states with the highest values. Because they
predict reward, values are the basis of secondary reinforcement (Section ??).
Researchers taking an economics perspective distinguish between goal, or out-
come, values and decision values, where only the latter take the cost of a
decision into account. In psychology and neuroscience stimuli are said to have
reward values, which are measures of how avidly the animal will work for them.
In our more abstract formulation, these types of values are implicitly present
in the process that generates the reward signal R as a function of states and
actions. We reserve the term value for an estimate of how much reward is
expected over the future, where it can be either a state value or an action
value.

Prediction errors measure discrepancies between expected and actual signals
or observations. Reward prediction errors (RPEs) specifically measure discrep-
ancies between the expected and the received reward signal, being positive
when the reward signal is greater than expected, and negative otherwise. Tem-
poral difference (TD) errors, δ, are special kinds of prediction errors that signal
discrepancies between old and new expectations of a long-term measure of fu-
ture observations of some numerical-valued environment feature. This feature
does not have to be a reward signal, but most relevant in our treatment are TD
errors where the predicted feature is a reward signal, making these errors ex-
amples of RPEs. When neuroscientists refer to an RPE they generally (though
not always) mean a TD RPE, which we simply call a TD error throughout this
chapter.

There are two basic types of TD errors depending on whether or not they
involve the agent’s actions. TD errors that involve actions appear in algorithms
for learning action-value functions, such as Q-learning and Sarsa, and TD errors
that do not involve on actions appear in algorithms for learning state-value
functions, such as the TD(λ) family of algorithms. When we refer to a TD
error in this chapter we are generally referring one that does not involve actions
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because the most well-known link to neuroscience is stated in terms of TD errors
that do not involve actions. However, given the difficulty mentioned above of
experimentally distinguishing among the abundance of reward-related signals
that can be observed in the brain, this emphasis should not be interpreted as
ruling out similar links involving action-dependent TD errors.

An additional type of signal is a reinforcement signal, A reinforcement signal
modulates learning by directing what a learning algorithm should do. In rein-
forcement learning it is a signed scalar that is multiplied by a vector (and some
constants) to determine parameter updates within some learning system. It is
important to distinguish between reward signals and reinforcement signals. Re-
ward signals might function as reinforcement signals, they can be components
of reinforcement signals, as they are in RPEs, and some reinforcement signals
may not involve reward signals at all, such as prediction errors for learning
environment models. In neuroscience, reinforcement signals are often called
“teaching signals,” terminology we do not use because in machine learning it
it is usually connected with supervised learning, or “learning with a teacher,”
in which the teacher is the source of training examples that specify desired
responses—the labels of labeled examples. A reinforcement signal for us may
signal errors, as in prediction and supervised learning tasks, or it may be an
evaluation signal.

Important questions to ask about links between neuroscience data and these
theoretical concepts is if an observed signal is more like a reward signal, a
value signal, a prediction error, a reinforcement signal, or something altogether
different. And if it is an error signal, is it an RPE, a TD error, or a simpler error
like the Rescorla-Wagner error (Equation ??)? And if it is a TD error, does it
depend on actions like a Q-learning or a Sarsa TD error? As indicated above,
probing the brain to try to answer questions like these is extremely difficult.
Most of these theoretical distinctions lie beyond what current experimental
techniques can determine with any degree of certainty.

However, experiments performed in the early 1990s in which activities of
single dopamine neurons were recorded in awake behaving monkeys provided
evidence that the signals produced by these neurons are RPEs. Specifically,
the phasic activity of these neurons is well characterized as signaling TD errors,
leading to the reward prediction error hypothesis of dopamine neuron activity
which we describe in the next section. This hypothesis does not specify which
exact variety of TD error best fits this activity, but it is based on convinc-
ing experimental evidence, described below, that dopamine neuron activity is
consistent with the general principles of a TD error. The Bibliographical and
Historical Remarks section at the end of this chapter chronicles the development
of this influential hypothesis, including early contributions from experiments
with honeybee learning where the octopamine system has many parallels with
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the mammalian dopamine system.

13.4 The Reward Prediction Error Hypothesis

The hypothesis that a part of the function of the phasic activity of dopamine-
producing neurons in mammals is to signal an error between an old and a new
estimate of expected future reward is called the reward prediction error hy-
pothesis of dopamine neuron activity (Montague, Dayan, and Sejnowski,1996;
Schultz, Dayan, and Montague, 1997). It is the hypothesis that the TD error
concept from reinforcement learning accounts for many features of the phasic
activity of dopamine-producing neurons in the mammalian brain. In our nota-
tion a basic TD error is δt = Rt + γVt(xt) − Vt(xt−1), where Rt is the reward
signal at time t, and Vt(xt) and Vt(xt−1) are respectively the estimates at time
t of the values of the states present at times t and t − 1 represented by the
feature vectors xt and xt−1.

Modeling dopamine neuron activity in terms of this definition requires several
assumptions as explained by Montague et al. (1996) and Schultz et al. (1997).
First, since a TD error can become negative, but neurons cannot fire at negative
rates, the quantity corresponding to dopamine neuron activity is assumed to
be δt + bt, where bt is the background firing rate of the neuron. A negative TD
error therefore corresponds to a drop in dopamine neuron firing rate below its
background rate. Second, an assumption is needed about the states visited in
an analog of an animal experiment and how they are represented by sensory
cues or internal signals. This is the same issue faced with the TD model of
classical conditioning described in Section ??. Montague et al. (1996) and
Schultz et al. (1997) assumed that stimulus cues are represented over time as a
complete serial compound (CSC) representation as shown in the first column of
Figure ??. As in modeling classical conditioning, very little is known about how
the brain internally represents time sequences of stimuli. Representations other
than the CSC representation are clearly possible, but the major implications
of the reward prediction error hypothesis are not overly sensitive to details of
the representation.

During TD learning with these assumptions, together with the assumption of
a linear value function representation and weights updated as in the TD model
of classical conditioning (Equations ?? and ??), TD errors exhibit the most
salient features observed in the phasic activity of dopamine-producing neurons
while an animal is engaged in a variety of classical and instrumental learning
tasks. These features—which we describe in detail in Section 13.5 along with
the experimental evidence for them—are 1) the phasic response of a dopamine
neuron only occurs when a rewarding event is unpredicted, 2) early in learning
neutral cues that precede reward do not cause phasic dopamine responses,
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but with continued learning these cues gain predictive value and come to elicit
phasic dopamine responses, 3) if an even earlier cue reliably precedes a cue that
has already acquired predictive value, the phasic dopamine response shifts to
the earlier cue, ceasing for the later cue, and 3) if after learning, the predicted
rewarding event is omitted, a dopamine neuron’s response decreases below its
baseline level at the expected time of reward delivery.

Although the reward prediction error hypothesis does not account for all as-
pects of dopamine neuron activity, and there are some features of dopamine
neuron phasic activity for which does not account (discussed in Section ??),
it has has received wide acceptance among neuroscientists studying the neuro-
science of reward-based behavior.

Before turning to what what reinforcement learning theory suggests about the
function of dopamine signaling in the brain, we look more carefully at dopamine
and the main experimental evidence supporting the reward prediction error
hypothesis.

13.5 Reward Prediction Error Hypothesis:

Experimental Support

The neurotransmitter dopamine plays essential roles in many processes in the
mammalian brain. Prominent among these are processes underlying moti-
vation, learning, action-selection, most forms of addiction, and the disorders
schizophrenia and Parkinson’s disease. Dopamine is a neuromodulator because
it performs many functions and is widely distributed across the brain. Although
much remains unknown about dopamine’s functions and details of its cellular
effects, it is clear that it is fundamental to reward processing in the mammalian
brain. It is not the only neuromodulator involved in reward processing, and it
can function differently in non-mammals, but it is a solid fact that dopamine
is essential for processing reward-related information in mammals, including
humans.

The traditional view is that dopamine broadcasts a reward signal to multiple
brain regions involved in motivation and learning. At the root of this view is a
famous 1954 paper by James Olds and Peter Milner that described the effects of
electrical stimulation on certain brain areas of a rat’s brain. They found that
electrical stimulation to particular regions acted as a very powerful reward
in controlling the rats behavior: “... the control exercised over the animals
behavior by means of this reward is extreme, possibly exceeding that exercised
by any other reward previously used in animal experimentation” (Olds and
Milner, 1954). Later research revealed that the sites at which stimulation was
most effective in producing this rewarding effect excited dopamine pathways,
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either directly or indirectly, that ordinarily are excited by natural rewarding
stimuli. Other studies showed that blocking the effects of dopamine on brain
regions targeted by dopamine pathways impairs learning. Effects similar to
these with rats have also been observed with human subjects.

Dopamine is produced as a neurotransmitter by neurons whose cell bodies lie
mainly in two clusters of neurons in the midbrain of mammals: the substantia
nigra pars compacta (SNpc) and the ventral tegmental area (VTA). The axons
of these neurons have huge axonal arbors, each releasing dopamine at up to
106 sites, which is 100 to 1,000 times more than reached by typical axons.
Figure 13.1 shows the axonal arbor of a single dopamine neuron whose cell body
is in the SNpc of a rat’s brain. A prevalent view is that dopamine neurons act
in synchrony to send a common signal to wide areas of the brain. Accumulating
evidence is leading to the conclusion that different subpopulations of dopamine
neurons send different signals to different neural structures, but it is reasonable
to think of any of these subpopulations as broadcasting a common signal to a
broad neural territory.

Electrophysiological studies of the activity of dopamine neurons in anes-
thetized animals revealed that they respond to a variety of sensory stimuli,
but it took studies of their activity in awake, behaving monkeys to show that
their behavior is more complex than it would be if they were simply conveying a
reward signal. The particular studies that attracted the attention of researchers
familiar with reinforcement learning theory were conducted in the 1980s and
early 1990s in the laboratory of neuroscientist Wolfram Schultz.

Early studies in this and other laboratories showed that dopamine neurons
respond with bursts of activity to intense, novel, or unexpected visual and
auditory stimuli that trigger eye and body movements. However, the neurons
showed very little activity related to the movements themselves. This was
surprising because degeneration of dopamine neurons is a cause of Parkinson’s
disease, whose symptoms include motor disorders, particularly deficits in self-
initiated movement.

This surprising result motivated Romo and Schultz (1990) to more carefully
investigate dopamine neuron activity to see how it is involved in the initiation
of arm movements. They recorded the activity of dopamine neurons as well as
muscle activity while monkeys moved their arms. They trained two monkeys to
reach from a resting hand position into a bin containing a bit of apple, a piece
of cookie, or a raisin when the monkey saw and heard the bin’s door open. The
monkey could then grab the food and bring it to its mouth. After a monkey
became good at this, it was trained in two additional tasks.

The purpose of the first task was to see what dopamine neurons do when
movements are self-initiated. The bin was left open but covered from above
so that the monkey could not see inside but could reach in from below. No
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Figure 13.1: From Matsuda et al. (2009).

triggering stimuli were presented, and after the monkey reached for and ate
the food morsel, the experimenter usually (though not always), silently and
unseen by the monkey, replaced food in the bin by sticking it onto a rigid
wire. Romo and Schultz observed that a large percentage of the dopamine
neurons they monitored produced a phasic response whenever the monkey first
touched a food morsel, but that these neurons did not respond when the monkey
touched just the wire or explored the bin when no food was there. This was
strong evidence that the neurons were responding to the food and not to other
aspects of the task. In addition, the activity of the neurons was not related to
the monkey’s movements.

