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Abstract 

In the last 15 years, there has been a flourishing of research into the neural basis of reinforcement 

learning, drawing together insights and findings from psychology, computer science, and 

neuroscience. This remarkable confluence of three fields has yielded a growing framework that 

begins to explain how animals and humans learn to make decisions in real time. Mastering the 

literature in this sub-field can be quite daunting as this task can require mastery of at least three 

different disciplines, each with its own jargon, perspectives, and shared background knowledge. 

In this chapter, we attempt to make this fascinating line of research more accessible to 

researchers in any of the constitutive sub-disciplines. To this end, we develop a primer for 

reinforcement learning in the brain that lays out in plain language many of the key ideas and 

concepts that underpin research in this area. This primer is embedded in a literature review that 

aims not to be comprehensive, but rather representative of the types of questions and answers 

that have arisen in the quest to understand reinforcement learning and its neural substrates. 

Drawing on the basic findings in this research enterprise, we conclude with some speculations 

about how these developments in computational neuroscience may influence future 

developments in Artificial Intelligence. 

 

Keywords: Reinforcement Learning, Classical Conditioning, Operant Conditioning, Dopamine, 

Temporal-difference (TD) algorithm, Striatum, Reward, Neuroeconomics 
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A primer on reinforcement learning in the brain: Psychological,  

computational, and neural perspectives. 

The last decade has seen a proliferation of research exploring the neural and 

psychological mechanisms of reinforcement learning (for some good reviews and perspectives, 

see Dayan & Daw, 2008; Doya, 2007; Maia, 2009; Niv, 2009; Rangel, Camerer, & Montague, 

2008; Schultz, 2002, 2007). This flourishing area of computational neuroscience draws on the 

expertise and knowledge in many sub-disciplines, including psychology, neuroscience, computer 

science, philosophy, and economics, amongst others. This remarkable confluence of fields was 

catalyzed by the discovery of a close correspondence between the behaviour of dopamine 

neurons in classical conditioning tasks and the prediction error in the temporal-difference (TD) 

algorithm from reinforcement learning (Montague, Dayan & Sejnowski, 1996; Schultz, Dayan, 

& Montague, 1997; Sutton, 1988; Sutton & Barto, 1990; see Figure 5). The import of this finding 

has filtered outward from a strikingly successful model of the neural basis of a simple 

conditioning behavior in animals to theoretical models of human economic decision making and, 

in part, to an entire field of neuroeconomics (e.g., Glimcher et al., 2009; Platt & Huettel, 2008; 

Rangel et al., 2008; Schultz, 2009).  

Our goal in this chapter is two-fold. First, we aim to provide a primer of basic 

introductory materials in three of the constitutive disciplines of this enterprise—psychology, 

computer science, and neuroscience—to facilitate access by Artificial Intelligence (AI) 

researchers and other computational neuroscientists into this exciting field. As our second goal, 

we will not directly re-tread the ground covered in detail by the many comprehensive recent 

reviews, but rather we use some selective examples of reinforcement-learning research and show 

how this multi-disciplinary enterprise has helped inform and been informed by these basic lines 
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of inquiry. 

 In considering the relationship between observed behaviour, computational models, and 

neural mechanisms, Marr’s (1982) three levels of analysis prove very instructive. Marr proposed 

that any information-processing system can be analyzed at three different levels: the 

computational or functional, the algorithmic or representational, and the implementational. At 

the computational level, one specifies the goals and objectives of the system. What does the 

system do? For example, the computational goal for classical conditioning might be the 

prediction of important biological events. Second, at the algorithmic level, one specifies the step-

by-step procedure by which this function is accomplished. What algorithm or procedure does the 

system use to accomplish the computational goals? Again, for classical conditioning, this might 

be the Rescorla-Wagner rule (Rescorla & Wagner, 1972) or the TD algorithm (Sutton & Barto, 

1990) or any other set of rules that describe how the computation happens. Finally, at the 

implementational level, the important details of how these different algorithms and 

representations can be instantiated in neural tissue or other mediums are laid out. How are these 

algorithms physically realized? One example would be the equating of the reward-prediction 

error from reinforcement learning with the burst firing of dopamine neurons (Schultz et al., 

1997). A full explanation of any information-processing system would require adequate accounts 

at each of the three levels of analysis.  

 Our chapter follows Marr’s proposal by dividing this introduction to neural reinforcement 

learning into three sections that roughly correspond to his three levels of analysis. Section 1 

describes the computational problems facing creatures in simple learning and decision-making 

situations and summarizes some of the attempts within psychology to characterize the algorithms 

that may be used by animals to solve these problems. Section 2 introduces the core 
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computational ideas of reinforcement learning (RL) and shows how ideas from RL are 

particularly well suited as potential algorithms for models of natural learning. Section 3 ties the 

first two sections together in the brain, by introducing the neurobiological evidence that different 

RL algorithms have strong neurophysiological correlates. Our general strategy in each of the 

three sections is to introduce some of the fundamental problems and terminology in the sub-field 

before detailing the role and contribution of RL. 

1. The Psychology of Learning and Decision Making  

 The first step towards understanding the modern study of reinforcement learning in the 

brain is a basic grasp of the major behavioral phenomena within the realms of animal learning 

and behavioral economics. We start by discussing two simple forms of learning—classical and 

operant conditioning—before progressing to more complex value-based decision making in 

humans and animals. In each case, we attempt to illustrate the major empirical phenomena and 

the functional goals for these behaviors, in addition to touching on some of the explanations that 

have been proffered within psychology to deal with these data. Our goal in this section is to lay 

out the behavioral puzzles for which the RL algorithms discussed in Section 2 provide a potential 

computational mechanism. 

1.1. Predicting the Future: Classical Conditioning 

In a recent episode of the American TV show The Office, the protagonist Tim decides to 

play a prank on his co-worker Dwight. Repeatedly, each time Tim shuts down his computer 

(making a tell-tale beep), he offers Dwight a small candy. After several iterations, Dwight begins 

to stick his hand out for the candy immediately upon hearing the beep, even claiming a bad taste 

in his mouth on a “trial” when Tim fails to present the candy. This little fictional snippet evokes 

(and was inspired by) the classic work of the Russian physiologist Ivan Pavlov, who spent many 
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years studying the salivary reactions of dogs to various sounds that were reliably followed by 

food delivery (Pavlov, 1927). This simple form of associative learning, known as classical or 

Pavlovian conditioning, is widely exhibited in the natural world, spanning many species from 

insects to fish to dogs to humans (for some good reviews and perspectives, see Domjan, 2005; 

Pearce & Bouton, 2001; Rescorla, 1988). 

