
Scaling Life-long Off-policy Learning
Adam White, Joseph Modayil and Richard S. Sutton

Reinforcement Learning and Artificial Intelligence Laboratory
Department of Computing Science

University of Alberta, Canada T6G 2E8

Abstract—In this paper, we pursue an approach to scaling
life-long learning using parallel, off-policy reinforcement-learning
algorithms. In life-long learning, a robot continually learns from
a life-time of experience, slowly acquiring and applying skills
and knowledge to new situations. Many of the benefits of life-
long learning are a result of scaling the amount of training data,
processed by the robot, to long sensorimotor streams. Another
dimension of scaling can be added by allowing off-policy sampling
from the unending stream of sensorimotor data generated by a
long-lived robot. Recent algorithmic developments have made it
possible to apply off-policy algorithms to life-long learning, in a
sound way, for the first time. We assess the scalability of these
off-policy algorithms on a physical robot. We show that hundreds
of accurate multi-step predictions can be learned about several
policies in parallel and in realtime. We present the first online
measures of off-policy learning progress. Finally we demonstrate
that our robot, using the new off-policy measures, can learn
8000 predictions about 300 distinct policies, a substantial increase
in scale compared to previous simulated and robotic life-long
learning systems.

Life-long learning is an approach to artificial intelligence
based on the idea that learning from a life-time of expe-
rience, as humans do, will make learning complex skills
and abstract knowledge, on a robot, more tractable. A long-
lived robot’s goal is to incrementally acquire increasingly
sophisticated knowledge and a growing library of re-useable
skills (policies) from interacting with the environment in an
open ended manner. The life-long learning setting provides a
natural framework for developing and evaluating incremental
representation search, self-motived learning like curiosity and
autonomous task generation.

Many of the positive attributes of life-long learning can be
attributed to scaling. Life-long learning dramatically increases
the scale of the artificial intelligence problem in the amount of
data a robot must process. As opposed to data poor problems,
where each sample is costly, a long-lived agent faces an infinite
stream of data with an infinite number of things to learn about.
A robot can more effectively learn, reuse and combine existing
knowledge if their is no short time time horizon during which
specific task performance will be evaluated. Similar to recent
trends in internet-scale machine learning, life-long learning
requires computationally-congenial online algorithms that can
process massive streams of data realtime and on a robot.

A further dimension of scaling can be added by allowing
off-policy sampling. In the off-policy setting, the agent learns
about many policies, in parallel, while selecting actions ac-
cording to a different behaviour policy. Off-policy sampling
could dramatically scale life-long learning by enabling learn-
ing of thousands or millions of predictions and policies from

a single unending stream of sensorimotor data. Unfortunately,
off-policy sampling is well known to cause divergence of
online linear learning methods, like Q-learning (Sutton and
Barto., 1998). Formal convergence guarantees are particularly
important in systems that generate new goals autonomously—
a natural aspiration of any life-long learning robot.

Recent developments have made it possible to apply off-
policy algorithms to life-long learning, in a sound way, for
the first time. Our approach is to learn thousands of predic-
tions represented as general value functions (GVFs). GVFs
provide an expressive language for representing sensorimotor
knowledge about a long-lived agent’s interaction with the
world (Sutton et al., 2011) and have also been used to
improve prosthetic control (Pilarski et al., 2012). We use a
new gradient temporal-difference (TD) method, GTD(λ), with
linear function approximation, to learn many value functions,
in parallel on a robot. Gradient TD methods are the only
algorithms that scale linearly in the number of features, require
constant computation time per step, and are guaranteed to
converge under off-policy sampling. They are, therefore, the
only methods suitable for off-policy life-long learning at scale
on a robot.

In our first set of experiments, we assess whether off-
policy methods can be applied at scale and in realtime on
a physical robot. We demonstrate that hundreds of multi-step
predictions can be learned about five simple policies, with
no divergence cases, while maintaining an update time of
less than 100ms. We show that these predictions are accurate
via interspersed on-policy tests, indicating that the predictions
explain a significant amount of variance in the tests. This
result is the first demonstration of large-scale, sound off-policy
learning on a physical robot.