The second task’s purpose was to see what happens when movements are
triggered by stimuli. This task used a different bin with a moveable cover. The
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sight and sound of the bin opening triggered reaching movements to the bin.
In this case, Romo and Schultz found that after a while the dopamine neurons
did not respond to the touch of the food but instead responded to the sight
and sound of the opening cover of the food bin, suggesting that the phasic
responses of these neurons had shifted to stimuli predicting the availability of
reward. In a followup study they found that most of the dopamine neurons
whose activity they monitored did not respond to the sight and sound of the
bin opening outside the context of the behavioral task, suggesting that the
neurons were not responding to sensory properties of the stimuli but instead
were signaling an expectation of reward (Schultz and Romo, 1990). This was
the first step toward the reward prediction error hypothesis.

Schultz’s group conducted many additional studies involving both SNpc and
VTA neurons. In one influential study (Ljungberg, Apicella, and Schultz, 1992)
monkeys were instrumentally conditioned to depress a lever after a light was
illuminated to obtain a drop of apple juice. Dopamine neurons initially re-
sponded to the reward—the drop of juice—but they lost that response as con-
ditioning continued and developed responses instead to the illumination of the
light that predicted the reward. With continued training, lever pressing became
faster while the responses of the dopamine neurons to the light decreased. Re-
sponses reappeared when training began for a different task.

In a more complicated task an instruction cue signaling which of two levers
would be rewarding was followed a second later by a trigger cue signaling when
the monkey should respond. In this task dopamine neuron activity shifted from
initial responding to the reward to responding to the earlier predictive stimuli,
first progressing to the trigger stimulus then to the still earlier instruction
cue. As responding moved earlier in time it disappeared from the later stimuli
(Figure 13.2). Here again the responses were much reduced when the task
was well learned. Another finding was that during learning if a reward was
not delivered at the time of its usual occurrence on correct trials, many of
the dopamine neurons showed a sharp decrease in their activity below baseline
shortly after the the reward’s usual time of delivery, and this happened even
without any external cue (Figure 13.3).

These observations led Schultz and his group to conclude that dopamine
neurons respond to unpredicted rewards, to the earliest predictors of reward,
and that dopamine neuron activity decreases below baseline if a reward, or a
predictor of reward, does not occur at its expected time. These are the main
observations that support the reward prediction error hypothesis.

In addition to these basic findings, other observations add to the plausibility
of the hypothesis. When rewards of different magnitudes are delivered with
different probabilities, phasic dopamine activity is consistent with how the
TD error would behave in these situations, namely that dopamine activity is
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Figure 13.2: The response of dopamine neurons shifts from initial responses to
primary reward to earlier predictive stimuli. From Schultz (1998).

roughly proportional to the error between the expected reward magnitude and
the actual reward signal (Fiorillo, et al., 2003; Tobler et al., 2005). Experiments
that manipulated the delay of reward showed that dopamine signaling decreases
with delay as one would predict with temporal discounting (Roesch et al., 2007).
Analysis of dopamine neuron activity in the blocking procedure of classical
conditioning (Section ??) demonstrated that this activity is consistent with
the role of RPEs in theories of animal learning (Waelti, Dickinson, and Schultz,
2001). Another study suggests that animals’ reward expectations depend on the
reward history as computed by an iterative computation based on the history
of prediction errors in the manner of TD learning (Bayer and Glimcher, 2005).
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Figure 13.3: From Schultz (1998).

13.6 Dopamine and TD Learning

From all we have said about TD learning in previous chapters, it should be clear
why the experimental results described above support the reward prediction
error hypothesis. Nevertheless, here we take a close look because some of the
important points are easy to overlook. Figure 13.4 illustrates the simplest
scenario showing how the behavior of the TD error, δ, is consistent with the
phasic responses of dopamine neurons in a task in which a sequence of actions
has to be accomplished before a rewarding event occurs. This is an idealized
version of the task described above in which a monkey rests its hand on a touch
pad, then reaches for, and then grasps a morsel of apple, and finally brings it
to its mouth. If we assume that the actions have already been learned and that
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they always produce the same results, this is an episodic prediction task.

Each episode (or trial, to use the animal-learning term) consists of a sequence
of states leading up to a rewarding state. We call the states in this sequence
reward-predicting states because in this task reward regularly follows these
states and does not occur otherwise. Assume the algorithm TD(0) using a
lookup table is learning a value function, V , stored in a lookup table initialized
to be zero for all the states. Also assume that the discount factor, γ, is very
nearly one so that we can ignore it.

The top graph in Figure 13.4 represents the sequence of states visited in each
episode. Reward is zero throughout each episode except when the agent reaches
the rewarding state, shown near the right end of the time line, when the reward
signal becomes some positive number, say r?. Preceding the rewarding state
is a sequence of reward-predicting states, with the earliest reward-predicting
state shown near the left end of the time line. This is the state that produces
the earliest cue or trigger stimulus in an episode. (Here we are assuming that
states visited on preceding episodes are not counted as predicting reward on
this episode because the inter-episode-interval is so long.) Other, later, reward-
predicting states leading up to the reward are necessary so that TD learning
can back up values along the trial’s time line. These states need not produce
external stimuli, but could be like the internal microstimuli forming a CS repre-
sentation for the TD model of classical conditioning as illustrated in Figure ??.
The latest reward-predicting state in an episode is the state immediately pre-
ceding the episode’s rewarding state. This is the state near the far right end
of the time line in Figure 13.4. The rewarding state of an episode does not
predict that episode’s reward: the value of this state would come to predict
reward for the following episodes, which for simplicity we are assuming to be
zero because of a long time between episodes.

Figure 13.4 shows the first-episode time courses of V and δ as the graphs
labeled “early in learning.” Because reward is zero throughout the episode
except when the rewarding state is reached, and all the V -values are zero, the
TD error is also zero until it becomes r? at the rewarding state. This follows
from the definition δt = rt+Vt(xt)−Vt(xt−1) = rt+0−0 = rt, which is zero until
it equals r? when the reward occurs. Here xt and xt−1 are respectively vectors
of features representing the states visited at times t an t− 1 in a trial. The TD
error at this stage of learning is analogous to a dopamine neuron responding
to an unpredicted reward, e.g., a morsel of apple, at the start of learning.

Throughout this first episode and all successive episodes, TD(0) backups
occur at each state transition as described in Chapter ??. This successively in-
creases the values of the reward-predicting states, with the increases spreading
backwards from the rewarding state, until the values converge to the correct
return predictions. In this case (since we are assuming no discounting) the
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correct predictions are equal to r? for all the reward-predicting states. This
can be seen in Figure 13.4 as the graph of V labeled “learning complete.” The
values of the states preceding the earliest reward-predicting state remain low
(which Figure 13.4 shows as zero) because they are not reliable predictors of
reward. (Below we explain why the TD algorithm, which backs values up to
these states as well, leaves their values low.)

When learning is complete, that is, when V attains its correct values, the
TD errors associated with transitions from any reward-predicting state are
zero because the predictions are now accurate. This is because for a transition
from a reward-predicting state to another reward-predicting state, we have
δt = rt + Vt(xt) − Vt(xt−1) = 0 + r? − r? = 0, and for the transition from
the latest reward-predicting state, we have δt = rt + Vt(xt) − Vt(xt−1) = r? +
0 − r? − 0 = 0. However, the TD error on a transition from any state to the
earliest reward-predicting state is positive because of the mismatch between
this state’s low value and the larger value of the following reward-predicting
state. Indeed, if the value of a state preceding the earliest reward-predicting
state is zero, then after the transition to the earliest reward-predicting state
δt = rt + Vt(xt) − Vt(xt−1) = 0 + r? − 0 = r?. The “learning complete” graph
of δ in Figure 13.4 shows this positive value at the earliest reward-predicting
state, and zeros everywhere else.

This non-zero TD error upon transitioning to the earliest reward-predicting
state is analogous to the persistence of dopamine responses to the earliest
stimuli predicting reward. By the same token, when learning is complete a
transition from the latest reward-predicting state to the reward state produces a
zero TD error because the latest reward-predicting state’s value, being correct,
cancels the reward. This parallels the observation that fully predicted reward
does not generate a burst of dopamine neuron activity.

If after learning, the reward is suddenly omitted, there is a negative TD error
at the usual time of reward because the value of the latest reward-predicting
state is then too high: δt = rt + Vt(xt) − Vt(xt−1) = 0 + 0 − r? = −r?, as
shown at the right end of the “r omitted” graph of δ in Figure 13.4. This is
like dopamine neuron activity decreasing below baseline upon the omission of
an expected reward.

This analysis raises the question of what exactly is an earliest reward-predicting
state? In an animal’s life, many different states may be followed by an earliest
reward-predicting state. However, because these states are more often followed
by other states that do not predict reward, their reward-predicting power,
that is, their values, remain low. The TD algorithm, operating throughout
the animal’s life, backs up values to these states too, but the backups do not
consistently accumulate because, by assumption, none of these states reliably
precedes an earliest reward-predicting state. If any of them did, they would
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Figure 13.4:
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be reward-predicting states as well. Thus we can think of an earliest reward-
predicting state as an unpredicted predictor of reward—and clearly there can
be many such states.

This reasoning provides an explanation for the observation that with over-
training, dopamine responses decrease to even the earliest reward-predicting
stimulus in a trial. With overtraining one would expect that even a formerly
unpredicted predictor state would become predicted by stimuli associated with
earlier states: the animal’s life both inside and outside of an experimental task
would become commonplace. Upon breaking this routine with the introduc-
tion of a new task, however, one would see TD errors reappear, as indeed one
observes in dopamine neuron activity.

If the reward prediction error hypothesis is correct—even if it accounts for
only a portion of a dopamine neuron’s activity—then the phasic responses of
dopamine neurons are neither reward signals nor value signals. A plausible
alternative is that they are reinforcement signals, meaning that they modulate
learning by providing information a learning algorithm needs to update a set
of parameters. Many of the algorithms we have discussed in this book suggest
ways to think about reinforcement signals in the brain, including algorithms
for learning action-values, such as Q-learning and Sarsa, and algorithms that
learn environment models. Some of the most influential ideas are related to
the Actor-Critic class of reinforcement learning algorithms in which the Actor
learns policies, the Critic learns state values, and TD errors are reinforcement
signals for both. The next section describes a hypothesis based on an Actor-
Critic algorithm about how the brain generates and uses dopamine’s encoding
of TD errors.

13.7 Actor-Critics and the Brain

Neuroscience is sill far from achieving complete understanding of how the
brain generates and uses dopamine signals, but evidence from behavioral and
physiological experiments, along with brain anatomy, suggests that something
like an Actor-Critic algorithm may be responsible for many—though certainly
not all—features of dopamine signaling and its function. As is true for any
theoretically-motivated neural hypothesis, this hypothesis neglects innumer-
able neural details and is certainly incorrect in many ways. Nevertheless, the
basic Actor-Critic algorithm has helped organize thinking about the role of
dopamine in the brain’s habit-learning system.

Actor-Critic algorithms (Section ??) use explicit representations of both a
policy and a state-value function. An architecture implementing this type of
algorithm consists of two main components, the Actor and the Critic, which
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respectively update a policy and a state-value function. The Actor updates the
current policy using the TD error computed by the Critic as the reinforcement
signal. At any given time, the Actor outputs the action specified by the current
policy (or an exploratory action), and the Critic outputs the current TD error.
Figure 13.5 (a) is a diagram of the basic Actor-Critic architecture. In its
simplest form, the Critic implements a TD algorithm to estimate state-values
under the current policy, and it combines temporal changes in these estimated
values with reward information to form a TD error δ. The Critic’s algorithm is
basically the TD model of classical conditioning described in Section ?? except
that here the relevant output is δ instead of state-values V that contribute to
conditioned responding in that model. Some versions of the architecture place
the computation of δ outside of both the Critic and the Actor.