 More precisely, classical conditioning is said to occur whenever a previously neutral 

stimulus (the CS or conditioned stimulus), such as the beep, is paired with a rewarding stimulus 

(the US or unconditioned stimulus). This reward can either be positive, such as the candy in the 

Office episode, or aversive, such as an electric shock or puff of air to the eye. Initially, only the 

reward elicits a response, such as reaching out a hand or salivation, but after sufficient training, 

the CS will also elicit a conditioned response (CR).  

 Most early views of classical conditioning proposed that animals learn an association 

between the CS and reward solely due to temporal contiguity (e.g., Guthrie, 1930; Pavlov, 1927; 

but really back to Aristotle). This simple idea entailed that whenever the CS and reward occurred 

around the same time, an association formed between them—the simple co-occurrence of the 

beep and candy was sufficient for Dwight to learn a link between them. Three major empirical 

findings from the animal learning literature in the late 1960’s helped upend this contiguity-

centered point-of-view: blocking, contingency effects, and conditioned taste aversion.  

The first finding, blocking, showed that stimuli that perfectly predict reward do not 

always elicit conditioning responding. Only if the reward is unpredicted or surprising does 

learning occur. In the blocking procedure, a CS is paired with reward until the association is well 

learned. At this point, a second CS is introduced, and both CSs are now paired with the reward. 

Typically, the newly introduced CS, when presented alone, does not elicit conditioned 
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responding, even after substantial training with both CSs and the reward. It is as though the pre-

trained cue “blocks” any learning from happening to the newly introduced cue, despite the 

temporal contiguity of this cue and reward (Kamin, 1969; Waelti et al., 2001). As a real-life 

example, imagine your friend has a known peanut allergy, and she experiences an allergic 

reaction after eating shrimp satay with peanut sauce at a Thai restaurant. Your friend may also be 

allergic to the shellfish, but from the restaurant incident, you would not make this connection 

because the potential association between shellfish and the allergic reaction was “blocked” by 

the known allergy to peanuts. 

Second, Rescorla (1968) found in a series of experiments that a contingency or predictive 

relationship is crucial for establishing an association between two stimuli. As opposed to 

contiguity, which only requires that two events occur at the same time, contingency requires that 

the predicted stimulus (US) be more probable during the CS than at other times. For example, 

Rescorla found that inserting extra rewards into the experiment when the CS was not present 

(i.e., during the inter-trial intervals) eliminated responding to that cue (but the temporal relations 

might matter; see Williams et al., 2008). Only when the CS predicted a reliably higher rate of 

reward than the background rate did conditioned responding emerge. 

These two experiments—blocking and contingency effects—demonstrated how temporal 

contiguity by itself was insufficient for classical conditioning; some form of contingency or 

predictive relationship was needed for conditioning to occur. Finally, a third set of experiments 

firmly established that temporal contiguity was not even necessary for conditioning. In these 

conditioned taste aversion experiments, rats were presented with flavoured water and then made 

ill several hours later through a dose of radiation (e.g., Garcia & Koelling, 1966). Rats 

subsequently avoided drinking this flavoured water, even though there was no temporal 
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contiguity between the cue and reward, as several hours intervened between the initial drinking 

session and the illness. The key ingredient for successful conditioning in this case was that a 

valid predictive relationship (contingency) existed between the water and the illness, even when 

there was no temporal contiguity whatsoever. 

This perspective that surprise and contingency, rather than contiguity, are the most 

important factors for conditioning found its most succinct expression in what has become known 

as the Rescorla-Wagner (RW) model (Rescorla & Wagner, 1972). In the RW model, learning 

occurs whenever the reward exceeds expectations. Figure 1A depicts how learning occurs in the 

RW model for a negative shock reward. There is an initial reward prediction (read: associative 

strength) on a given trial, followed by the actual outcome. At the end of the trial, this outcome is 

compared with the prediction, and the difference between the two, the reward-prediction error, 

is used to improve the prediction for next time. This simple learning rule describes precisely how 

the associative strength or reward prediction V for each CS present in a trial changes as a result 

of experience: 

   V = V + α [r – VSum]      (1) 

where r is the reward on that trial, VSum is the net associative strength based on all available CSs, 

and α is a parameter that controls the speed of learning. According to the RW model, there is an 

increment (or decrement) in the strength of an association based on the discrepancy between the 

reward received and the expected reward on a given trial. The expected reward (i.e., the net 

associative strength) is derived from all CSs present on a given trial as a simple sum of their 

associative strengths with the reward in question. The reward-prediction error drives all learning, 

leading to the experimental prediction that associative learning should only occur when 

expectations about rewards are violated. As a result, blocking is quite naturally explained. When 
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the second cue is introduced, the first cue already perfectly predicts the reward, thus no reward-

prediction error occurs on that trial, and no new learning occurs to the second cue. 

 The RW model has been remarkably successful in explaining and predicting many 

phenomena in animal and human conditioning (Rescorla & Wagner, 1972; Miller, 1996), but 

there are numerous empirical difficulties and theoretical alternatives (e.g., Gallistel & Gibbon, 

2000; Pearce & Hall, 1980; Sutton & Barto, 1981, 1990; Wagner, 1981). Miller et al. (1996) 

compiled an extensive list of these empirical challenges to the RW model, and many of these 

challenges also extend to newer extensions of this error-correcting learning rule, such as those 

from reinforcement learning (see below). Beyond these empirical concerns, one major 

conceptual problem that confronts the Rescorla-Wagner model is that the model is not real time 

and relies quite heavily on the concept of a trial, which is not immediately apparent in the 

experience of an animal (see Gallistel & Gibbon, 2000; Sutton & Barto, 1981; 1990). In fact, the 

relative times of the stimulus-reward and inter-trial intervals might be the most important 

determinants of the speed of learning, rather than trials themselves (e.g., Gottlieb, 2008). In 

addition, animals can learn to predict stimuli other than rewards (e.g., Brogden, 1939; Ludvig & 

Koop, 2008; Rescorla, 1980), perhaps even taking into account the causal structure of the 

environment (e.g., Blasidell et al., 2006; Dwyer, Starns, & Honey, 2009). These simple learning 

phenomena lie beyond the explanatory scope of the RW model. 