Our second contribution is the development of an new fully-
incremental method for accessing off-policy learning progress.
Interspersed on-policy tests require interrupting learning and
executing a policy in order to test predictions about it. This
consumes valuable learning time and prevents scaling the
number of policies to be learned about. We introduce two
efficiently computable, online measures of off-policy learning
progress based on the off-policy objective function (MSPBE).
Using these online measures, we demonstrate learning 8000
GVFs about 300 unique target policies in realtime on a robot.
These results demonstrate the novel ability of an agent to
measure the accuracy of its predictions directly from off-policy
experience, which is an important attribute for large-scale life-
long learning systems.

I. ON-POLICY AND OFF-POLICY PREDICTION WITH VALUE
FUNCTIONS

To begin, we consider how the problem of prediction is
conventionally formulated in reinforcement learning. The in-
teraction between an agent and its environment is modelled as
a discrete-time dynamical system with function approximation.
On each discrete time step t, the agent observes a feature
vector φt ∈ Φ ⊂ Rn, that partially characterizes the current
state of the environment, st ∈ S . Note that the agent has
no access to the underlying environment state; the observed
feature vector, φt, is computed from information available to
the agent at the current time step and thus is only implicitly a
function of the environmental state, φt = φ(st). At each time
step, the agent takes an action at ∈ A, and the environment
transitions into a new state producing a new feature vector,
φt+1.

In conventional reinforcement learning, we seek to predict
at each time the total future discounted reward, where reward
rt ∈ R is a special signal received from the environment.
More formally, we seek to learn a value function V : S → R,
conditional on the agent following a particular policy. The
time scale of the prediction is controlled by a discount factor
γ ∈ [0, 1). With these terms defined, the precise quantity being
predicted, called the return gt ∈ R, is

gt =
∞∑
k=0

γkrt+k+1,

and the value function is the expected value of the return,

V (s) = Eπ

[∞∑
k=0

γkrt+k+1

∣∣∣st = s

]
,

where the expectation is conditional on the actions (after t)
being selected according to a particular policy π : Φ × A →
[0, 1]. As is common in reinforcement learning, we estimate V
with a linear approximation, Vθ(s) = θ>φ(s) ≈ V (s), where
θ ∈ Rn.

In the most common on-policy setting, the policy that
conditions the value function, π, is also the policy used
to select actions and generate the training data. In general,
however, these two policies may be different. The policy
that conditions the value function is called the target policy
because it is the target of the learning process, and in this paper
we will uniformly denote it as π. The policy that generates
actions is called the behavior policy, and in this paper we will
denote it as b : Φ × A → [0, 1]. The most common setting,
in which the two policies are the same, is called on-policy
learning, and the setting in which they are different is called
off-policy learning.

Conventional algorithms such as TD(λ) and Q-learning
can be applied with function approximation in an on-
policy setting, but may become unstable in an off-policy
setting (Maei, 2011). Fewer algorithms work reliably in
the off-policy setting. One reliable algorithm is GTD(λ),
a gradient-TD algorithm designed to learn from off-policy
sampling with function approximation (Maei, 2011). GTD(λ)

is an incremental learning algorithm, similar to TD(λ) (Sutton
& Barto, 1998), except with an additional secondary set of
learned weights w, and an additional step size parameter αw.
The algorithm retains the computational advantages of TD(λ):
its computational complexity is O(n) per step, and thus can
be used online and in realtime. Unlike TD(λ), GTD(λ) is
guaranteed to converge under off-policy sampling and with
function approximation (linear and non-linear). The following
pseudocode specifies the GTD(λ) algorithm.