A distinctive feature of the Actor-Critic architecture is that the TD error, δ,
produced by the Critic is the reinforcement signal for both the Actor and the
Critic, but it modulates learning in different ways in each of these components.
For the Actor, δ tells how to update the action probabilities in order to reach
higher-valued states. The Actor increases the probability of any action leading
to a state with a higher-than-expected value (a positive δ), and it decreases
the probability of any action followed by a state with a less-than-expected
value (a negative δ). On the other hand, δ tells the Critic how to change
the value function parameters in order to improve predictive accuracy. This
makes δ the appropriate reinforcement signal for the Critic. Because it uses an
error-correcting algorithm, the Critic works to reduce δ to as close to zero as
possible.

The computational rational for using δ as the Actor’s reinforcement signal
is that it is a better reinforcement signal than the “naked” reward signal R.
The reward signal R might work as a reinforcement signal, but δ is better for a
number of reasons. First, because it responds to the earliest reliable predictors
of reward, it helps address the problem of delayed reward by being precisely
timed to provide immediate evaluation of actions in terms of their expected
consequences for bringing about future reward. Second, a given level of reward
is not good or bad in itself, but only in comparison with expected levels of
reward that might have been received had the system behaved differently. This
is addressed by δ because it compares current reward with a reward expecta-
tion based on past experiences. A third feature of δ that makes it a better
reinforcement signal than R is that it averages out reward variations due to
uncontrollable and random aspects of the environment so that learning is less
affected by these transitory variations.

Figure 13.5 (b) illustrates a hypothesis for how an Actor-Critic architecture
might be implemented in the brain. This hypothesis is relevant only to the
brain’s habit system because the Actor-Critic architecture implements a model-
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free algorithm (see Section ??). The neuroscience of goal-directed behavior,
likely relying on model-based methods, is discussed in Section 13.11.

The major brain structures involved comprise the basal ganglia, a collection
neuron groups, or nuclei, lying at the base of the forebrain that participate

Figure 13.5: Actor-Critic architecture and a hypothetical neural implementa-
tion. (a) The Actor adjusts a policy based on the TD error δ it receives from
the Critic, while the critic adjusts state-value parameters using the same TD
error. The Critic produces a TD error from the reward signal, R, and the cur-
rent change in its estimate state values. The Actor does not have direct access
to the reward signal, and the Critic does not have direct access to the action.
(b) In this hypothetical neural implementation the Actor and value learning
part of the Critic are respectively placed in the ventral and dorsal subdivisions
of the striatum. The TD error is transmitted from the VTA and SNpc to mod-
ulates changes in synaptic efficacies of input from cortical areas to the ventral
and dorsal striatum. From Takahashi et al. (2008) permission pending.
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in organizing behavior and cognitive function. The hypothesis illustrated in
Figure 13.5 (b) places the Actor and the value-learning part of the Critic re-
spectively in the dorsal and ventral subdivisions of the input structure of the
basal ganglia known as the striatum. The ventral striatum sends value infor-
mation to the VTA and SNpc, where dopamine neurons in these nuclei combine
it with information about rewards to generate TD error signals. One idea for
how this happens is that value information arrives to dopamine neurons via an
excitatory direct pathway and a slower indirect inhibitory pathway to yield the
temporal value difference that is combined with signals conveying information
about reward. The axons of these dopamine neurons, in turn, project to the
dorsal and ventral striatum, providing the reinforcement signal for adjusting
the policy and the value function, respectively, through changes in the effica-
cies of the corticostriatal synapses, that is, the synapses by which cortical areas
activate striatal neurons.

A detailed look at the rationale for this hypothetical neural implementation
is beyond the scope of this book (see the references in the Historical and Bib-
liographic Remarks section at the end of this chapter), but here is the broad
outline. Essentially all of the cerebral cortex, along with other structures, sends
signals to the striatum. These signals convey a wealth of information about sen-
sory input, internal states, as well as information about motor activity. Output
from the striatum loops back via other basal ganglia nuclei and the thalamus
to frontal areas of cortex as well as to motor areas making it possible for the
striatum to influence movement, more abstract decision processes, and reward
processing. The dorsal striatum is primarily implicated in influencing action
selection, and the ventral striatum is thought to be critical for different aspects
of reward processing, including the assignment of affective value to sensations.
Thus, the anatomy and putative functions of these regions are in line with the
idea that the dorsal and ventral striatum respectively implement Actor-like and
Critic-like mechanisms.

A notable implication of the hypothesis of Figure 13.5 (b) is that the dopamine
signal is a reinforcement signal, not a reward signal like the scalar signal R of re-
inforcement learning theory. In fact, the hypothesis implies that one should not
necessarily be able to probe the brain and record such a “master” scalar reward
signal in the activity of any single neuron. Many interconnected neural systems
generate reward-related information, with different structures being recruited
depending on different types of rewards. Dopamine neurons receive information
from many different brain areas, so the input to the SNpc and VTA labeled
“Reward” in Figure 13.5 (b) should be thought of as vector of reward-related
information arriving to these neurons along multiple input channels. Some
of these channels come from inside the animal’s body, conveying information
about its state and needs, and some come from outside, conveying information
about the animal’s environment related to food, social interaction, sex, danger,
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and other features essential for reproductive success. Reward-related informa-
tion also includes less direct indicators that evolution has determined are also
relevant to reproductive success, such as progress in learning about and exert-
ing control over the environment. What the theoretical scalar reward signal R
corresponds to, then, is the net contribution of all reward-related information
to dopamine neuron activity. It is likely not a signal transmitted along any
single axon in the brain but rather the result of a pattern of activity across
many neurons in different areas of the brain.

The results of many experiments show that dopamine is critical for learning,
and that it in fact conveys a reinforcement signal. One can go back to Olds’
and Milner’s (1954) famous observations of the rewarding effect of electrical
stimulation of particular sites in a rat’s brain. Later findings that these sites
excited dopamine pathways led to the view that dopamine conveys a reward
signal. A closer look at this paper shows that it describes the reinforcing
effects of electrical stimulation in an instrumental conditioning task. Electrical
stimulation not only energized the rats’ behavior—through dopamine’s effect
on motivation—it also led to the rats quickly learning to stimulate themselves
by pressing a lever, which they would do frequently for long periods of time.
Dopamine signaling triggered by electrical stimulation acted as a reinforcement
signal for learning.

Other experiments have shown that dopamine is critical for both classical
and instrumental conditioning. Inactivating dopamine neurons and blocking
their effect on target sites disrupts learning, as does genetic manipulation that
effects dopamine neuron activity. Especially convincing support comes from
the use of optogenetic methods, which allow neuroscientists to precisely con-
trol the activity of selected neuron types at a millisecond timescale in awake
behaving animals. Optogenetic methods introduce light-sensitive proteins into
selected neuron types so that these neurons can be activated or silenced by
means of flashes of light. In the first study using optogenetic methods to study
dopamine neurons, Tsai et al. (2009) showed that optogenetic stimulation pro-
ducing phasic activation of dopamine neurons in mice was enough to condition
them to prefer the side of a chamber where they received this stimulation as
compared to the chamber’s other side where they received no stimulation or
lower-frequency stimulation. In another set of experiments using optogenetic
activation of dopamine neurons, Steinberg et al. (2013) created artificial bursts
of dopamine neuron activity in rats at the times when rewarding stimuli were
expected but omitted—times when dopamine neuron activity normally pauses.
With these pauses replaced by artificial bursts, responding was sustained when
it would ordinarily decrease due to lack of reinforcement (in extinction trials),
and learning was enabled when it would ordinarily be blocked due to the reward
being already predicted (the blocking paradigm; see Chapter ??). These results
show that phasic dopamine neuron activity plays a causal role in behavioral
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conditioning.

What is known about how dopamine is distributed throughout the brain and
how it influences target sites makes it plausible that dopamine signals from the
VTA and SNpc function as reinforcement signals in the general manner sug-
gested by Figure 13.5 (b). Although it is an oversimplification that all dopamine
neurons send the same signal, the widely-branching axons of dopamine neurons
are well-suited for rapidly sending a precisely-timed common reinforcement sig-
nal to the multiple sites where it modulates synaptic plasticity. Most of the
neurons in the striatum are medium spiny neurons, so called because their den-
drites are covered with spines on whose tips the inputs from the cortex make
synaptic contacts. Medium spiny neurons are the main input/output neurons
in the striatum. Dopamine neuron axons form synapses on the spine stems
of medium medium spiny neurons (Figure 13.6). This brings pre- and postsy-
naptic fibers together with dopamine input. Neuroscientists have hypothesized
that this is an ideal arrangement for a learning rule for adjusting the efficacies
of corticostriatal synapses on the basis of three factors: presynaptic activity of
cortical input fibers, activity of the postsynaptic medium spiny neurons, and
modulation by the dopamine signal. In the next section we look at what the
Actor and Critic learning rules suggest about how learning might depend on
these factors.

Phasic bursts of dopamine neuron activity are particularly suitable for mod-
ulating changes at these synapses because they elevate extracellular dopamine
concentration in the striatum more than slower firing does, thus producing a
signal of significant strength. Further, timing precision is aided by the fact that
dopamine released from presynaptic sites on the axons of dopamine neurons is
rapidly reabsorbed into these axons so that the extracellular concentration of
dopamine shows only a short-duration increase in concentration, roughly last-
ing a half second, as a result of a phasic burst. The credit-assignment utility of
these mechanisms is supported by the effect of dopamine reuptake inhibitors,
such as cocaine, that interfere with this reabsorbtion process, thereby lead-
ing to increased extracellular dopamine concentrations thought to disrupt the
brain’s credit assignment mechanism.

If the brain does implement something like the Actor-Critic architecture, and
assuming populations of dopamine neurons broadcast a common reinforcement
signal to the corticostriatal synapses of both the dorsal and ventral striatum as
illustrated in Figure 13.5 (b) (which is an oversimplification as we mentioned
above), then this signal affects the synapses of these two structures in different
ways. The learning rules of the Critic and the Actor use the same reinforcement
signal, but the signal’s effect on learning is different for these two components.
The difference in the Critic and Actor learning rules is relatively simple, but
it has a profound effect on learning and is essential to how the Actor-Critic
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Figure 13.6: Spine of a striatal medium spiny neuron showing input from both
cortical and dopamine neurons. Axons of cortical neurons influence striatal
medium spiny neurons via synapses on the tips of spines covering the dendrites
of these neurons. Each axon of a VTA or SNpc dopamine neuron makes synap-
tic contact with the stems of roughly 500,000 spines that it passes by, where
dopamine is released from “dopamine varicosities.” At each synapse by which
the cortex influences the striatum, this arrangement brings together presynap-
tic input from cortex, postsynaptic activity of the medium spiny neuron, and
a dopamine signal. This arrangement makes it possible that a either a two- or
three-factor learning rule governs the plasticity of corticostriatal synapses. Hy-
pothetically, a two-factor rule for Crtiic-like learning would use non-contingent
eligibility traces not involving the postsynaptic activity, with dopamine provid-
ing the reinforcement signal, whereas a three-factor rule for Actor-like learning
would use contingent eligibility involving pre- and postsynaptic activity, also
with dopamine providing the reinforcement signal. What actually occurs at
these spines is complex and not completely understood. The figure hints at the
complexity that is possible by showing two types of receptors for dopamine,
receptors for glutamate, the neurotransmitter of the cortical inputs, and multi-
ple ways that the various signals can interact. From Schultz (1998) permission
pending.

architecture functions. The major difference is in the kind of eligibility traces
each type of learning rule uses, the topic to which we turn next.
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13.8 Eligibility Traces

Eligibility traces are essential features of both the prediction and control al-
gorithms presented in preceding chapters. They make predictive associations
possible by linking events back to earlier-occurring states or state-action pairs.
They enable control policies to be improved by linking states to actions on the
basis of the later-occurring consequences of those actions. The eligibility traces
in these algorithms are derived from Klopf’s hypothesis of the “hedonistic neu-
ron” (Klopf 1972, 1982). According to this hypothesis, eligibility traces are
properties of synapses. When certain conditions (specified below) are satisfied,
a synapse becomes eligible for modification and remains eligible for a limited
period of time, but modification only occurs if certain other conditions (also
specified below) are met during the period of eligibility. Klopf thought of eligi-
bility as a synaptically-local molecular mechanism different from the electrical
activity of both the presynaptic and postsynaptic neurons. We discuss Klopf’s
hypothesis in more below.