The basic idea of error-driven learning has also been adopted into many of the learning 

rules that characterize modern RL (see Sutton & Barto, 1990, 1998). For example, in temporal-

difference (TD) learning (see also Section 2.2), the discrepancy between prediction and outcome 

is also used to drive the value function or the prediction of future rewards on a moment-to-

moment basis. This value function is roughly equivalent to the net associative strength (VSum) in 
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the Rescorla-Wagner model. Figure 1B depicts how learning proceeds on a single time step in 

the TD algorithm. The learning proceeds along quite similar lines to the RW model, but with one 

major difference: Instead of comparing the reward received with the reward predicted on a given 

trial, on every time step t, the reward received is compared with the change in reward prediction 

to generate a reward-prediction error (δ): 

δ (t) = r (t) – [V (t-1) – V (t)].      (2) 

With some easy algebra, this equation can be written to make it clear that the TD or reward-

prediction error reflects how much better the world is at this time step (current reward plus newly 

predicted upcoming reward) versus what it was expected to be (the old prediction of reward):  

δ (t) = [r (t) + V (t)] – V (t-1).      (3) 

This error can then be used to update the old reward prediction to bring it more in line with what 

was experienced by adding a portion of the error to that old reward prediction: 

V (t-1) = V (t-1) + α δ (t),      (4) 

where α is a parameter that controls the speed of learning. What the error does is change the 

value function or the way that predictions about rewards are made based on the stimuli. This 

updated value function can now be used to make a new prediction about the upcoming reward 

for the next time step. 

As a result of this real-time updating, TD learning can make moment-to-moment 

predictions about reward and does not operate solely at the trial level, leading to improved 

correspondence with numerous conditioning behaviors in models based on this learning rule 

(e.g., Sutton & Barto, 1981, 1990; Ludvig et al., 2009). In addition to a better fit with some 

conditioning data, what is probably most compelling about this alternative learning rule as a 

model of conditioning is the strong correspondence between the error term and the behaviour of 
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dopamine neurons in the midbrain (e.g., Montague et al., 1996; Schultz et al., 1997; see Fig. 5). 

Section 3.3 will discuss these correspondences in detail. 

1.2. Controlling the Future: Operant Conditioning 

 Classical conditioning is restricted in scope because most conditioned responses already 

exist as reflexive reactions to the rewarding or conditioned stimuli (but see Domjan, 2005). What 

classical conditioning does is tune when and how strongly animals perform these reactive 

responses. In contrast, novel responses that are shaped and reinforced by rewards from the 

environment are not possible within the classical conditioning framework. Indeed, the RW model 

of classical conditioning ignores responding altogether, providing a model for how associative 

strength changes over time, but leaving out the important issue of how this associative strength 

might get translated into behavior (see Stout & Miller, 2007; Ludvig et al., 2009). Operant or 

instrumental conditioning deals directly with how animals learn to make potentially novel 

responses that yield rewarding outcomes.  

Perhaps the first example of operant conditioning in modern experimental psychology 

was Thorndike’s puzzle box for cats (Thorndike, 1911). This experimental chamber was a small 

enclosure from which cats could escape given the right sequence of actions. In different 

permutations of the box, they could either pull a chain, or push a bar, or step on a latch to escape. 

After repeated exposure to this puzzle box, the cats gradually learned to perform the appropriate 

actions and escape more and more quickly. This gradual, trial-and-error learning of new actions 

typifies many of the procedures in the modern study of operant conditioning (see Staddon & 

Cerutti, 2003, for a review). 

 In classical conditioning, animals learn to predict the US on the basis of the CS, or, in 

more traditional psychological terms, the animals learn an association between the CS and the 
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US. In operant conditioning, when a new response is performed, which predictive relationships 

animals learn are not nearly as obvious. At least two possibilities present themselves: Animals 

might learn a link between the stimulus and response (S-R association) or between a response 

and outcome (R-O association). In Thorndike’s puzzle box, the cat may have learned (1) to step 

on the latch in the box or (2) that stepping on the latch leads to escape. This three-way 

connection between stimulus, response, and outcome is known as the three-term contingency 

(Skinner, 1938). Initial investigations of operant conditioning tended to focus most strongly on 

the S-R association. For example, on the basis of the cat puzzle boxes, Thorndike (1911) 

formulated his famous Law of Effect: 

“Of several responses made to the same situation, those which are accompanied by or 

closely followed by satisfaction to the animal will, other things being equal, be more 

firmly connected with the situation, so that, when it recurs, they will be more likely to 

recur...” (p. 244) 

Here, he clearly pegs operant conditioning as learning a connection between a situation 

(stimulus) and response. RL has also mostly adopted this convention, wherein agents try to learn 

a policy—a mapping from stimuli to responses—on the basis of the previous reward history (see 

Section 2.3). 

  More recent work has drawn into question to what degree these simple stimulus-

response associations drive behaviour in operant conditioning experiments (Balleine & 

Dickinson, 1998; Daw, Niv, & Dayan, 2005; Dickinson & Balleine, 1994; for a recent review, 

see Balleine & O’Doherty, 2009). An important distinction between habitual (S-R) and goal-

directed (R-O) systems has been proposed, with separate neural substrates for each. One 

empirical example in support of this distinction comes from reinforcer devaluation experiments 
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(e.g., Adams & Dickinson, 1981; Rescorla & Colwill, 1985). In these experiments, animals are 

trained to perform a particular response, say press a lever, for a food reward. After training, the 

food reward is devalued typically by either satiating the animal with the food or poisoning the 

animal following consumption of the food, but in a different context so as not to contaminate the 

previous training. When those animals are brought back to the original experimental set-up, they 

press the lever for the now-devalued food less than a comparable group of animals that had a 

different food reward devalued in the interim.  