Initialize w0 and e0 to zero and θ0 arbitrarily.
for each time step t, given observed sample φt, at, φt+1,
and rt+1 do
δt ← rt+1 + γθ>t φt+1 − θ>t φt //calculate td-error
ρt ← π(at|φt)

b(at|φt) //importance sampling correction
et ← ρt(φt + γλet−1) //update traces
//update weight vectors
θt+1 ← θt + αθ(δtet − γ(1− λ)(e>t wt)φt+1)
wt+1 ← wt + αw(δtet − (φ>t wt)φt)

end for
The GTD(λ), algorithm minimizes the λ-weighted mean-

square projected Bellman error

MSPBE(θ,Φ) = ||Vθ −ΠΦT
λ,γ
π Vθ||2D (1)

where Φ is the matrix of all possible feature vectors φ, ΠΦ

is a projection matrix that projects the value function onto
the space representable by Φ, Tλ,γπ is the λ-weighted Bellman
operator for the target policy π and discount factor γ, and D
is a diagonal matrix whose diagonal entries correspond to the
state visitation frequency under the behavior policy b. A more
detailed discussion of GTD and the MSPBE can be found in
Maei’s thesis (2011).

II. AN ARCHITECTURE FOR LARGE-SCALE, REAL-TIME
OFF-POLICY LEARNING ON ROBOTS

In addition to learning about multiple policies, our approach
is to learn multiple things about each policy. Both of these
cases are captured with the idea of general value functions.
We envision a setting where many predictive questions are
posed and answered in a generalized form of value function.
Each such function, denoted v(i) : S → R, predicts the
expected discounted sum of the future readings of some sensor.
Said differently, γ is used to summarize future values of the
prediction target, which has been shown to be a good model for
multi-step sensorimotor predictions in previous work (Modayil
et al., 2012). The ith value function pertains to the sensor
readings r(i)

t , the policy π(i), and the time scale γ(i):

v(i)(s) = Eπ(i)

[∞∑
k=0

(γ(i))kr(i)
t+k+1

∣∣∣st = s

]
.

Off-policy methods can be used to learn approximate an-
swers to predictive questions in the form of approximate
value functions, v(i)

θ . These questions are about what will
happen to a robot if it follows a behavior different from
its current behavior, for example, ‘what would be the effect

on the rotational velocity, if my future actions consisted of
clockwise rotation’. Policy-contingent questions substantially
broaden the knowledge that can be acquired by the system
and dramatically increases the scale of learning—millions of
distinct predictive questions can be easily constructed from the
space of policies, sensors and time scales.

Senorimotor
Data Predictions

PSR

/

Non-linear
sparse

re-coder

/ /∫

Fig. 1. The Horde architecture for large-scale off-policy learning. Horde
consists of a large set of independent instances of the GTD(λ) algorithm
(specified by triangles), updating and making predictions in parallel from a
shared set of features. The features are typically a sparse encoding of the raw
sensorimotor information and the predictions from the previous time step. The
whole system can be operated in parallel and in realtime.

Figure 1 provides a graphical depiction of this parallel
learning architecture. This architecture, called Horde by Sutton
et al., (2011), has several desirable characteristics. Horde can
run in realtime, due to the linear computational complexity of
GTD(λ). The system is modular: the question specification,
behavior policy and the function approximation architecture
are completely independent. As depicted by lines labeled
‘PSR’ in Figure 1, the predictions can be used as input to the
function approximator. Although not explored in this work,
this capability enables the use of predictive state information
(Littman et al., 2002). The architecture is certainly scalable
in its distributed specification of predictive questions, but
no previous work has illustrated that the predictions can be
learned at scale by off-policy methods.

III. LARGE-SCALE OFF-POLICY PREDICTION ON A ROBOT

The first question we consider is whether the Horde archi-
tecture supports large-scale off-policy prediction in realtime
on a physical robot. All our evaluations were performed on
a custom-built holonomic mobile robot (see Figure 2). The
robot has a diverse set of 53 sensors for detecting external
entities (ambient light, heat, infrared light, magnetic fields,
and infrared reflectance) and also its internal status (battery
voltages, acceleration, rotational velocity, motor velocities,
motor currents, motor temperatures, and motor voltages). The
robot can dock autonomously with its charging station and can
run continually for twelve hours without recharging.