Section ?? related the idea of eligibility is related to similar ideas in animal
learning theories, where stimulus traces have been proposed to bridge temporal
intervals between stimuli. Here we look at eligibility traces from a neuroscience
perspective, specifically focusing on the critical role eligibility traces play in the
hypothetical neural implementation of an Actor-Critic architecture shown in
Figure 13.5 (b). In the rat’s brain the striatal subdivisions hypothesized to
implement the Actor and the Critic each contain millions of medium spiny
neurons. According to the hypothesis, Actor neurons learn policies and Critic
neurons learn values, but they do this while using a common reinforcement
signal to modulate changes in their synaptic efficacies. This happens because
the eligibility traces for neurons in these two regions are triggered by different
conditions. The mathematical definitions for eligibility traces and learning rules
given below are based on computational principles rather than on neuroscience
data, but these definitions allow us to be specific about issues that are likely
also to be relevant for neural systems. Here we focus on a single medium
spiny neuron in each striatal subdivision, reserving discussion of learning by
the entire neuron populations for Section ??.

An eligibility trace for a synapse providing input to an Actor neuron is trig-
gered whenever activity of the presynaptic neuron takes part in causing the
postsynaptic neuron to fire. This is related to Hebb’s classic proposal that
whenever a presynaptic signal participates in activating the postsynaptic neu-
ron the synapse’s efficacy increases (Hebb, 1949). Unlike Hebb’s proposal, how-
ever, here whenever activity of the presynaptic neuron takes part in causing the
postsynaptic neuron to fire, the synapse only becomes eligible for modification;
how its efficacy changes depends on the reinforcement signal received during
the window when its eligibility trace is non-zero. We call this a contingent eligi-
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Figure 13.7:

bility trace: it is contingent on the firing of the postsynaptic neuron In contrast,
the eligibility traces of a Critic neuron are triggered only by presynaptic activ-
ity. Activity of the postsynaptic neuron plays no role in the initiating synaptic
eligibility. We call this a non-contingent eligibility trace. Contingent eligibility
traces are related to instrumental conditioning, while non-contingent eligibility
traces are related to classical conditioning (Chapter ??).

In the hypothetical neural implementation of Figure 13.5 (b), a policy is
stored in the efficacies of the synapses on the dendrites of medium spiny neurons
in the dorsal striatum, the structure hypothesized to implement the Actor. The
Actor’s eligibility traces are part of the spine mechanisms at these synapses. If
xt denotes the input from the cortex to one of these neurons at time t, and yt
denotes the output of this neuron at time t, then the vector of the eligibility
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traces in this neuron’s spines at time t, denoted eAt (where the superscript A
identifies it as eligibility for the Actor), is updated according to the following
equation:

eAt+1 = γλeAt + ytxt, (13.1)

for discount factor γ and eligibility decay parameter λ. Here, as in many models
of Hebbian-style synaptic plasticity, we assume that input from a presynaptic
neuron influences the activity of the postsynaptic neuron so quickly that we
can ignore any delay and represent the contingency condition as the product
of simultaneous pre- and postsynaptic activities: ytxt.

The Actor learns by changing the efficacies of the synapses by which it re-
ceives input from the cortex. Letting wt denote the vector of efficacies at time
t of these synapses, the Actor’s learning rule is the following:

wt+1 = wt + αδte
A
t , (13.2)

for step-size parameter α, and where δt is the TD-error reinforcement signal
at time t supplied by a burst of dopamine neuron activity as shown in Fig-
ure 13.6. This is a three-factor learning rule because it depends on presynaptic
and postsynaptic activity—through their influence on contingent eligibility—
and the reinforcement signal.

As in all reinforcement learning systems, the Actor-Critic architecture has to
produce exploratory actions. In computer implementations of the architecture
this is typically done simply by adding a random component to the Actor’s
behavior. The could occur in the brain simply by means of noise in the activity
of Actor-like neurons. Medium spiny neurons the dorsal striatum in fact exhibit
irregular spontaneous activity that could be a source of exploratory behavior,
although more sophisticated forms of exploration are certainly possible as well.

The Critic’s learning rule is basically the TD model of classical conditioning
described in Section ??. Sticking to the hypothetical neural implementation,
let eCt denote the vector of eligibility traces at time t associated with the spines
of a medium spiny neuron in the ventral striatum, the structure hypothesized
to implement the value-learning part of the Critic. These traces are updated
according to this equation:

eCt+1 = γλeCt + xt, (13.3)

where γ is the discount factor and λ is the eligibility trace-decay parameter.
This differs from the Actor’s eligibility update (Equation 13.1) only in having
the term xt on the far right instead of ytxt. This means that the Critic’s
eligibilities are traces of presynaptic activity only—the neuron’s output is not
involved.



13.8. ELIGIBILITY TRACES 29

The Critic synaptic efficacies, v, update according to Equation ??, which we
write again here:

vt+1 = vt + αδte
C
t , (13.4)

for step-size parameter α, and where δt is the TD-error reinforcement signal at
time t supplied by a dopamine signal as shown in Figure 13.6. This is a two-
factor learning rule depending on presynaptic activity—through its influence
on non-contingent eligibility—and the reinforcement signal.

Evidence is accumulating that synaptic eligibility traces in fact exist. Neu-
roscientists are intensely studying a form of synaptic plasticity called spike-
timing-dependent plasticity (STDP) that involves eligibility-like traces. Exper-
iments have shown that changes in many synapses depend on the relative timing
of presynaptic and postsynaptic action potentials, i.e., spikes. The dependence
can take different forms, but in the one most studied a synapse increases in
strength if spikes incoming via that synapse arrive shortly before the postsy-
naptic neuron fires. If the timing relation is reversed, with a presynaptic spike
arriving shortly after the postsynaptic neuron fires, then the strength of the
synapse decreases. This form of STDP can be accounted for by assuming the
existence of exponentially-decaying traces, one triggered by each presynaptic
spike, and another one triggered by each postsynaptic spike. These are some-
thing like eligibility traces, although the their time courses are shorter than the
time courses of the eligibility traces typically used in reinforcement learning al-
gorithms.

The discovery of STDP has led neuroscientists to investigate the possibility
of a three-factor form of STDP that depends on a neuromodulatory input in
addition to pre- and postsynaptic activity. This form of synaptic plasticity,
called reward-modulated STDP, is much like the Actor learning rule discussed
above. Evidence is accumulating that this type of plasticity occurs at the spines
of medium spiny neurons of the dorsal striatum, with dopamine providing the
neuromodulatory factor. These are the sites where Actor learning takes place
in the hypothetical neural implementation of the Actor-Critic architecture we
have been discussing. Other experiments have demonstrated a form of reward-
modulated STDP in which lasting changes in the efficacies of cortical synapses
occur only if a neruromodulator pulse arrives within a time window that can
last up to 10 seconds after a presynaptic spike is closely followed by a postsynap-
tic spike (He et al., 2015). (In these experiments neuromodulators other than
dopamine produce the effect, so it may be inappropriate to call all forms of this
type of plasticity reward -modulated STDP). Although the evidence is indirect,
these experiments demonstrate the existence contingent eligibility traces with
time courses like those of the eligibility traces Klopf postulated. The molecu-
lar mechanisms producing these eligibility traces, as well as those underlying
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STDP, are not yet understood, but research focusing on time-dependent and
neuromodulator-dependent forms of synaptic plasticity is continuing.

The hypothesis that Actor-like learning takes place at the level of single
neurons derives from Klopf’s “hedonistic neuron” proposal (Klopf 1972, 1982),
which has had substantial influence on our computational approach to reinforce-
ment learning. In the next section we look more closely at Klopf’s proposal,
which—among other things—explains both the philosophical and computa-
tional rationale for eligibility traces and Actor-type learning.

13.9 Hedonistic Neurons

Klopf’s hedonistic neuron hypothesis is that individual neurons seek to obtain
reward and avoid punishment, where rewards and punishments are conveyed
through synaptic input from other neurons. Neurons do this, he conjectured,
by implementing a form of the Law of Effect (see Section ??) through a three-
factor synaptic learning rule relying on contingent eligibility traces and a spe-
cific definition of rewards and punishments. Klopf argued that instead of the
assumption common to traditional theories that homeostasis is the primary
goal of behavior and learning, homeostasis is a subgoal and that organisms’
primary goal is to increase the difference between the amounts of reward and
punishment they receive. He conjectured that this organism-level goal arises
from an intrinsic property of neurons by which they attempt to increase the
difference between the amounts of reward and punishment they themselves re-
ceive. According to his hypothesis, then, individual neurons are self-interested
hedonistic agents. In the Bibliographical and Historical Remarks section at
the end of this chapter we mention similar ideas that have been proposed by
others.

According to Klopf’s hypothesis when a neuron fires an action potential, all
of its synapses that were active in contributing to that action potential become
eligible to undergo changes in their efficacies. If the action potential is followed
within an appropriate time period by an increase of reward, the efficacies of all
the eligible synapses increase. Symmetrically, if the action potential is followed
within an appropriate time period by an increase of punishment, the efficacies
of eligible synapses decrease. This is implemented by triggering an eligibility
trace upon a coincidence of presynaptic and postsynaptic activity (or more
generally upon pairing of presynaptic activity with the postsynaptic activity
it influences). This is the inspiration for the Actor’s learning rule described in
the previous section and its use of contingent eligibility traces.

The shape and time course of an eligibility trace in Klopf’s theory reflects the
durations of the many feedback loops in which the neuron is imbedded, some
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of which lie entirely within the brain and body of the organism, while others
extend out through the organism’s external environment as mediated by its
motor and sensory systems. His idea was that the shape of a synaptic eligibility
trace is essentially a histogram of the durations of the feedback loops in which
the neuron is embedded. The peak of an eligibility trace would then occur at
the duration of the most prevalent feedback loops for that neuron, which Klopf
identified with the optimal inter-stimulus-interval for conditioning, about 0.5
seconds for many paradigms. (Figure ??).