In loose terms, this decrease in responding indicates that animals know which food 

reward is upcoming and are not solely reacting reflexively to the stimulus. In more technical 

terms, these animals are sensitive to the association between response and outcome (R-O), and 

not only between stimulus and response (S-R). Responding, however, does not entirely disappear 

in these situations, suggesting that a S-R connection does exist and persist. In addition, this 

decrease in responding following devaluation depends on the amount of training given to the 

animals: Highly overtrained animals become insensitive to the devaluation manipulation and 

continue to press the lever even afterward. Thus, there is evidence for both habitual (S-R) and 

goal-directed (R-O) responses. From these experiments, it would seem that Thorndike’s cats may 

have learned both associations: to step on the latch in the box and that latch-stepping leads to 

escape. 

 For animals to turn this learning into the effective control of future outcomes requires a 

solution to two significant problems: how much and when to respond? These questions about the 

rate and timing of learned responding have dominated much of the literature on operant 

conditioning. The primary tactic for asking and answering these questions empirically has been 

through the two major schedules of reinforcement: ratio and interval schedules (Ferster & 
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Skinner, 1957). In a ratio schedule, animals are rewarded after a certain number of responses are 

emitted; in an interval schedule, animals are rewarded for the first response after a certain 

amount of time has elapsed. Both ratio and interval schedules come in fixed or variable varieties; 

in a fixed schedule, the number of responses or time to reward is always the same, whereas in a 

variable schedule, only the average number or time is specified. Much of the theoretical work in 

this area has focused on steady-state behaviour—what the animal does after the course of 

learning is complete (e.g., Gibbon, 1977; Herrnstein, 1961). As with the Rescorla-Wagner model 

of classical conditioning, these real-time limitations to many models of operant conditioning 

suggest an opening for future theoretical contributions. Recent computational models based on 

RL have begun to make in-roads on both these problems with new models of both response vigor 

(Niv et al., 2005) and response timing (Daw, Courville, & Touretsky, 2006; Ludvig et al., 2008, 

2009).  

1.3. Evaluating the Future: Choice 

 Imagine that you are on the game show Deal or No Deal and faced with the choice of 

taking the offer from the banker for a guaranteed $100,000 and going home or continuing 

onward in the game and gambling for a 50/50 chance between two briefcases with either $1 or 

$250,000 in them. How would you decide what to do? You might be “rational” and figure out 

that the expected value of the second, risky option is ~$125,000 (50% of $250K), which is higher 

than the expected value of the safe option and decide to gamble. As it turns out, most people 

faced with this choice would take the less-“valuable” safe option, acting risk averse, and walk 

away with the guaranteed $100K (e.g., Kahneman & Tversky, 1979). This question of how 

people and animals value different outcomes and make decisions between them has been the 

purview of behavioral economics (Camerer & Loewenstein, 2003; see also Ariely, 2008) and, 
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more recently, as questions about brain mechanisms have come to the fore, of neuroeconomics 

(e.g., Glimcher, 2009; Platt & Huettel, 2007; Trepel et al., 2005). 

Why do people tend to undervalue the gamble and play it safe? One possible answer 

comes from prospect theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 1981; but 

back to Bernoulli, 1738), which proposes that people make choices based on the expected utility 

of an outcome rather than the expected value. In this context, the utility can be thought of as the 

subjective value—how much the $250,000 is worth to the decision maker, rather than what its 

objective value is. Prospect theory contends that the relationship between objective value and 

subjective utility is sub-linear for gains: Winning $200 is less than twice as good as winning 

$100. As a result, people tend to choose the safer option as opposed to an objectively equivalent, 

but riskier option; they are risk averse for gains.  

The converse result, however, is seen when the decision involves a sure small loss (losing 

$100) vs. the chance of a big loss (50/50 chance of losing $200). In this instance, people tend to 

choose the gamble, making them risk prone or risk seeking for losses. Prospect theory proposes a 

similar non-linearity for the negative utility curve: Losing $200 is less than twice as bad as losing 

$100. As a result, someone trying to minimize their subjective loss would take the gamble. 

Within prospect theory, this asymmetry between risk sensitivity for decisions about gains and 

losses means that the way a question is framed or anchored can have a great influence on how 

people make choices about different potential economic outcomes (e.g., Tversky & Kahneman, 

1981). 

Animals, too, show varying risk sensitivity profiles based on the types of choices with 

which they are faced (e.g., Bateson & Kacelnik, 1995; Shafir, 2000). For example, Bateson and 

Kacelnik (1995) found that starlings, like humans, were risk averse when the reward was the 
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amount of food. In contrast, when these birds were tested with delays to food, the starlings were 

risk seeking, preferring variable delays to food over fixed delays. In general, as might be 

imagined, shorter delays to reward are preferred to longer delays to reward, the result of a 

phenomenon known as temporal discounting (e.g., Green & Myerson, 2004). In this instance, the 

asymmetry between amounts and delays may be explained by the increase in variance that goes 

along with estimating larger magnitudes. Larger amounts are good, but larger delays are bad. As 

a result, the good amounts have more variance in their estimate, but the bad delays have more 

variance in their estimate. Simply sampling from this remembered distribution of amounts or 

delays produces this asymmetry in risk sensitivity (e.g., Marsh & Kacelnik, 2002). This risk 

sensitivity in birds also manifests itself in more naturalistic conditions. In one series of 

experiments, dark-eyed juncos, a small bird, chose the safe, small food option when the external 

temperature was warm, but in cold conditions, when they needed a larger meal to survive 

through the night, the juncos were risk seeking and sought the larger, more variable food source 

(Caraco, 1981; Caraco et al., 1990). Thus, though variations in risk sensitivity may reflect 

seemingly sub-optimal non-linearities in subjective utilities, these variations may still have 

strong adaptive value in an ecological context. 

 The preferences in the various choice situations described above are typically not pure 

preferences, but rather a tendency towards picking one option or another. In fact, when animals 

and humans are confronted with repeated options to which they can allocate varying portions of 

behaviors, they often show a distinct regularity known as matching behaviour (Herrnstein, 1961, 

1970; Davison & McCarthy, 1988). In matching behaviour, the degree of preference for different 

options depends on the rates of reward for those options. So, if a monkey can press Button A and 

get on average 2 candies or press Button B and get on average 4 candies, the monkey will tend to 
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press Button B twice as often. Numerous mechanisms have been proposed to explain how 

animals achieve this matching behaviour (e.g., Jozefowiez et al., 2009; McDowell, 2004; Simen 

& Cohen, 2009; Sugrue et al., 2005), but only recently have the potential connections to RL 

models begun to be evaluated (e.g., Lau & Glimcher, 2005; Loewenstein, Prelec, & Seung, 2009; 

Sakai & Futai, 2008). 