The raw sensorimotor vector was transformed into features,
φt, by tile coding. This produced a binary vector, φt ∈ {0, 1}n,
with a constant number of 1 features. The tile coder was
comprised of many overlapping tilings of single sensors and
pairs of sensors. The tile coding scheme produced a sparse
feature vector with k = 6065 components with 457 features
that were ones, including one bias feature whose value was
always 1. More details of the feature representation are given
in previous work (Modayil et al., 2012).

Fig. 2. The mobile robot can drive into walls without harm and operate for
hours without recharging.

To generate behavior data, the robot was confined to a small
two meter square pen, executing one of five actions: A =
{forward, reverse, rotate clockwise, rotate counter-clockwise,
stop}. A new action was selected for execution every 100ms.
For the baseline learning behavior, at each time step a random
action was selected with a probability of 0.5, otherwise the
last executed action was repeated. Normal execution was
interrupted probabilistically to run a test excursion; on average
an interruption occurred every five seconds. A test excursion
consisted of selecting one of five constant action policies and
following it for five seconds with learning disabled. After a test
excursion was completed, the robot spent 2 seconds moving to
the centre of the pen and then resumed the random behavior
policy and learning. The robot ran for 7.3 hours, visiting
all portions of the pen many times. This produced 261,681
samples with half of the time spent on test excursions.

We used Horde to learn answers to 795 predictive questions
from the experience generated by the behavior described
above. Each question v(i), was formed by combining a
γ(i) ∈ {0.0, 0.5, 0.8}, a constant action policy π(i) from
{π(·, forward) = 1, π(·, reverse) = 1, . . . , π(·, stop) = 1},
and a prediction target r(i) from one of the 53 sensors. Each
question was of the form: at the current time t, what will be the
expected discounted sum of the future values of r(i) if the robot
follows π(i), with a constant pseudo-termination probability of
1−γ(i)?. To ease comparison of the predictions across sensors
with different output ranges, the values from each sensor were
scaled to the maximum and minimum values in their speci-
fications, so that the observed sensor values were bounded
between [0,1]. Each time-step resulted in updates to exactly
159 GTD(λ) learners in parallel (corresponding to the policies
that matched the action selected by the behavior policy). Each
question used identical learning parameters: αθ = 0.1/457
(457 is the number of active features), αw = 0.001αθ, and
λ = 0.9. Replacing traces were used and trace values below
0.01 where set to zero.

The total computation time for a cycle under our conditions
was 45ms, well within the 100ms duty cycle of the robot. The
entire architecture was run on a 2.4GHz dual-core laptop with
4GB of RAM connected to the robot by a dedicated wireless
link.

With the architecture in place to update many off-policy
predictions in realtime on a robot, we evaluated on-policy test
performance. More precisely, on each test execution, for each
of the 159 questions pertaining to the selected test policy,
we compared the prediction at the beginning of the test,
v̂

(i)
θ (φt), with the truncated sample return gathered during

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400

N
M

SR
E

On-policy Tests

Average

On-policy test trials

N
M

SR
E

50 100 200 4000

1

4

8

Fig. 3. This graph shows a subsampling of the predictions learned in parallel
and off-policy. Hundreds of policy-contingent predictions are learned at 10
Hz on a consumer laptop. The x-axis is the number of relevant test excursions
observed for each question. The black heavy stroke line shows the average
error over the entire set of questions, and the return error has the typical
exponential learning profile. The return errors are normalized by the variance
in the return for each question, yielding the fraction of variance unexplained.
Several individual curves exhibit non-monotonic shape due to discrepancies
between the samples observed under the test excursions and during learning.

