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Artificial intelligence (AI) is the study and design of agents that interact with en-
vironments to achieve goals. Their major task is to predict and control their input
stream, in particular, their reward, which formalizes the idea of goal. Thus, the first
step in AI is usefully thought of as the study and design of algorithms for finding
policies that maximize a scalar reward signal received from the environment, which
can be well thought of as a finite Markov decision process (MDP). We proceed now
to formally define these terms.

1 Finite Markov decision processes

Definition 1. A finite Markov decision process (MDP) (discounted continuing
case) consists of any S , A,R, γ, and P , where

S is a finite state set,

A is a finite action set,

R is a finite reward set,

γ ∈ [0, 1) is a discount-rate parameter, and

P : S ×A×R× S → [0, 1] is a mapping, characterizing the MDP’s dynamics,
such that

∑
r∈R

∑
s′∈S P (s, a, r, s

′) = 1,∀s ∈ S, ∀a ∈ A.

The MDP’s dynamics function P characterizes how rewards and next states are
generated from previous states and actions, but does not specify how the actions
are generated. The actions of course come from the agent, but more formally they
come from policies, which may be deterministic or, more generally, stochastic.

From here on we consider there to be a given, arbitrary MDP, and definitions are
theorems are implicitly with respect to that MDP and its components.
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Definition 2. A deterministic policy is any mapping π : S → A. We write π(s)
for the action to take in state s.

Note: There is a natural generalization to state-dependent action sets, which we
omit to avoid complicating the notation.

Definition 3. A stochastic policy is any mapping π : S × A → [0, 1] such that∑
a∈A π(s, a) = 1, ∀s ∈ S. We write π(s, a) for the probability that action a is

taken when in state s.

Definition 4. A history h = s0, a0, r1, s1, a1, r2, . . . , sk is a finite sequence of
states si ∈ S, actions ai ∈ A, and rewards ri ∈ R, beginning and ending in a
state, for finite k ≥ 0.
The set of all histories of length k is denotedHk = S × (A×R× S)k,
and the set of all histories of length 0 or more is denotedH = S × (A×R×S)∗.

Definition 5. An infinite-length history is called a trajectory.

Definition 6 (Probability measure over histories). Given a stochastic policy π and
an initial state distribution µ : S → [0, 1], such that

∑
s∈S µ(s) = 1, we define a

probability measure over histories p : H → [0, 1] as:

p(s0, a0, r1, s1, a1, . . . , sk) = (1)

µ(s0)π(s0, a0)P (s0, a0, r1, s1)π(s1, a1) · · ·P (sk−1, ak−1, rk, sk).

Note: There is an obvious generalization to deterministic policies, which we omit.

Theorem 1.
∑

h∈Hk
p(h) = 1, ∀k = 0, 1, 2, . . ..

Notation: A random history, generated for example according to p, is denoted
H = S0, A0, R1, S1, . . . , Sk, where H and each of its components are random
variables. In this context, we can explicitly say how policies determine actions,
that is, that π(s, a) = P{At = a | St = s} (where P{|} denotes conditional proba-
bility), and how P determines rewards and next states, that is, that P (s, a, r, s′) =
P{Rt+1 = r, St+1 = s′ | St = s,At = a}.

2 State-value functions

So far we have formally described the interaction between an agent, in the form of
a policy, and its environment, in the form of an MDP, but we have not yet discussed
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the agent’s goal. Informally, the agent’s goal is to find a policy that maximizes the
rewards in the trajectory, but there are many rewards in a trajectory, and exactly
how they should be combined and traded-off must be formally defined. Critical
to this definition, and to algorithms for finding good policies, is the discount-rate
parameter, γ (which so far we have defined but not used), and the notion of value
functions. We turn now to formalizing the first version of these concepts.

Recall that these formalizations are all with respect to a particular but arbitrary
MDP that may be left implicit.

Definition 7 (Discounted return). For any trajectoryH = S0, A0, R1, S1, A1, R2, . . .,
the returns Gt, for t = 0, 1, 2, . . ., are random variables defined by

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · ·

=
∞∑
i=0

γiRt+i+1 (2)

= Rt+1 + γGt+1, (3)

where γ is the discount-rate parameter of the MDP.

Definition 8. A state-value function is any function from S to R (where R is the set
of real numbers).