 In this section, we have reviewed some of the major findings in the psychology of 

learning and decision making in animals and humans. These represent many of the core 

behavioral phenomena that reinforcement-learning models attempt to explain. Most of the 

theoretical work has focused on the simpler learning phenomena of classical conditioning (e.g., 

Sutton & Barto, 1990; Schultz et al., 1997), but more recent work has made headway on operant 

conditioning and even more complex decision making (Gureckis & Love, 2009; Niv et al., 2005; 

Wunderlich, Rangel, & O’Doherty, 2009). One of the challenges for RL researchers in the future 

will be how to reconcile the simple learning rules that guide performance in classical- and 

operant-conditioning tasks with the more complex decision making exhibited by humans and 

animals in behavioral-economics settings.   

2. Algorithms for Reinforcement Learning 

 Reinforcement learning (RL) is a branch of AI that is concerned with the computational 

study of real-time decision making (Sutton & Barto, 1998). In RL, agents are assumed to interact 

with an environment while attempting to maximize a reward signal (see Figure 2A). In biological 

terms, these agents can be conceived as entire organisms or, occasionally, as control centers in 

the brain that receive filtered input from the external environment. For a rigorous and accessible 

introduction to RL, see the book by Sutton and Barto (1998). Here, we first introduce the 

formalisms and goals of RL in the context of broader work in machine learning and then step 
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through some of the key concepts in the area, including value functions and the temporal-

difference (TD) learning algorithm. We conclude with a discussion of some of the key issues in 

the design and use of RL algorithms, including strategies for action selection and efficient 

exploration. 

2.1. Machine Predictions: Supervised Learning 

Although the idea of learning is familiar to young children, the computational 

mechanisms that drive learning remain largely unknown. With the Dartmouth Summer Research 

Conference on Artificial Intelligence, held in 1956 and organized by the pioneers of the field, 

computer scientists began to consider how to describe intelligent concepts in machine terms. 

They conjectured that “every aspect of learning or any other feature of intelligence can in 

principle be so precisely described that a machine can be made to simulate it” (McCarthy et al., 

1955/2006, p. 12). Thus the field of AI was born—in a quest to discover and understand 

algorithms that exhibit intelligent behavior. Paramount to the study of AI is learning, which is 

often investigated in three guises: supervised learning, unsupervised learning, and reinforcement 

learning (Mitchell, 1997; Sutton & Barto, 1998). We first turn our attention to supervised 

learning—a framework for describing how machines can learn to predict the future from data—

whose limitations will provide computational motivation for the techniques of reinforcement 

learning.  

Supervised learning: Machines making predictions. From a mathematical perspective, 

learning is about finding input-output mappings that are consistent with some dataset. In 

supervised learning, this data is usually provided as a set of inputs and desired outputs; these 

desired outputs act as a supervisory signal, telling the algorithm what it should learn about the 

data. For example, a popular supervised-learning problem is handwritten-digit recognition (e.g., 
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LeCun et al., 1998). In this problem, the inputs are grainy images of handwritten digits, and the 

desired outputs are corresponding labels between 0 and 9. The goal for supervised-learning 

algorithms is to learn a mapping from a set of already-labeled images, so that the algorithm can 

correctly identify the digits in novel images.  

One popular technique for solving supervised-learning problems is the family of 

gradient-descent algorithms. These algorithms are highly analogous to the Rescorla-Wagner 

model (see Section 2.1), wherein learning occurs in response to prediction errors. These 

algorithms operate by examining a group of inputs (stimuli) and making a prediction about the 

corresponding output. The prediction is computed through a set of weights that act in a similar 

fashion to the associative strengths present in the Rescorla-Wagner model. A prediction error is 

calculated, which is simply the difference between the prediction and the output. If this error is 

positive, then the prediction gets adjusted upwards; if the error is negative, then the prediction 

gets adjusted downwards. In the digit-recognition example, the algorithm might learn the 

probability that an image corresponds with each digit. If the algorithm predicts the correct label 

with less than 100% probability, there would be a positive error, and the algorithm would predict 

the correct label for this image next time with a higher probability. If the algorithm predicts the 

wrong labels, there would be a negative error, and those predictions would be downgraded. 

These algorithms are known as gradient-descent algorithms because they adjust their prediction 

by looking at the gradient (slope and direction) of the error. 

In this supervised-learning framework, it is generally assumed that the learning 

algorithms attempt to solve one-shot prediction problems. These ideas have proved enormously 

useful on a wide variety of problems, from bioinformatics to health care (e.g., Asgarian et al., 

2009; Cooper et al., 2005). Animals and humans in the real world, however, face a constant 
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stream of information, which can only be coarsely represented as a one-shot prediction problem. 

One major element is missing in the supervised-learning formulation of the prediction problem: 

time. 

2.2. Temporal Predictions: Reinforcement Learning 

A major limitation of supervised-learning methods is that they ignore the temporal 

aspects of decision-making problems. For a supervised learner, there is some data from which a 

prediction is made. The consequences of that prediction are limited to the congruence with the 

output; future success is not directly compromised by one bad prediction/decision. In contrast, in 

real-world systems, both natural and artificial, time plays a crucial role: Every decision made by 

an agent affects all possible future decisions. Consider the task of going out for lunch at work. 

Your first choice might involve selecting your lunch mates. The second choice determines the 

restaurant where you will eat. Pending which restaurant you choose, you would be faced with 

different menus and thus different options. After ordering, you may then decide whether to eat 

with your hands, utensils, or chopsticks. This inherent sequentiality of real-world decision 

making necessitates a different set of learning methods for predicting and behaving in a real-time 

setting. RL addresses exactly this set of questions.  