the test excursion: g(i)
t =

∑50
k=0(γ(i))kr(i)

t+k+1. Finally, each
prediction error was normalized by the sample variance of
each g(i)

t over all starting configurations observed (computed
off-line), yielding a normalized mean squared return error
(NMSRE):

NMSRE(i)
t = (v(i)

θ − g(i))2/Var[g(i)]. (2)

We use x to denote the exponential trace (or exponentially
moving average) of samples of xt with a time period (or
decay rate) of 0.005. The NMSRE represents the fraction of
the variance in the returns that remains unexplained by the
predictor. For the questions whose sample returns are constant
and thus have a zero sample variance, we define the NMSRE
to be one.

Figure 3 illustrates our main result: accurate off-policy
predictions can be learned, in realtime, on a physical robot
at scale. These predictions were learned from a randomized
behavior policy with a shared feature representation using
identical parallel instances of GTD(λ). No question-specific
tuning of learning parameters or features was needed and no
divergence was observed for any question. The average of the
NMSRE for all the questions finished below 1.0; a substantial
portion of the variance in the returns is being explained by the
predictions.

IV. AN ONLINE MEASURE OF OFF-POLICY LEARNING
PROGRESS

The accuracy of the predictions learned in the previous
experiment was evaluated with the return error observed during
on-policy test excursions. These tests consume considerable
wall-clock time, because for each sample the robot must follow
the target policy long enough to capture most of the probability
mass of the infinite sample return and multiple samples are
required to estimate the NMSRE. Interspersing on-policy tests

to evaluate learning progress places a low limit on both the
number of target policies and on the time-scale given by γ.

There are other, slightly more subtle deficiencies with on-
policy tests. The experimenter must choose a testing regime
and frequency. Depending on how often tests are executed,
there is a trade-off for how often the NMSRE is updated.
Changes in the environment and novel robot experiences can
result in inaccurate NMSRE estimates if the majority of time-
steps are used for training. Testing with greater frequency en-
sures the estimated NMSRE closely matches current prediction
quality, but slows learning.

We propose to use the MSPBE to measure off-policy
learning progress. The GTD(λ) algorithm does not minimize
the NMSRE under function approximation. NMSRE measures
prediction accuracy relative to sample returns, and ignores
function approximation. For an arbitrary question the NMSRE
will never go to zero, though it does provide an indication
of the quality of the feature representation. The GTD(λ)
algorithm instead minimizes the MSPBE. Under some com-
mon technical assumptions, the MSPBE will converge to a
zero error. The MSPBE can be estimated in realtime during
learning, and it provides an up-to-date measure of performance
without sacrificing valuable robot time for evaluation.

Using the derivation given by Sutton et al., (2009), we can
rewrite this error in terms of expectations:

MSPBE(θ) = ||vθ −ΠTvθ||2B = Eb[δe]>Eb[φφ>]−1Eb[δe]

The GTD(λ) algorithm uses a second set of modifiable
weights, w, to form a quasi-stationary estimate of the last two
terms, namely the product of the inverse feature covariance
matrix with the expected TD-update. This leads to the follow-
ing linear-complexity approximation of the MSPBE:

MSPBE(θ) ≈ (Eb[δe])>w. (3)

The expected TD-update term, Eb[δe], can be approximated
with samples of δtet, where et is the eligibility trace vector.
Additionally, the prediction error can be non-zero on samples
where the target policy does not agree with the behavior
policy, π(i)(φt, a) 6= b(φt, a). The importance sampling ratio,
π(i)(φ,a)
b(φ,a) , can be used to account for these effects. This leads

to two natural incremental algorithms for sampling the current
MSPBE:

MSPBEt,vector = δe
>
wt, (4)

and
MSPBEt,scalar = δe>w. (5)

Here, the exponential traces for both MSPBEt,vector and
MSPBEt,scalar are updated on each time step proportionally
to π(i)(φ,a)

b(φ,a) . The time scale of the trace was set to 20
seconds (equivalent to 0.05 decay used in experiment 1). The
first measure is perhaps a more accurate implementation of
Equation 3, but the second requires only storing a single real-
valued scalar.