The eligibility traces used by algorithms described in this book are simplified
versions of Klopf’s original idea of synaptic eligibility traces. Instead of tak-
ing the form of curves that reflect a distribution of feedback delay times, they
are simply exponentially (or geometrically) decreasing functions controlled by
the parameters λ and γ. This simplifies simulations as well as theory, but we
regard this simple type of eligibility trace as a “place holder” for traces closer
to Klopf’s original conception, which may have computational advantages in
complex reinforcement learning systems by refining the credit-assignment pro-
cess.

Many of Klopf’s ideas inspired, and are preserved in, our approach to rein-
forcement learning. This is especially true for the Actor-Critic architecture,
where a hypothetical neural implementation of the Actor consists of neurons
that are like his hedonistic neurons with δ acting as their common reward sig-
nal. The major exception is that an Actor neuron departs from Klopf’s idea
for how reward and punishment is conveyed to neurons. His idea was not that
rewards and punishments are conveyed to neurons via neuromodulatory input
specialized for this purpose. Instead, he wanted ordinary neural signals—action
potentials of other neurons—to convey rewards and punishments because he be-
lieved it was essential to avoid a centralized source of these signals. He therefore
defined neuron-local reward and punishment to be respectively the electrical
excitation and inhibition a neuron experiences via input from other neurons.
But a combination of the logic of reinforcement learning (How can it work if
there is no definite objective function?), the implausibility that neurons work
to maximize excitation and minimize inhibition (How can neurons function if
they always try to be maximally excited?), as well as the now widely-accepted
existence of fast-acting and precisely-timed modulatory signals in the brain,
argue that a specialized reinforcement signal is both more plausible neurosci-
entifically and leads to a more manageable theoretical framework.

By itself, however, relying on a centralized source for rewards and punish-
ments discards an important aspect of Klopf’s intuition. He believed that it
would merely be begging the question of how to create intelligent behavior by
reducing the problem to the equally-difficult problem of designing this central
source of rewards and punishments. In his scheme, neurons reward and punish



32 CHAPTER 13. NEUROSCIENCE

each other as self-interested participants in an immense society or economic
system making up the organism’s nervous system. This is a thought-provoking
idea, and some researchers have explored computational architectures based
on similar ideas. In our approach, the Critic, and value-function methods in
general, go part way toward letting ordinary signals convey reward and punish-
ment. These methods synthesize out of all state information, a reinforcement
signal—a TD error like δ—that is more informative than the “naked” reward
signal R. However, while value-function methods address the temporal aspect
of the credit-assignment problem (Section ??) through prediction, they do not
address structural aspects of the credit-assignment problem, which concern the
problem of assigning credit or blame to particular components of a complex
mechanism that produces behavior. A more distributed approach like the one
Klopf envisioned may be an effective way to address the structural aspect of
the credit-assignment problem.

The idea that a single neuron seeks reward and avoids punishment is not as
outlandish as it may at first appear. A well-studied example of a single cell
capable behaving something like this is the bacterium Escherichia coli. The
movement of this single-cell organism is influenced by chemical stimuli in its
environment, behavior known as chemotaxis. It swims in its liquid environment
by rotating hairlike structures called flagella attached to its surface. (Yes, it
rotates them!) Molecules in the bacterium’s environment bind to receptors on
its surface. Binding events modulate the frequency with which the bacterium
reverses flagellar rotation. Each reversal causes the bacterium to tumble in
place and then head off in a random new direction. A bit of chemical memory
and computation causes the frequency of flagellar reversal to decrease when
the bacterium swims toward higher concentrations of molecules it needs to
survive (attractants) and increase when the bacterium swims toward higher
concentrations of molecules that are harmful (repellants). The result is that
the bacterium tends to persist in swimming up attractant gradients and tends
to avoid swimming up repellant gradients.

This chemotactic behavior is called klinokinesis. It is a kind of trial-and-
error behavior, although learning is unlikely to be involved: the bacterium
needs a bit of short-term memory to detect molecular concentration gradients,
but it probably does not maintain long-term memories. Artificial intelligence
pioneer Oliver Selfridge called this strategy “run and twiddle,” pointing out its
utility as a basic adaptive strategy: “keep going in the same way if things are
getting better, and otherwise move around” (Selfridge, 1978, 1984). Similarly,
one might think of a neuron “swimming” (not literally of course) in a medium
composed of the complex collection of feedback loops in which it is embedded,
acting to obtain one type of input signal and to avoid others. According to this
view, to fully understand a neuron’s behavior it is necessary to take into account
the closed-loop nature of its interaction with its environment. This implies that
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a neuron, like the bacterium, is actually a control system. Although control
is usually thought of as controlling something external to the controller, what
control engineers traditionally call the “plant,” an equivalent—and perhaps
more illuminating—view is that a controller is actually controlling features of
its input (Powers, 1973).

13.10 Collective Behavior

The behavior of populations of reinforcement learning agents is deeply relevant
to the study of social and economic systems—and if anything like Klopf’s he-
donistic neuron hypothesis is true—to neuroscience as well. The field of multi-
agent reinforcement learning considers many aspects of the collective behavior
of populations of reinforcement learning agents by extending the theoretical ap-
proach covered in this book. Although beyond the scope of this introductory
book, familiarity with some basic concepts and results from the multi-agent
case is important for thinking about the role that diffuse neuromodulatory
systems may play in reinforcement learning in the brain.

The description above about how an Actor-Critic architecture might be im-
plemented in the brain focussed on the learning rules of single medium spiny
neurons in each of the Actor and Critic components, placed respectively in the
dorsal and ventral subdivisions of the striatum. According to this hypothesis,
changes in the efficacies of these neurons’ synapses are modulated by a com-
mon reinforcement signal transmitted by dopamine released at corticostriatal
synapses. But these striatal subdivisions contain millions of medium spiny
neurons. The dorsal striatum in one hemisphere of rat’s brain, for example,
contains almost three million medium spiny neurons. It oversimplifies the situ-
ation to assume that exactly the same dopamine signal reaches all the synapses
of all the neurons in both striatal subdivisions at exactly the same time, but
it is instructive to consider this case as a starting point. Can reinforcement
learning theory tell us anything about what happens when all members of a
population of agents learn according to a common reinforcement signal?

The learning situation across a population of Critic neurons is relatively
simple because they are all learning to predict the same quantity: the ex-
pected return, that is, the reward expected over the future. According to the
Critic learning rule with its non-contingent eligibility traces, the efficacies of
the synapses targeted by δ change in directions aimed at moving δ toward zero.
How successful each member of the population can be in learning the expected
return depends on the information it receives, which will differ across the pop-
ulation. But they are unified in aiming to implement the same input/output
function, namely, the value function for whatever policy is driving behavior.
(In the brain much more than this is likely going on, but we are considering an
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abstract situation).

The situation for Actor-like neurons is very different. Instead of each member
of the population aiming to learn the same function, each is learning whatever
function it needs to implement in order to make δ a positive as possible. By way
of the hypothetical Actor-Critic neural implementation, suppose the pattern
of activity over a large population of Actor neurons drives the behavior of
the animal that influences the reward signal and the state transitions of the
animal’s environment. Instead of trying to learn to respond with identical levels
of activity, as the Critic neurons do, these neurons must learn to contribute
in the best way the can to the collective action of the population to produce
favorable consequences in the animal’s environment as signaled by more reward
than expected, that is, by positive values of δ.

Each Actor neuron implements its own Law of Effect (Section ??), with
positive δ signaling satisfaction, and negative δ signaling discomfort—so δ is
acting as a common reward signal. What makes this interesting and challenging
is that individually any one of these neurons may have only a tiny bit of control
over δ because it is contributing just one component of the overall pattern that
influences δ. How can each Actor neuron learn under these conditions to “do
the right thing” so that the collective action of the population produces positive
reward?

A surprising result is that if the agents in a population implement certain
reinforcement learning algorithms, the population as a whole can learn to pro-
duce collective actions that increase the common reward signal even when the
agents cannot communicate with one another. Each agent faces its own rein-
forcement learning task in which its influence on the reward signal is deeply
buried in the noise created by the influences of other agents. Moreover, since
the other agent’s are learning as well, each agent’s task is nonstationary. Each
agent faces its own nonstationary reinforcement learning task, being ‘unaware’
that its reward depends on the activity of other agents in addition to its own.

Two features of the Actor learning algorithm are essential for collective learn-
ing. First is its use of contingent eligibility traces. By keeping information
about what actions were taken in what states, contingent eligibility traces al-
low credit for reward, or blame for punishment, to be apportioned among the
agents according to the parts their individual actions played in the collective
actions that influenced the reward signal. Learning with non-contingent eligi-
bility traces does not work at all in these kinds of problems. Second, there has
to be variability in the collective actions of the population in order to explore
the space of collective actions. A population of Actor agents probabilistically
explores the space of collective actions because each agent independently ex-
plores its own action space through the variability in its output. This is a very
simple way for a population to explore; more sophisticated methods are pos-



13.11. MODEL-BASED METHODS IN THE BRAIN 35

sible if agents can communicate with one another to introduce dependencies
among their actions.

In multi-agent reinforcement learning (and in game theory) this scenario is
known as a cooperative game or a team problem. Each agent receives the same
reward signal, but the signal is potentially influenced by the actions of other
agents in the population, and possibly by all of them. It is a cooperative
game, or a team problem, because the agents are united in seeking to increase
the same reward signal: there are no conflicts of interest among the agents.
An even more challenging multi-agent problem is when different agents receive
different reward signals, where each reward signal can be influenced by the
actions of other agents. This is called a competitive game. Agents might be
able to cooperate to produce higher reward for each, or there might be conflicts
of interest among them, meaning that actions that are good for some agents
are bad for others. Even deciding what the right collective action should be is
a non-trivial aspect of game theory. The competitive game scenario is likely
also relevant to neuroscience. Details of the study of cooperative and non-
cooperative game problems for populations of reinforcement learning elements
is beyond the scope of this book. The Bibliographical and Historical Remarks
section at the end of this chapter cites a selection of the relevant publications.

13.11 Model-Based Methods in the Brain

Reinforcement learning’s distinction between model-free and model-based al-
gorithms is proving to be useful for thinking about animal learning and de-
cision processes. Section ?? discusses how this distinction aligns with that
between habitual and goal-directed animal behavior. An agent using a model-
free method adjusts its policy through direct experience with the reinforce-
ment consequences of its actions. It has to execute an action in a state and
observe the consequences in order to update the action’s probability and/or
it’s action-value. A model-based agent, in contrast, selects actions based on
explicit knowledge of the expected consequences of its actions and the rewards
they are expected to deliver. Model-free methods allow efficient action selec-
tion but require relearning if reward contingencies change, whereas model-based
methods can quickly adjust to changes without the need for acting under the
new contingencies. Animals appear to use both methods, and various hypothe-
ses have been put forward about the conditions under which one or the other
predominates.

The hypothesis discussed above about how the brain might implement an
Actor-Critic algorithm is relevant only to an animal’s habitual mode of behavior
because the basic Actor-Critic method is model-free. What neural mechanisms
are responsible for producing goal-directed behavior, and how do they interact
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with those underlying habitual behavior? These questions are motivating an
increasing number of neuroscience experiments.

One way to investigate the question of what brain structures are involved in
these behavioral modes is to inactivate an area of a rat’s brain and then observe
what the rat does in a goal-devaluation experiment (Section ??). Results from
experiments like this indicate that the Actor-Critic hypothesis described above,
that places the Actor in the dorsal striatum, is too simple. Inactivating one part
of the dorsal striatum, the dorsolateral striatum (DLS), impairs habit learning,
causing the animal to rely more on goal-directed processes. On the other hand,
inactivating the dorsomedial striatum (DML) impairs goal-directed processes,
requiring the animal to rely more on habit learning. Results like these support
the view that the DLS in rodents is involved in model-free learning, whereas
their DMS is involved in model-based learning. Results of studies with hu-
man subjects using functional imaging and with non-human primates support
the view that the analogous structures in the primate brain are differentially
involved in these two behavioral modes.