Figure 2A shows how, in RL, the world is typically divided into an interacting agent and 

environment. The agent receives observations (stimuli) from the world and emits actions. In 

biological terms, the agent can be thought of as the whole animal, a small control center in the 

brain, or even an extended cognitive apparatus (e.g., Clark, 2008). A common assumption in 

most RL problems is that the environment or outside world consists of different states, and given 

that state, the future is entirely independent of the history before that state. This assumption, 

known as the Markov property, ensures that knowledge of the state is sufficient information for 
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predicting anything (rewards or otherwise) that can be known about the future—no other 

information can help. An entire RL problem can be fully described as a Markov Decision 

Process (MDP), which consists of the set of environmental states, the possible actions available 

to the agent, the reward function, and the transition function that details how the environment 

changes from state to state. For RL researchers, the usual task is to develop an algorithm for an 

agent that best picks actions so as to maximize future rewards in such an MDP. In doing so, 

useful sub-problems can include learning to predict the future rewards, exploring the 

environment successfully, inferring the state from given observations, or building a model of the 

environmental state transitions.  

 An illustrative example should help make these concepts clearer. Figure 2B shows a 

schematic of a rat in a fairly simple maze. There are multiple choice points for this rat, with the 

possibility of cheese or water rewards at some end points, while a big cat awaits in another 

corner. The reward values for each end point (i.e., the reward function) are presented in blue 

boxes, and some transition probabilities (p) are presented in the orange boxes. Each decision the 

rat makes influences possible future decisions. If the rat goes up from the start state S1, then it is 

faced with the prospect of possibly meeting the cat, getting a big hunk of cheese, or returning 

back to the start. Describing this problem as an MDP involves detailing the 4 states (the choice 

points), the 4 possible actions (up, down, left, right), the reward function (0, except where 

indicated), and the transition probabilities (the probability of each action succeeding). From the 

RL point-of-view, this abstract description captures the whole problem (see Figure 2C). The 

research question becomes: How do you learn to maximize rewards in this context? 

Predicting Rewards: Value functions. A value function is the prediction of future rewards 

from the different states, and is a fundamental tool in RL for solving MDPs. The value of being 
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in an environmental state (s) at a particular time (t) can be defined as the weighted sum of all 

future rewards: 

V(st) = rt+1 + γ rt+2 + γ2 
rt+3 + γ3 

rt+4 ... ,     (5) 

where t denotes the current time step and t +1, t + 2... are future time steps, making rt+1 the 

reward following the current state, rt+2 the reward after the following state, and so on. The 

parameter γ is a discount factor that (when less than 1) causes distant rewards to matter less than 

immediate rewards in determining the value of a state. At the extreme, with a discount factor of 

0, the value of a state is exactly equal to the immediately ensuing reward. The value is thus the 

sum of all future rewards from a given state, appropriately discounted. Of course, this “true” 

value is never directly available to the agent, but must somehow be estimated based on the 

agent’s experience. Approximating this idealized value function can be thought of as the goal for 

all of RL. 

 One interesting relationship emerges if we compare the values at successive states. The 

values of two consecutive states (st and st+1) are respectively equal to: 

        V(st) = rt+1 + γ rt+2 + γ2 
rt+3 +  γ3 

rt+4 ...        

V(st+1) =           rt+2 + γ rt+3  +  γ2 
rt+4  ...     (6) 

The right half of Equation 6 is intentionally shifted to the right to highlight the similarities 

between the two equations: the value of the second state (st+1) is almost the same as the value of 

the first state (st), save the first reward (rt+1) and the degree of discounting. Combining the two 

equations, we get the following relationship between the value of a state, and the value of its 

successor: 

V(st) = rt+1 + γ V(st+1).        (7) 

Because of the Markov property, the value of a state can be fully expressed as the next reward 
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plus the discounted value of the following state. This relationship will prove important in 

calculating value functions through the temporal-difference (TD) algorithm below. 

 Let us return to the example of the rat in the maze for a moment. Figure 2C provides an 

alternate view of the maze as a tree of possible paths. The circles represent the different states, 

and the squares represent the rewarding outcomes following different choices. For illustrative 

purposes, we assume that the rat has had some prior experience with the maze: Whenever the rat 

was in the top state (S2), the rat ended up meeting the cat with probability (p) .1 (i.e., 10% of the 

time) and finding the big cheese with probability .9 (i.e., 90% of the time). As a result, the 

estimated value of that top state is -.5, which is equal to -5 (i.e., .1 times the -50 reward for 

meeting the cat) plus +4.5 (i.e., .9 times the +5 reward for getting the big cheese). Similar 

calculations can be conducted for the left (value = +1) and right states (value = +2.9), and the 

results are displayed inside the circles in Figure 2C, representing states. For the value of the start 

state (S1), the calculation is a little more interesting. There are no immediate rewards following 

any of the actions from this state. Instead, all actions take the rat to another state; however, the 

value of these potential future states is known. We can therefore calculate the value of S1 from 

the values of the three immediately succeeding states. If the agent went up, left, or right with 

equal probability from S1, the value of this state becomes (1 + 2.9 - 0.5)/3 ≈ 1.1. Note that this 

example implicitly assumes a discount factor of 1. 

Value functions are closely related to the associative strengths present in the Rescorla-

Wagner model. Associative strengths can be thought of the prediction of the upcoming US or 

reward. Value functions are similarly predictions of upcoming rewards, not only of the 

immediately ensuing reward, but a function of many future rewards. This subtle difference 

between associative strength and value functions has a distinct analogy to the difference between 
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supervised learning for prediction and reinforcement learning. In one case, the target is a timeless 

entity, and in the latter case, the target is a time-embedded set of future outcomes. 

 Learning Values: The temporal-difference (TD) algorithm. Pending what information is 

available to the agent, there are many methods for estimating value functions. For example, if the 

agent has a model of the environment and therefore knows what the next state will be, then the 

value function can be computed directly through dynamic programming methods (Bertsekas & 

Tsitsiklis, 1996). When agents do not have such a model of the environment, they must somehow 

estimate the value function from their stream of experience. The temporal-difference (TD) 

learning algorithm is a procedure for learning these reward predictions in an efficient manner 

(Sutton, 1988). The key idea behind the TD algorithm is bootstrapping: learning a guess from a 

guess. The agent improves its estimate for the value of a state by learning from the value of the 

next state. This incremental improvement capitalizes on the key relationship between the values 

of successive states (see Eq. 7 and Fig. 2B): The value of a given state depends only on the 

immediate reward and the value of the next state. 