As an evaluation of the online MSPBE estimates, we
compare aggregate error curves, averaged over a subset of

questions, on tasks where the predictions experience a sharp,
significant perturbation. The idea here is to measure how
quickly our online measures react to an event that causes
the majority of the robot’s predictions to become incorrect:
similar to moving the robot to a room with different lighting
conditions and surface friction. The robot was run exactly as
before, with a subset of the predictions learned (γ = 0.8),
for six hours. This time, the learned weight vector of each
prediction θ(i), was set to zero after 40000 time steps. In
this experiment, we recorded the NMSRE, MSPBEt,vector and
MSPBEt,scalar on every time step for 265 questions, except
during test excursions. Note that the NMSRE is only updated
after a test completes, while the MSPBE measures are updated
on every non-test time-step.

Figure 4 compares the convergence profile and reaction to
change of the three error measures in terms of training time.
All three measures reacted almost instantly to the change.
Furthermore, the learning rate, after the change, reflected by
the online MSPBE estimates was comparable with the rate
exhibited by the NMSRE. Note that both MSPBE estimates are
initially at zero, as the vector w takes time to adapt to a useful
value. Finally, note that the MSPBEt,vector and MSPBEt,scalar
exhibit very similar trends, indicating that the Bellman error
can be estimated with minimal storage requirements.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

0 25 50 75 100 125 150
 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

N
M
SR
E

RM
SP
BE

Minutes

RMSPBEvec
RMSPBEscalar

NMSRE

Training time (minutes)

N
M

SR
E

R
M

SP
BE

Fig. 4. This graph shows that off-policy learning progress can be efficiently
estimated online, without time consuming on-policy tests. This figure com-
pares the NMSRE, with two estimates of the MSPBE, averaging performance
over 265 predictive questions. This figure illustrates several important points
that validate the MSPBE as a useful error measure. The MSPBE measures
as the same shape as the NMSRE that requires an on-policy excursion in the
behavior. Also, the MSPBE measures react quickly to changes. However,
the MSPBE estimates converge more slowly than the NMSRE indicating
that although test performance is not improving, the error estimates are still
improving.

V. LARGE-SCALE OFF-POLICY PREDICTION, WITH MANY
TARGET POLICIES

Free from the limitations of physically performing test
excursions to evaluate predictions, we can learn about a much
larger set of questions. In this section, we demonstrate scaling
with substantial increases in the number of target policies and
prediction time scales (magnitude of γ).

To increase the space of target policies, and still maintain
a small set of finite actions, we consider discrete-action

linearly parametrized Gibbs policy distributions: πu(a) =
exp(−u>Ψa)P

a′∈A exp(−u>Ψa′)
where u is a vector of policy parameters.

The feature vector for each action, Ψa ∈ Rn|A|, has a copy
of φt as a subvector in an otherwise zero vector; and for each
action the copy is offset by n so that a 6= a′ =⇒ Ψ>a Ψa′ = 0.
Each policy is generated by selecting 60 components of
u at random and then assigning each component a value
independently drawn from the uniform distribution over [0, 1].

In this final experiment, we tested how well our architecture
scales in the number of target policies. The robot’s behavior
was the same as before, but now learning was enabled on every
step of the 7 hours experience. The questions were formed by
sampling γ values from {0.0, 0.5, 0.8, 0.9, 0.95}, reward from
the full set of sensors, and 300 randomly generated policies.
The value of γ = 0.95 corresponds to a 2 second prediction
and would require over 30 seconds to accurately evaluate
using the NMSRE. The 8000 questions, evaluated according
to MSPBEt,scalar, were learned with a cycle time of 95ms on
a 4-core laptop computer with 8 GB of RAM; satisfying our
realtime requirement of 100ms.