Other studies identify activity associated with model-based processes in the
prefrontal cortex of the human brain, which is the front-most part of the frontal
cortex implicated in executive function, including planning and decision mak-
ing. Specifically implicated is the orbitofrontal cortex (OFC), the part of the
prefrontal cortex immediately above the eyes. Functional neuroimaging reveals
strong activity in the OFC related the subjective reward value of biologically
significant stimuli, as well as activity related to the reward expected as a conse-
quence of actions. In goal-devaluation experiments, the OFC is more strongly
activated when the devalued choice is made as opposed to the nondevalued
choice.

Another structure involved in model-based behavior is the hippocampus, a
structure critical for memory and spatial navigation. A rat needs a functioning
hippocampus to navigate a maze in the goal-directed manner that led Tolman
to the idea of that animals use models, or cognitive maps, in selecting ac-
tions (Section ??). The hippocampus is also essential for our human ability to
imagine new experiences. The results most directly relevant to planning—the
process needed to enlist an environment model in making decisions—come from
experiments that decode the activity of neurons in the hippocampus to deter-
mine what part of space hippocampal activity is representing on a moment-to-
moment basis. When a rat pauses at a choice point in a maze, the represen-
tation of space in the hippocampus sweeps forward (and not backwards) along
the possible paths the animal can take from that point. This suggests that the
hippocampus is part of a system that uses an environment model to simulate
possible future state sequences in order to assess the consequences of possible
actions in order to make decisions. This is a form of planning.
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The results described above are just the tip-of-the-iceberg as far as under-
standing the neural mechanisms of goal-directed, or model-based, learning and
decision making. There are many additional questions, some raised by the re-
sults obtained so far. For example, how can areas as structurally similar as
the DLS and DMS be essential components of modes of learning and behavior
that are as different as the model-free and model-based algorithms suggested
by computational reinforcement learning? Are separate structures responsible
for (what we call) the transition and reward components of an environment
model? Is all planning conducted at decision time via simulation of possible
future courses of action as the forward sweeping activity in the hippocampus
suggests? Or are models sometimes engaged in the background to refine or re-
compute value information as illustrated by the Dyna architecture? How does
the brain arbitrate between the use of the habit and goal-directed systems? Is
there, in fact, a clear separation between these systems?

The evidence is not pointing to a positive answer to this last question. Sum-
marizing the situation, Doll, Simon, and Daw (2012) write that “model-based
influences appear ubiquitous more or less wherever the brain processes reward
information,” and this is true even in the regions thought to be critical for
model-free learning. This includes the dopamine signals themselves, which
can exhibit the influence of model-based information in addition to the re-
ward prediction errors thought to be basis of model-free processes. Continu-
ing neuroscience research informed by reinforcement learning’s model-free and
model-based distinction will sharpen the understanding of these processes. It is
also likely that a better understanding of these neural mechanisms will suggest
algorithms that combine model-free and model-based methods is novel ways.

13.12 Addiction

Understanding the neural basis of drug abuse is a high-priority goal of neu-
roscience with the potential to produce new treatments for this serious health
problem. One view is that drug craving is the result of the same motivation and
learning processes that lead us to seek the natural rewarding experiences that
serve our biological needs. Addictive substances, by being intensely reward-
ing, effectively co-opt our natural mechanisms of learning and decision making.
This is plausible given that many—though not all—drugs of abuse increase
levels of dopamine either directly or indirectly in regions around terminals of
dopamine neuron axons in the striatum, a brain structure firmly implicated in
normal reward-based learning (Section 13.7). But the self-destructive behavior
associated with drug addiction is not characteristic of normal learning. What
is different about dopamine-mediated learning when the reward is an addictive
drug? Is addiction the result of normal learning in response to substances that
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were largely unavailable throughout our evolutionary history, so that evolution
could not select against their damaging effects? Or do addictive substances
somehow interfere with normal dopamine-mediated learning?

The reward prediction error hypothesis of dopamine neuron activity and its
connection to TD learning are the basis of an influential model of addiction due
to Redish (2004). The model is based on the observation that administration
of cocaine and some other addictive drugs produces a transient increase in
dopamine. In the model this dopamine surge is assumed to increase the TD
error δ in a way that cannot be cancelled out by changes in the value function.
In other words, whereas δ is reduced to the degree that a normal reward is
predicted by antecedent events (Section

This model accounts for some features of addicted behavior, but It is far
from being a complete model of addiction (as Redish clearly notes). Dopamine
appears not to play a critical role in all forms of addiction, and not everyone
is equally susceptible to developing addictive behavior. Moreover, it does not
include the changes in many circuits and brain regions that accompany chronic
drug taking. Nevertheless, the model illustrates how reinforcement learning
theory can be enlisted in the effort to understand a major health problem. In a
similar manner, reinforcement learning theory has been influential in the recent
development of Computational Psychiatry, which informs efforts to understand
mental illness through mathematical and computational methods.

13.13 Summary

The neural pathways involved in the brain’s reward system are enormously com-
plex and incompletely understood, but neuroscience research directed toward
understanding these pathways and their role in animal behavior is progressing
rapidly. Some of this research has been influenced by the theory of reinforce-
ment learning as presented in this book. The objectives of this chapter have
been to assist readers in appreciating this influence and to acquaint them with
theories of brain function that have played a part in shaping some features of
reinforcement learning algorithms.

The most striking instance of how reinforcement learning has influenced neu-
roscience is the correspondence between the TD error and the phasic activity
of dopamine neurons. We provided some detail about the series of experiments
from the laboratory of Wolfram Schultz that convinced many neuroscientists
that during learning dopamine neurons come to respond to unpredicted re-
wards and to the earliest predictors of reward, and we explained the basics of
why the TD error closely matches these results. TD learning was developed
independently of these experimental results, which did not exist at the time
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of its development, being motivated by the computational problem of efficient
prediction and by animal behavior in classical conditioning experiments as de-
scribed in Chapter ??. When the data from Schultz’s laboratory appeared in
the early 1990s, TD learning was a ready-made model for the behavior of the
dopamine neurons they observed. This correspondence opened a fruitful chan-
nel connecting the theoretical underpinnings of reinforcement learning, with
its ties to optimal control and decision theory, to the study of reinforcement
learning in the brain—a channel that is continuing to enrich both experimental
and theoretical research in neuroscience.

We described some of the abundant evidence that dopamine plays a critical
role in many forms of learning. A similar role is played by the TD error in
reinforcement learning algorithms that use reward predictions to address the
temporal credit assignment problem. The actor-critic type of reinforcement
learning algorithm most clearly exemplifies a reinforcing role of reward predic-
tion errors. We discussed the artificial neural-network version of an actor-critic
algorithm in which a neuron-like Critic implements TD learning, sending the
TD error as a reward signal to a neuron-like Actor that implements a Law-of-
Effect type of learning rule.

Features of this actor-critic network turn out to align well with facts about
reward processing in the brain. Although the critic and the actor elements
implement different learning rules, the TD error is the reinforcing signal for
both, acting as an error to be reduced by the critic and as a reward signal to be
increased by the actor. The type of eligibility trace an element uses determines
which role the TD error plays: non-contingent in the case of the critic element
and contingent in the case of the actor element. It is consistent with the
wide dispersion of dopamine to many brain areas that the dopamine signal can
function in both roles, with properties of each target region determining which
role it plays. The actor element’s learning rule is a three-factor learning rule
involving pre- and post-synaptic signals (to use the neural terms) plus a reward
signal provided by the TD error.

Prime candidates for sites in the brain at which instrumental learning takes
place are the synapses by which fibers from the cerebral cortex activate neurons
in the dorsal striatum. Fibers carrying dopamine signals contact many of these
synapses to bring together the three factors necessary for actor-like learning,
and studies have demonstrated that the strengths of these synapses decrease
with paired pre- and postsynaptic activity unless this is accompanied by stim-
ulation of dopamine neurons, in which case the synaptic strengths increase.
This suggests that something like the actor’s learning rule may be at work in
modifying the strengths of these synapses. Adding to the picture of dopamine
acting analogously to the TD error’s role in actor-like learning are mechanisms
that make dopamine signaling to these synapses temporally precise, something
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that would facilitate a credit-assignment role of these signals.

Klopf’s hypothesis of the “hedonistic neuron” had significant influence on our
work on reinforcement learning, including an influence on the neural-network
implementation of the actor-critic system. Arguing that maximizing is a better
foundation for intelligent behavior than homeostasis, Klopf hypothesized that
single neurons are self-interested agents that attempt of increase a neuron-local
analog of pleasure and decrease a neuron-local analog of pain by means of a
synaptic learning rule that works like the Law-of-Effect. We drew attention
to the chemotactic behavior of the bacterium Escherichia coli as an example
of a single cell that exhibits a related behavioral strategy as it is attracted or
repelled by various molecules it encounters as it propels itself through its liquid
environment. Imagining a neuron as a metaphorical “swimmer” in a medium
composed of all the feedback loops in which it participates is a vivid way to
appreciate the possibility that neuronal behavior, like the bacterium’s, may
best be understood as closed-loop, goal-directed interaction with a complex
environment.

Klopf’s hypothesis did not appeal to a specialized reward signal, as our ap-
proach to reinforcement learning does, but it included the idea of eligibility
traces which play important roles in reinforcement leaning algorithms. We re-
viewed some of the history of stimulus traces in psychological learning theories
in Chapter ??. In this chapter we focused on eligibility traces in the neural
terms of Klopf’s original idea: synaptically-local traces of past pre- and post-
synaptic activity. (We cite similar ideas by others in the Bibliographical and
Historical Remarks section below.) Unlike the eligibility traces used in the
algorithms presented in this book, which have exponentially decaying profiles,
Klopf’s idea was that eligibility profiles reflect the durations of the many feed-
back pathways in which the neuron is imbedded. We simplified this for the
sake of theoretical and computationally expediency, but more complicated eli-
gibility traces along the lines Klopf proposed may improve the performance of
the algorithms.

Although the existence of synaptic eligibility traces like Klopf proposed has
not been demonstrated, neuroscientists are actively studying synaptic plasticity
that is sensitive to the timing of the various signals involved. We briefly de-
scribed spike-timing-dependent plasticity (STDP), in which the relative timing
of pre- and postsynaptic activity determine the direction of synaptic change.
Models of this process include eligibility-like traces, although they have much
shorter time courses than the traces Klopf hypothesized. Nevertheless, the
growing understanding of STDP suggests that synaptically-localized eligibility-
like traces are present in the nervous system. Evidence is also accumulating for
the existence of reward-modulated spike-timing-dependent plasticity, a form of
STDP that depends on a neuromodulator such as dopamine in addition to pre-



13.14. CONCLUSION 41

and post-synaptic activity. The result is very much like the actor’s learning
rule in the actor-critic network.