The TD-learning algorithm provides a very simple and elegant way of learning to predict 

future rewards. The algorithm works in a similar fashion to the Rescorla-Wagner model (see 

Section 2.2) by learning through a reward-prediction error or TD error. In this case, the reward-

prediction error (δ) is the discrepancy between what was expected (the old value) and what 

actually occurred (a reward plus the new value): 

 δt = [rt + γ V(st)] - V(st-1).       (8) 

TD learning then updates the estimate for the value of the last state based on the TD error and a 

parameter α that helps determine the speed of learning: 

   V(st-1) = V(st-1) + α δt .       (9) 
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As a result, through the TD-learning algorithm, the estimated value of the new state directly 

influences the estimated value of the old state. Through this process, over repeated iterations, the 

reward prediction can percolate back to earlier and earlier states. 

To step through these details of the TD learning algorithm more carefully, let us revisit 

the maze of Figure 2B. Suppose that the rat is completely naive, never having visited this maze 

before. For simplicity in calculation in this example, we set the step-size parameter α to .5 and 

the discount factor γ to 1. On the first trial, let us imagine that the rat goes up from the start state 

S1 to state S2. At this point, no rewards have been received, and the value of all states is 0, thus 

no learning occurs. Now, the rat goes to the right and receives a reward of +5. Because the value 

of S2 is 0, a large prediction error of +5 occurs, and the value of this state is updated to +2.5 

(step size of .5 times a reward of +5). On the second trial, the rat again goes up from the start 

state S1 to state S2. This time, however, state S2 has a non-zero value. This change in estimated 

value induces a prediction error of +2.5 (value of state S2 minus the value of state S1), and the 

value of state S1 is now updated to +1.25 (.5 x +2.5), even though a reward has not been 

encountered yet. This propagation of value back through the states is the bootstrapping 

mechanism through which TD learning achieves efficient learning from the experienced rewards. 

Finally, imagine the rat again goes to the right and gets a reward of +5—the value of state S2 

will again be updated, but this time by a smaller amount as there was already a reward prediction 

of +2.5 in state S2. The new value for state S2 will be +3.75, which is the original value of +2.5, 

plus .5 (the learning rate) times the difference between the reward received (+5) and the reward 

predicted (+2.5). The value of state S1 does not get updated again at this point, unless a memory 

mechanism known as eligibility traces are used—an RL technique we do not discuss here (see 

Sutton & Barto, 1998). Thus, after only two trials, the agent has gained new information about 
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the value of these two states, propagating information back through the states as they were 

encountered. 

2.3. From Predictions to Actions 

One limitation to TD learning, as discussed above, is that the algorithm does not provide 

a direct way of learning how to select actions. The TD algorithm only learns the value or 

predicted future rewards from different states, and thus could not be directly used by real agents 

that act upon their world and control the rewards they receive. Several solutions to this limitation 

suggest themselves. One idea would be to learn a separate value for each action leading out of a 

state, instead of for the state itself. We discuss a pair of such action-value methods—SARSA and 

Q-learning—below (Sutton & Barto, 1998; Watkins, 1989). Another idea would be to separately 

store a probability for taking each action in each state (known as a policy) and then adjust that 

policy based on the agent’s experience, as in the actor-critic architecture that is popular in 

biological circles (e.g., Joel, Niv, & Ruppin, 2002; O’Doherty et al., 2004; Samejima & Doya, 

2007). We evaluate the strengths and limitations of these major approaches for action selection 

in MDPs. 

 Action Values. We have discussed how a value function encodes the expected future 

reward from a given state. Value functions, however, cannot directly be used to decide which 

action to take, without knowledge of the transition function to the next state. The action-value 

function (Q), on the other hand, stores the value of taking a certain action from a state. In our 

maze example, the action-values in state S2 for the left and right actions are correspondingly -50 

and 5. In mathematical notation, we would write that as Q(S2, left) = -50 and Q(S2, right) = +5. 

Similarly, the action-value for the up action in state S1 is -0.5, which corresponds to the expected 

reward if the rat moves up, based on past experience. 
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As with the value function for states, the action value for a state-action pair is the 

expected immediate reward (given that action) plus the sum of all future rewards. To make this 

clearer, let us denote the reward returned from the environment following action at as rt+1(at). 

The definition for the action-value function is quite similar to the equation for the value function 

of a state (compare Eq. 5): 

 Q(st, at) = rt+1(at) + γ rt+2 + γ2 
rt+3 ...,      (10) 

with the key difference that the action value does not depend on all the possible rewards 

following the current state, but only on the reward that follows the action in question. As with 

the value function (see Eq. 7), this action-value function can be expressed so that it also depends 

only on the next reward and the value of the next state: 

 Q(st, at) = rt+1(at) + γ V(st+1).       (11) 

So, in the maze example, the value of going up from S1 (i.e., Q(S1, up)) depends solely on the 

immediate reward for going up (0) and the value of the next state S2 (-.5). This relationship 

between the action value and the value of the next state is critical for the performance of model-

free learning algorithms, which do not rely on knowing the transition function to learn about the 

world, but rather learn solely from experienced samples. 

Learning about actions. The first action-value algorithm we review, SARSA (State-

Action-Reward-State-Action), can be thought of as the natural extension of TD Learning to the 

decision-making case. The goal of an agent taking actions in an MDP is to maximize the sum of 

future rewards. When the environmental model is unknown, the agent must learn, from 

experience, about the value of the actions in each state. A very simple extension of the TD 

algorithm is to consider bootstrapping (learning a guess from a guess) from the action values, 

rather than the state values. Once again, we calculate a TD error (see Eq. 8), but this time based 
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on the difference between the old action value (what was expected) and the new action value 

plus the reward (what actually happened): 

 δt = [rt + γ Q(st, at)] – Q(st-1, at-1).      (12) 

This error can then be used to update the old action value with a similar step-size parameter α 

that controls the speed of learning: 

Q(st-1, at-1) = Q(st-1, at-1) + α δt     (13) 

These two equations form the basis of the SARSA algorithm. Similar to what occurs in the TD 

algorithm, the action value of the next state-action pair percolates back to influence the estimate 

of the action value for the previous state-action pair.  