Figure 5 presents the results of this experiment, namely that
learning the temporally-extended consequences of many dif-
ferent behaviors is possible in realtime. The learning progress
is measured by the RMSPBE, which, by the results in the pre-
vious section, will be strongly coupled to on-policy prediction
errors. The ability to monitor learning progress across so many
different behaviors is only possible due to the availability of
the MSPBE.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

0 100 200 300

RM
SP
BE

Minutes

Average

Minutes

0 100 300
Minutes

200

R
M
SP

BE

Fig. 5. Scaling off-policy learning to 8000 robot policies. The estimated mean
squared projected Bellman error for a sub-sample of the predictions about 300
distinct randomly generated policies. The heavy stroke black line denotes the
average estimated error over the full set of questions. The curves provide
a clear indication of learning progress for each prediction. The asperous
appearance of individual curves is due to randomized nature of the target
policies. This result provides a clear demonstration of the significance of
estimating the MSPBE incrementally during learning. Massively scaling the
number of policies on which to condition predictions is only possible with an
online performance measure.

VI. RELATED WORK

Although many of the ideas in this paper have precursors in
the literature, no previous work has demonstrated online large-
scale off-policy learning with sound convergent algorithms
with function approximation on a physical robot. Thrun and
Mitchell (1995) performed some of the first experiments in
life-long learning on a robot, learning a few dozen predictions

from on-policy experience. Singh et al. (1995) explored off-
policy learning and intrinsic motivation in a tabular simulation
world. Oudeyer et al. (2007) explored using curiosity to direct
a robot dog to sequentially (on-policy) interact and learn about
an increasingly difficult sequence of behaviours. Learning
parameterized models is a common approach to learning from
demonstration (Atkeson and Schaal (1997) and Kober and
Peters (2011)) but has only been demonstrated on individual
control tasks. Finally probabilistic robotics approaches (e.g.,
Thrun et al., 2005) and large-scale visual SLAM systems
(Cummins & Newman, 2009) process a vast volume of ob-
servations, but do not learn online.

Outside of life-long learning most related work does not
employ sound off-policy methods or is limited to small scale
experiments. Prior work on options (Sutton et al., 1999) and
TD-nets with options (Sutton et al., 2006) learned multi-step
predictions from off-policy samples in a small simulation
worlds with non-sound algorithms. A recent spectral approach
to predictive state representations (Boots, Siddiqi & Gordon,
2011) is capable of learning online but is limited to on-policy
sampling. Finally, Sutton et al. (2011) performed the first
experiments with gradient TD methods on a robot, but was
limited to a learning a maximum of 7 policies in parallel.

VII. DISCUSSION AND FUTURE WORK

Off-policy learning explicitly decouples the policy used
to select actions on the robot and the target policies to be
learned. It would be natural to adapt the behavior policy,
using reinforcement learning, to maximize learning progress;
creating a self-motived learning system. For example, the
behavior policy could be adapted by an actor-critic agent to
maximize a reward based on the sum of the prediction error
of each GVF. Without convergent gradient TD methods, there
was previously no way to implement and evaluate curiosity
and self-motivation without restricting the system to tabular
simulations (Singh et al., 2005), sequential learning (Oudeyer
et al., 2008) or using methods without convergence guarantees
(Schmidhuber, 1991).

Although this paper focused exclusively on off-policy pre-
diction at scale, there are natural extensions that enable
learning control policies from off-policy training. Greedy-GQ
(Maei, 2011) is a control variant of GTD(λ), that can be used
to learn control policies with the same linear complexity.

VIII. CONCLUSIONS

We provided the first demonstrations of large-scale off-
policy learning on a robot. We have shown that gradient
TD methods can be used to learn thousands of temporally-
extended policy-contingent predictions from off-policy sam-
pling. To achieve this goal, we addressed several challenges
unique to the off-policy setting. Most significantly, we have
developed the first online estimate of off-policy learning
progress based on the Bellman error that 1) does not increase
the computational complexity of the Horde architecture, 2)
can be sampled without interrupting learning, and 3) has good
correspondence with the traditional mean squared prediction

error. we have shown that parallel, policy-contingent updating
can substantially increases the scale of life-long learning.