A conspicuous feature of the dopamine system is that fibers releasing dopamine
project widely to multiple parts of the brain. If dopamine acts as a reward sig-
nal like the TD-error does for the actor in the actor-critic network, then a
relevant question is how would an actor-critic network work if it consisted of
many actor elements, each using the same TD-error to modulate learning? We
addressed this question with a brief introduction to the collective behavior of
reinforcement learning systems. This is properly part of the subject of multi-
agent reinforcement learning, which is beyond the scope of this book, but we
discussed team and game problems. In a team problem each agent receives the
same reward signal which evaluates the collective behavior of the team. In a
game problem, each agent receives an individualized reward signal, but every
agent can influence the reward signals of every agent. Since it is a common as-
sumption that each dopamine fiber carries basically the same signal, the team
problem most relavent. With each team member employing a sufficiently ca-
pable learning algorithm, the team can act collectively to improve performance
of the entire team as evaluated by the globally-broadcast reward signal, even if
the team members do not directly communicate with one another. This abil-
ity or reinforcement learning agents to function as team members is another
indicator of the importance of reinforcement learning to understanding brain
function.

13.14 Conclusion

This chapter only touches the surface of how the neuroscience of reinforcement
learning and the development of reinforcement learning algorithms in computer
science and engineering have influenced one another. Most features of reinforce-
ment learning algorithms owe their design to purely computational consider-
ations, but some have been influenced by hypotheses about neural learning
mechanisms. Remarkably, as experimental data has accumulated about the
brain’s reward processes, many of the purely computationally-motivated fea-
tures of the algorithms are turning out to be consistent with neuroscience data.

Most striking is the correspondence between the TD error and the phasic re-
sponses of dopamine neurons in the brain. This correspondence is not the result
of an attempt to model neuroscience data: the relevant behavior of dopamine
neurons was not discovered until many years after the development of TD
learning. Dopamine’s role in reward-based learning is not its only function,
and other chemical messengers are critical for learning, but we believe the cor-
respondence between TD learning and dopamine signaling demonstrates a deep
principle of reinforcement learning. Other features of computational reinforce-
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ment learning, such eligibility traces and the ability of teams of reinforcement
learning agents to learn to act collectively under the influence of a globally-
broadcast reward signal, may also turn out to parallel experimental data as
neuroscientists continue to unravel the neural basis of animal learning.

13.15 Bibliographical and Historical Remarks

The number of publications treating parallels between the neuroscience of learn-
ing and decision making and the approach to reinforcement learning presented
in this book is truly enormous. We can cite only a small selection. Niv (2009),
Dayan and Niv (2008), and Gimcher (2011) are good places to start. Glimcher
(2003) introduces the field of Neuroeconomics, in which reinforcement learn-
ing contributes to the study of the neural basis of decision making from an
economics perspective.

13.1 Marr’s three levels were originally four in Marr and Poggio (1976), sep-
arating the algorithmic and representational level into two.

13.2 There are many good expositions of basic neuroscience. Kandel, Schwartz,
Jessell, Siegelbaum, and Hudspeth (2013) is an authoritative and very
comprehensive source. Sterling and Laughlin (2015) consider neural
design in terms of the engineering constraints nervous systems must
satisfy.

13.3 Berridge and Kringelbach (2008) review the neural basis of reward and
pleasure, pointing out that reward processing has many dimensions and
involves many neural systems. Berridge and Robinson (1998) present
experimental results supporting a distinction between the hedonic im-
pact of a stimulus, which they call “liking” and the motivational effect,
which they call “wanting.” Hare, O’Doherty, Camerer, Schultz, and
Rangel (2008) examine the neural basis of value-related signals from
an economics perspective, distinguishing between goal values, decision
values, and prediction errors. Decision value is goal value minus action
cost. See also Rangel, Camerer, and Montague (2008), Rangel and Hare
(2010). and Peters and Büchel (2010).

13.4 The connection between the TD errors and the phasic responses of
dopamine neurons was most prominently introduced by Schultz, Mon-
tague, and Dayan (1997). The earliest recognition of this connection of
which we are aware was made by Montague, Dayan, Nowlan, Pouget,
and Sejnowski (1992) who proposed a TD-error-modulated Hebbian
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learning rule motivated by results on dopamine signaling from Schultz’s
group. They show how a diffuse modulatory system might guide map de-
velopment in the vertebrate brain. The connection was also pointed out
in a Neuroscience abstract by Quartz, Dayan, Montague, and Sejnowski
(1992). Montague and Sejnowski (1994) emphasized the importance
of prediction in the brain and outlined how predictive Hebbian learning
modulated by TD errors could be implemented via a diffuse neuromodu-
latory system, such as the dopamine system. Montague, Dayan, Person,
and Sejnowski (1995) presented a model of honeybee foraging using the
TD error. The model was based on research by Hammer, Menzel, and
colleagues (Hammer and Menzel, 1995; Hammer, 1997) showing that
the neuromodulator octopamine acts as a reinforcement signal in the
honeybee. Montague et al. pointed out that dopamine likely plays a sim-
ilar role in the vertebrate brain. Barto (1995) related the Actor-Critic
architecture to basal-ganglionic circuits and discussed the relationship
between TD learning and the main results from Schultz’s group. Houk,
Adams, and Barto (1995) elaborated the Actor-Critic/basal ganglia hy-
pothesis. The reward prediction error hypothesis of dopamine neuron
activity was first explicitly put forward by Montague, Dayan, and Se-
jnowski (1996).

Dayan and Abbot’s computational neuroscience book (Dayan and Ab-
bott, 2001) contains a useful chapter focusing on TD learning and
dopamine neuron activity. Dayan and Niv (2008) discuss strengths and
weaknesses of the reward prediction error hypothesis. Gimcher (2011)
reviews the empirical findings that support the hypothesis and empha-
sizes its significance for contemporary neuroscience.

13.5 Schultz’s 1998 survey article (Schultz, 1998) is a good entrée into the
very extensive literature on the reward predicting signaling of dopamine
neurons. Sterling and Laughlin (2015) discuss the very extensive axonal
branching of dopamine neuron axons and its significance as a neural
design principle. Saddoris, Cacciapaglia, Wightmman, Carelli (2015)
present results showing that dopamine neurons do not send the same
signal to all target regions; the signals can be specialized for different
target regions. O’Doherty, Dayan, Friston, Critchley, and Dolan (2003)
describe a functional brain imaging study supporting the existence of
signals like TD errors in the human brain.

13.6 This section roughly follows Barto (1995) in explaining how TD errors
mimic the main results from Schultz’s group on the phasic responses of
dopamine neurons.
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13.7 This section is largely based on Takahashi, Schoenbaum, and Niv (2008)
and Niv (2009). . Barto (1995) and Houk, Adams, and Barto (1995)
speculated about possible connections between the Actor-Critic algo-
rithm (Barto, Sutton, and Anderson, 1983) and the basal ganglia. From
functional magnetic resonance imaging of human subjects while engaged
in instrumental conditioning, O’Doherty, Dayan, Schultz, Deichmann,
Friston, and Dolan (2004) suggested that the Actor and the Critic
are most likely located respectively in the dorsal and ventral striatum.
Waelti, Dickinson, and Schultz (2001) demonstrated that dopamine re-
sponses follow the basic principles of psychological learning theory, in-
cluding exhibiting the blocking phenomenon. Greybiel (2000) is a brief
primer on the basal ganglia. Comments on the benefit of using δ as a
reinforcement signal instead of R are from Sutton’s dissertation (Sutton,
1984).

13.8 Frey and Morris (1997) proposed the idea of a “synaptic tag” for the
induction of long-lasting strengthening of synaptic efficacy. Though
not unlike an eligibility trace, the tag was hypothesized to consist of a
temporary strengthening of a synapse that could be transformed into a
long-lasting strengthening by subsequent neuron activation.

@ARTICLEHe-etal-2015, author = K. He and M. Huertas and S. Z.
Hong and X. Tie and J. W. Hell and H. Shouval and A. Kirkwood,
title Distinct Eligibility Traces for LTP and LTD in Cortical Synapses,
journal = Neuron, volume = 88, number = 3, pages = 528-538, year =
2015

For plasticity and mechanism for eligibility traces: Wickens and Kotter
(1995)

On STDP in medium spiny neurons: Dopamine Receptor Activation Is
Required for Corticostriatal Spike-Timing-Dependent Plasticity, Verena
Pawlak and Jason N. D. Kerr The Journal of Neuroscience, 5 March
2008, 28(10): 2435-2446; doi: 10.1523/JNEUROSCI.4402-07.2008

Timing is not Everything: Neuromodulation Opens the STDP Gate
Verena Pawlak,1,* Jeffery R. Wickens,2 Alfredo Kirkwood,3 and Jason
N. D. Kerr1,* Front Synaptic Neurosci. 2010; 2: 146. Published online
Oct 25, 2010. doi: 10.3389/fnsyn.2010.00146

Relevant to this may be the model by computational neuroscientists
Rajesh Rao and Terrence Sejnowski showing that STDP could be the
result of a TD-like process in which a postsynaptic potential combines
with a 10 milliseconds later backpropagating potential from a postsy-
naptic spike to effect a synapse’s weight as a prediction error of the form
Vt − Vt−1. This model requires a non-contingent eligibility trace that
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lasts only about 10 milliseconds. Commentary on Rao and Sejnoswki’s
implemention of TD with STDP. He says that R and S argue that ”if
synapses were to implement a temporal-difference learning rule, then
they would be expected to exhibit the sort of temporally asymmetric
plasticity that has indeed been observed.” Dayan says the their scheme
would compute an S-B type signal and not a TD signal. So basically: R
and T discuss possible biophysical mechanisms by which neurons could
compute signals like TD errors, and Dayan (2002) discusses some of the
computational issues that arise from their ideas. Dayan also empha-
sizes that temporally asymmetric Hebbian learning rules are best seen
as predictive rather than correlational.

How TD could be implemented with STDP

Neuroscientists Verena Pawlak and Jason Kerr have shown that in-
creases in the strengths of synapses that cortical inputs make with stri-
atal medium spiny neurons requires dopamine in addition to appropriate
timing of pre- and post-synaptic spiking. Determining how plasticity
depends on details of the timing of dopaminergic input remains to be
worked out. Critical questions like this, as well questions about the
existence and nature of eligibility traces, remain to be answered by con-
tinuing experimental research.

STDP model: Jesper Sjstrm and Wulfram Gerstner (2010), Scholarpe-
dia, 5(2):1362.

Robert Legenstein, Dejan Pecevski, and Wolfgang Maass of Austria’s
Graz University of Technology showed that a model of reward-modulated
STDP together with variable spontaneous activity of neuron-like ele-
ments could account for the results of Fetz’s experiment.

Selectionist Theories of the Brain: Edelman, Adams, Fernando, Changeaux,
etc. (Fernando et al., 2012), (Adams, 1998)

13.9 hedonistic neurons

Klopf’s hypothesis of the “hedonistic neuron” (Klopf 1972, 1982) influ-
enced us to present in 1983 the actor-critic algorithm as an artificial
neural network with a single neuron-like element implementing a Law-
of-Effect-like learning rule employing eligibility traces at its “synapses”
(Barto, Sutton, and Anderson, 1983). Unknown to us at that time (and
also unknown to us when we wrote the first edition of this book) were
similar theories by others. Physiologist T. J. Crow of Scotland’s Uni-
versity of Aberdeen presented a hypothesis in 1968 that emphasized the
need to address the time delay between neural activity and its conse-
quences in a reward-modulated form of synaptic plasticity. His solution
was that a wave of neuronal activity
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leads to a short-term change in the cells involved in the wave
such that they are picked out from a background of cells not
so activated. ... such cells are rendered sensitive by the short-
term change to a reward signal ... in such a way that if such
a signal occurs before the end of the decay time of the change
the synaptic connexions between the cells are made more ef-
fective. (Crow, 1968)

Crow argued against previous proposals that reverberating neural cir-
cuits play this role by pointing out that the effect of a reward signal on
such a circuit would “... establish the synaptic connexions leading to
the reverberation (that is to say, those involved in activity at the time
of the reward signal) and not those on the path which led to the adap-
tive motor output.” Crow further postulated that reward signals are
delivered via a “distinct neural fiber system,” presumably the one into
which Olds and Milner (1954) tapped, that would transform synaptic
connections “from a short into a long-term form.”