Definition 9. The state-value function for policy π is defined by

V π(s) = Eπ{Gt | St = s} ,

where the expectation is conditional on the actions At, At+1, At+2, . . . being gen-
erated according to π.

Theorem 2. V π is the only state-value function satisfying the system of linear
equations:

V π(s) =
∑
a,r,s′

π(s, a)P (s, a, r, s′)[r + γV π(s′)], ∀s ∈ S. (4)

This is known as the Bellman equation for π.

Theorem 3 (Policy evaluation). For an arbitrary initial state-value function v0,
the sequence of state-value functions defined by

vk+1(s) =
∑
a,r,s′

π(s, a)P (s, a, r, s′)[r + γvk(s
′)], ∀s ∈ S (5)

converges to the state-value function for policy π: limk→∞ vk = V π.
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Definition 10. The optimal state-value function, V ∗ : S → R, is

V ∗(s) = max
π

V π(s), (6)

where the maximization is over all policies, stochastic or deterministic.

Theorem 4. V ∗ is the only state-value function satisfying the system of nonlinear
equations:

V ∗(s) = max
a

∑
r,s′

P (s, a, r, s′)[r + γV ∗(s′)], ∀s ∈ S. (7)

This is known as the Bellman optimality equation.

Theorem 5 (Value iteration). For an arbitrary initial state-value function v0, the
sequence of state-value functions defined by

vk+1(s) = max
a

∑
r,s′

P (s, a, r, s′)[r + γvk(s
′)], ∀s ∈ S (8)

converges to the optimal state-value function: limk→∞ vk = V ∗.

3 Better and best policies

So far we have defined and shown how to compute policy-specific and optimal
state-value functions, V π and V ∗. Next we define optimal policies and show sev-
eral ways to find them using these value functions.

Definition 11 (Partial order on policies). A policy π is said to be better than or
equal to another policy, π′, denoted π ≥ π′, if and only if V π(s) ≥ V π′(s) ∀s ∈ S.

Theorem 6 (Existence of optimal policies). There is at least one policy, π∗, that
is better than or equal to all the others, that is, for which π∗ ≥ π, ∀π. Any such
policy is called an optimal policy.

Theorem 7. For any optimal policy π∗, V π∗ = V ∗. In other words, the optimal
state-value function is common to all optimal policies.

Definition 12 (Greedy policies). For any state-value function v, the corresponding
deterministic greedy policy, denoted greedy(v) : S → A, is defined by

greedy(v)(s) = argmax
a

∑
r,s′

P (s, a, r, s′)[r + γv(s′)]. (9)
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Theorem 8. The greedy policy of the optimal state-value function, greedy(V ∗) is
optimal.

The above theorem gives us our first way of finding an optimal policy: we compute
V ∗ by value iteration (Theorem 5) and then compute greedy(V ∗) by (9). The next
two theorems provide a second way of finding an optimal policy.

Theorem 9 (Policy improvement). For any policy π, greedy(V π) ≥ π.

Theorem 10 (Policy iteration). For an arbitrary initial policy π0, define a sequence
of successor policies by

πk+1 = greedy(V πk). (10)

Then each successive policy is an improvement on the previous, πk+1 ≥ πk, and
the sequence converges to an optimal policy in a finite number of steps.

4 Action-value functions

This section is left as an exercise. Repeat everything in the previous two sections,
from Definition 8 on, appropriately changed and generalized to apply to action-
value functions as defined below.

Definition 13. The action-value function for policy π (and a given finite MDP),
denoted Qπ : S ×A → R, is defined by

Qπ(s, a) = Eπ{Gt | St = s,At = a} . (11)

5 Episodic MDPs

Here we describe the changes needed to handle episodic MDPs, in which there
are multiple, finite-length trajectories with restarts, and in which the discount-rate
parameter, γ, may be 1. Conditions must be given on P in order to ensure finite
values. We introduce a special terminal state,⊥, and a notation S+ for the state set
augmented by ⊥. We define a square matrix γPπ that combines γ, P , and π and
whose powers must converge to zero. We introduce a starting-state distribution µ
as an intrinsic part of the episodic MDP.
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6 Episodic Markov reward processes

Here we describe episodic Markov reward processes, as will be used in project 2.
These are basically episodic MDPs with the actions removed, or equivalently, for
a fixed, given policy, so they should be straightforward.
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