ACKNOWLEDGMENTS

The authors thank Mike Sokolsky for creating the Critterbot
and Thomas Degris for assistance with the RLPark software
infrastructure. This work was supported by grants from Al-
berta Innovates–Technology Futures, the National Science and
Engineering Research Council of Canada, and the Alberta
Innovates Centre for Machine Learning.

IX. REFERENCES

Atkeson, C. G., Schaal, S. (1997). Robot learning from demonstration. In Pro-
ceedings of the 14th International Conference on Machine Learning,12–
20.

Boots, B., Siddiqi, S., Gordon, G. (2011). An online spectral learning
algorithm for partially observable nonlinear dynamical systems. In Pro-
ceedings of the 25th Conference of the Association for the Advancement
of Artificial Intelligence.

Cummins, M., Newman, P. (2009). Highly Scalable Appearance-Only SLAM
- FAB-MAP 2.0 In The Proceedings of the 4th Conference Robotics:
Science and Systems.

Kober, J., Peters, J. (2011). Policy search for motor primitives in robotics.
Machine Learning 84:171–203.

Littman, M. L., Sutton, R. S., Singh, S. (2002). Predictive representations of
state. In Advances in Neural Information Processing Systems 14, 1555–
1561.

Maei, H. R. (2011). Gradient Temporal-Difference Learning Algorithms. PhD
thesis, University of Alberta.

Modayil, J., White, A., Sutton, R. S. (2012). Multi-timescale Nexting in a
Reinforcement Learning Robot. In Proceedings of the 12th International
Conference on Simulation of Adaptive Behavior, LNAI 7426, 299–309

Oudeyer, P. Y., Kaplan, F., Hafner, V. (2007). Intrinsic Motivation Systems for
Autonomous Mental Development. In IEEE Transactions on Evolutionary
Computation 11, 265–286

Pilarski, P.M., Dawson, M.R., Degris, T.,Carey, J.P., Sutton, R.S. (2012). Dy-
namic Switching and Real-time Machine Learning for Improved Human
Control of Assistive Biomedical Robots. In Proceedings of the 4th IEEE
International Conference on Biomedical Robotics and Biomechatronics,
296–302.

Schmidhuber J. (1991). A possibility for implementing curiosity and boredom
in model-building neural controllers. In Proceedings of the 1st Interna-
tional Conference on Simulation of Adaptive Behavior, 222–227.

Singh S., Barto, A. G., Chentanez, N. (2005). Intrinsically motivated reinforce-
ment learning. In Advances in Neural Information Processing Systems 17,
1281–1288.

Sutton, R. S., Barto, A. G. (1998). Reinforcement Learning: An Introduction.
MIT Press.

Sutton, R. S., Precup D., Singh, S. (1999). Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. In Artificial
Intelligence 112:181–211.

Sutton, R. S., Rafols, E. J., Koop, A. (2006). Temporal abstraction in temporal-
difference networks. In Advances in Neural Information Processing
Systems 18.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári,
Cs., Wiewiora, E. (2009). Fast gradient-descent methods for temporal-
difference learning with linear function approximation. In Proceedings of
the 26th International Conference on Machine Learning.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A.,
Precup, D. (2011). Horde: A scalable real-time architecture for learning
knowledge from unsupervised sensorimotor interaction. In Proceedings of
the10th International Conference on Autonomous Agents and Multiagent
Systems.

Thrun, S., Burgard, W., Fox, D. (2005). Probabilistic Robotics. MIT Press.
Thrun, S., Mitchell, T. (1995). Lifelong robot learning. Robotics and Au-

tonomous Systems 15: 25–46.