In another farsighted hypothesis about how the brain might implement
instrumental learning about which we were unaware when writing the
first edition of this book, Robert Miller of New Zealand’s University of
Otago in 1981 proposed a learning process for synapses following the
Law of Effect that included the eligibility concept:

... it is envisaged that in a particular sensory situation neu-
rone B, by chance, fires a ‘meaningful burst’ of activity, which
is then translated into motor acts, which then change the sit-
uation. It must be supposed that the meaningful burst has
an influence, at the neuronal level, on all of its own synapses
which are active at the time ... thereby making a preliminary
selection of the synapses to be strengthened, though not yet
actually strengthening them. ...The strengthening signal ...
makes the final selection ... and accomplishes the definitive
change in the appropriate synapses. ((Miller, 1981), p. 81)

Miller’s hypothesis also included a critic-like mechanism, that he called
a “sensory analyzer unit,” that worked according to classical condition-
ing principles to provide reinforcement signals to neurons so that they
would learn to move from lower- to higher-valued states, thus paralleling
the use of the TD error as a reward signal instead of just state values
themselves.

A related though different idea, which MIT’s Sebastian Seung (2003)
called the “hedonistic synapse,” is that synapses individually adjust the
probability that they release neurotransmitter in the manner of the Law
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of Effect: if reward follows release, the release probability increases, and
decreases if reward follows failure to release. This is essentially the
same as the learning scheme Marvin Minsky used in his 1954 Princeton
Ph.D. dissertation, where he called the synapse-like learning element a
SNARC (Stochastic Neural-Analog Reinforcement Calculator). Synap-
tic eligibility is involved in these ideas too, although it is contingent on
the activity of an individual synapse instead of the postsynaptic neuron.

The metaphor of a neuron using a learning rule related to bacterial
chemotaxis was discussed by Barto (1989) in relation to reinforcement
learning algorithms. Berg (1975) Koshland’s extensive study of bac-
terial chemotaxis was in part motivated by similarities between some
features of bacteria and those of neurons (Koshland,1980). The classic
work on chemotaxis and other animal movement strategies is Fraenkel
and Gunn (1961). Shimansky (2009) proposed a synaptic learning rule
somewhat similar to Seung’s mentioned above in which each synapse
individually acts like a chemotactic bacterium. In this case a collection
of synapses “swims” toward attractants in the high-dimensional space
of synaptic weight values. Montague, Dayan, Person, and Sejnowski
(1995) proposed a chemotaxic-like model of the bee’s foraging behavior
involving the neuromodulator octopamine. The view that a controller is
actually engaged in controlling its inputs rather than an external system
was influenced by the Perceptual Control Theory of behavior developed
by Powers (1973).

13.10 Collective behavior

ALOPEX

Cite Hayak machine for society idea: whatshisname?

P. L. Bartlett and J. Baxter, A biologically plausible and locally optimal
learning algorithm for spiking neurons.

(Yagishita et al., 2014) Critical time window for dopamine action on
MSN spines: 0.3 to 2 seconds. Maximal at 0.6 sec.

Theoretical papers on reward-modulated STDP: Baras and Meir, 2007;
Florian 2007, Izhikevich 2007, Legenstein et al., 2008, Vasilaki et al.
2009; Fremaux et al. 2010; Potjans et al. 2010 (see bibliography of
”Timing is not Everything: Neuromodulation Opens the STDP Gate”)

@ARTICLEFremaux-etal-2010, author = N. Frémaux and H. Sprekeler
and W. Gerstner, title = Functional requirements for reward-modulated
spike-timing-dependent plasticity, journal = The Journal of Neuroscience,
volume = 30, number = 40, year = 2010, pages = 13326-13337
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Reinforcement learning through modulation of spike-timing-dependent
synaptic plasticity R. V. Florian (XOR net) Neural Computation, 2007
- MIT Press June 2007, Vol. 19, No. 6, Pages 1468-1502

R. Legenstein, D. Pecevski, W. Maass A Learning Theory for Reward-
Modulated Spike-Timing-Dependent Plasticity with Application to Biofeed-
back PLoS Computational Biology, october 2008, Vol 4, No. 10, pp. ??

Adams has it right that a global reward signal is needed for an ensemble
to learn, but he regards it as an error signal, which is not the correct
way to think about it. But then says that it can be a scalar: so not
really an error at all. Essentially talks about reward modulated Hebbian
synapses (though without the timing considerations?) Calls it ”synaptic
Darwinism”

A special kind of team problem occurs in biofeedback training. Suppose
the reward signal broadcast to a population of reinforcement learning
agents depends on the activity of only one of the agents. With repeated
trials, the responsible agent will learn to do the right thing because its
activity has a clear causal influence on the reward signal, making its
reinforcement learning problem easy. The other agents will continue to
explore without finding any correlation between their actions and the
reward. Of course, a key difficulty in doing this in practice is to make
the reward signal depend on just one agent.

University of Washington’s Eberhard Fetz did just this in a striking ex-
periment in which he conditioned monkeys to increase the firing rates
of specific cortical neurons (Fetz, 1969). Recording the activity of a sin-
gle neuron in the motor cortex of an unanesthetized monkey, Fetz and
his assistants rewarded high rates of this neuron’s activity by deliver-
ing banana-flavored pellets to the monkey. This was done with several
monkeys, who also heard sounds or saw the deflection of a meter that
varied with the activity of the cortical neuron. After sufficient training,
“monkeys consistently and rapidly increased the activity of newly iso-
lated cells” (Fetz, 1969). They could increase the neuron’s activity up
to between 50 and 500 percent above the unconditioned level of activity.
Monkeys already experienced with the task could rapidly increase the
firing rate of the isolated neurons without audio or visual feedback. As
a control, the experimenters presented pellets and feedback according
to a record of their delivery during a previous reinforcement period, but
with no relation to the activity of the monitored neuron. In these cases,
the firing rate remained at or below the unconditioned level. They could
also condition neurons to fire more slowly than their unconditioned rates
by rewarding decreases in activity rate. Although the rationale of this
experiment was to develop a method to study the influence of single mo-
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tor cortical neurons on movement, the experiment supports the ubiquity
of reinforcement learning in the brain.

13.11 Model based

Daw and Shohamy (2008) proposed that while dopamine signaling con-
nects well to habitual, or model-free, behavior, other processes are in-
volved in goal-directed, or model-based, behavior.

@ARTICLEJohnson-Redish-2007, author = A. Johnson and A. D. Re-
dish, title = Neural ensembles in CA3 transiently encode paths forward
of the animal at a decision point, journal = The Journal of neuroscience,
volume = 27, number = 45, year = 2007, pages = 12176-12189

humans with functional imaging lots of model-based activity in the stria-
tum: support their view that no clear separation between habit and
goal-dircted substrates hippocampus for imagining fictitious experiences
review goal-devaluation experiments showing DLS and DMS distinction

Model-based RL: @ARTICLEDoll-etal-2012, author = B. B. Doll and
D. A. Simon and N. D. Daw, title = The Ubiquity of Model-Based
Reinforcement Learning, journal = Current Opinion in Neurobiology,
volume = 22, pages = 1-7, year = 2012

Goal-Directed learning Brain planning mechanisms: Daw, Gershman,
Seymour, Dayan, Dolan (2011) @ARTICLEValentin-etal-2007, author
= V. V. Valentin and A. Dickinson and J. P. O’Doherty, title = Deter-
mining the Neural Substrates of Goal-Directed Learning in the Human
Brain, journal = The Journal of Neuroscience, volume = 27, number =
15, pages = 4019-4026, year = 2007 @ARTICLERangel-Hare-2010, au-
thor = A. Rangel and T. Hare, title = Neural computations associated
with goal-directed choice, journal = Current opinion in neurobiology,
volume = 20, number = 2, pages = 262-270, year = 2010

13.12 The model of addiction that eliminates negative TD errors for addic-
tive stimuli is due to Redish (2004). Keiflin and Janak (2015) review
connections between TD errors and addiction. Nutt, Lingford-Hughes,
Erritzoe, and Stokes (2015) critically evaluate the hypothesis that ad-
diction is due to a disorder of the dopamine system. Adams, Huys, and
Roiser (2015) review the new field of Computational Psychiatry
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Sescousse, G., Caldú, X., Segura, B., and Dreher, J.-C. (2013). Precessing of
primary and secondary rewards: A quantitative meta-analysis and review
of human functional neuroimaging studies. Neuroscience and Biobehavioral
Reviews, 37(4):681–696.

Seung, H. S. (2003). Learning in spiking neural networks by reinforcement of
stochastic synaptic transmission. Neuron, 40(6):1063–1073.

Shimansky, Y. P. (2009). Biologically plausible learning in neural networks: a
lesson from bacterial chemotaxis. Biological Cybernetics, 101(5-6):379–385.

Simon, D. A. and Daw, N. D. (2011). Neural correlates of forward plan-
ning in a spatial decision tasks in humans. The Journal of Neuroscience,
31(14):5526–5539.



BIBLIOGRAPHY 57

Steinberg, E. E., Keiflin, R., Boivin, J. R., Witten, I. B., Deisseroth, K., and
Janak, P. H. (2013). A causal link between prediction errors, dopamine
neurons and learning. Nature Neuroscience, 16(7):966–973.

Sterling, P. and Laughlin, S. (2015). Principles of Neural Design. MIT Press,
Cambridge, MA.

Sutton, R. S. (1984). Temporal Credit Assignment in ReinforcementLearning.
PhD thesis, University of Massachusetts, Amherst, MA.

Takahashi, Y., Schoenbaum, G., and Niv, Y. (2008). Silencing the critics: un-
derstanding the effects of cocaine sensitization on dorsolateral and ventral
striatum in the context of an actor/critic model. Frontiers in Neuroscience,
2(1):86–99.

Tobler, P. N., Fiorillo, C. D., and Schultz, W. (2005). Adaptive coding of
reward value by dopamine neurons. Science, 307(5715):1642–1645.

Valentin, V. V., Dickinson, A., and O’Doherty, J. P. (2007). Determining
the neural substrates of goal-directed learning in the human brain. The
Journal of Neuroscience, 27(15):4019–4026.

Waelti, P., Dickinson, A., and Schultz, W. (2001). Dopamine responses comply
with basic assumptions of formal learning theory. Nature, 412(6842):43–48.

Wickens, J. and Kötter, R. (1995). Cellular models of reinforcement. In Houk,
J. C., Davis, J. L., and Beiser, D. G., editors, Models of Information
Processing in the Basal Ganglia, pages 187–214. MIT Press, Cambridge,
MA.

Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G. C. R., Urakubo, H., Ishii,
S., and Kasai, H. (2014). A critical time window for dopamine actions on
the structural plasticity of dendritic spines. Science, 345(6204):1616–1619.

Yin, H. H. and Knowlton, B. J. (2006). The role of the basal ganglia in habit
formation. Nature Reviews Neuroscience, 7(6):464–476.