To highlight the relationship between SARSA and TD learning, consider a naïve rat back 

in our example maze. For simplicity in calculation in this example, we again set the step-size 

parameter α to .5 and the discount factor γ to 1. As before, on the first trial, the rat goes up from 

state S1 to state S2; at this point, no rewards have been received, and no learning occurs. The rat 

then goes to the right and gets the large cheese reward (+5). Because the action value of going to 

the right in state S2 (Q(S2, right)) is 0, there is a large prediction error (+5), and this action value 

is updated to +2.5, which is equal to the old value of 0 plus the step size .5 times the prediction 

error of +5. On the next trial, imagine the rat again goes up from state S1 into state S2. At this 

point, unlike in TD learning, nothing happens yet. State S2 does not directly have a value of its 

own; another action needs to be taken before the state-action pair can be updated. When the 

action from state S2 is selected, then the learning occurs. The action value for going up in state 

S1 (Q(S1, up)) is updated based on the old action value (0), the reward received for going up (0), 

and the next action value (Q(S2, right) = +2.5), so that this action value is now +1.25 (consult 

Eqs. 12 and 13). Finally, the rat receives the large reward again (+5), and the action value for 
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going right in state S2 is duly updated to +3.75, based on the difference between the action value 

or expected reward (+2.5) and the reward actually received. As with TD learning, through the 

SARSA algorithm, the action values back up to earlier and earlier state-action pairs. 

Exploration vs. exploitation. A new wrinkle is introduced when action selection is 

incorporated into learning. The agent now controls what experiences it receives. To perform well 

in any environment, the agent needs to encounter the states and actions that yield high reward. 

Yet, sampling new actions and states can be fraught with risk, especially when rewarding actions 

are already available to the agent. This delicate balance between maximizing the reward from 

known actions and sampling new opportunities is known in RL as the exploration-exploitation 

dilemma.  

This dilemma is perhaps best explained through the example of a slot machine (often 

known as a bandit problem: Robbins, 1952). In this problem, an agent is faced with a number of 

slot machines, each with unknown payout rates. For example, Machine 1 pays out 4 dollars 10% 

of the time, while Machine 2 pays out only 1 dollar, but 50% of the time. At every time step, the 

agent must repeatedly choose between one of the machines. Here, Machine 2 has the higher 

expected value for each pull than Machine 1 (50 cents versus 40 cents). An agent learning about 

these slot machines, however, only has access to samples of the payouts; they do not have access 

to this underlying distribution. Suppose that on the first trial, the agent plays the first machine 

and receives $4. An agent using a learning rule such as SARSA would then update the action 

value for selecting the first machine towards $4. If the initial estimates were $0 for both 

machines, the agent would treat Machine 1 as the better choice, and would never select Machine 

2. The more general issue at stake is that relying exclusively on imperfect action-value estimates 

for action selection can lead to distinctly sub-par behavior. The dilemma is as follows: An agent 
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must decide at each step whether to collect information to refine its estimates (explore) or take 

the best (greedy) action with respect to its action-value estimates (exploit). 

To remedy this trade-off between exploiting current knowledge and sampling new 

options, a variety of algorithms to guide exploration have been developed in the RL literature 

(for overviews, see Kaelbling, Littman, & Moore, 1996; Sutton & Barto, 1998; for particulars, 

see Auer, 2003; Brafman & Tenneholz, 2003; Daw et al., 2006; Kolter & Ng, 2009). Perhaps the 

simplest exploration rule is the ε-greedy algorithm, which picks the best action (highest action 

value) most of the time, but for some small portion ε of actions, picks an action at random. 

Slightly more sophisticated is the Softmax rule, wherein actions are taken at a frequency 

proportional to their action values. In both these cases, some randomness is inserted into the 

action selection process to ensure adequate coverage of the potential state space. Newer 

algorithms tend to direct exploration through optimism in the face of uncertainty (e.g., Auer, 

2003; Brafman & Tennenholz, 2003). These important computational issues about balancing 

reward and knowledge in action selection have only recently begun to be addressed in a 

biological context (e.g., Daw et al., 2006). 

Q-Learning. In the SARSA algorithm described above, the agent computes the value of a 

state-action pair based on the immediate reward and the next observed state-action pair, 

independent of whether the second action was exploratory. There is thus an interaction between 

future action choices and the process for updating the current state-action pair. But, imagine that 

the next action was a particularly bad exploratory action: Updating from the action value for that 

state-action pair seems like a very poor idea. As a result of this limitation, SARSA does not learn 

the best possible policy in certain situations (see Sutton & Barto, 1998). 

The Q-Learning algorithm (Watkins, 1989) remedies this problem by learning from what 
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the agent could have done, rather than from what the agent actually did. To do so, Q-Learning 

uses a slightly different reward-prediction error for updating the action values (compare Eq. 12): 

  δt = [rt + γ maxa Q(st, a)] - Q(st-1, at-1).      (14) 

In Q-Learning, the agent learns from the difference between what was expected (the old action 

value) and the best possible outcome (maximum action value for that state (maxa Q(st, a)), plus 

the reward). The action value is updated exactly as in SARSA (see Eq. 13). The key difference 

between Q-learning and the SARSA algorithm is that the agent learns from the estimated best 

action that it could have taken (Q-Learning), rather than from the action that it actually chose 

(SARSA).  

Let us return again to the naïve rat in our example maze (Fig. 2A). Imagine that on the 

second trial, instead of going to the big cheese from the top state S2, the rat explored and found 

the cat (-50). With SARSA, learning is from the actual experience: The rat would compare the 

action value for going up in S1 (Q(S1, up) = 0) with the reward received for that action (0) and 

the action value for the next action (Q(S2, left) = 0, when it was taken), and no learning would 

occur. On future trials, selecting this exploratory action in state S2 would have even worse 

ramifications, as the action value would be negative, and the action value for going up in state S1 

would be updated accordingly. With Q-Learning, however, the update is from the estimated best 

possible action out of state S2. As a result, the rat would compare the action value for going up 

in S1 (Q(S1, up) = 0) with the reward received for that action (0) and the action value for the best 

possible action in the next state (Q(S2, right), which after the first trial was updated to +2.5; see 

above). The action value Q(S1, up) would then be updated to +1.25, despite not taking the right 

action in state S2. By effectively ignoring the exploratory action, with this action sequence, Q-

Learning learns more quickly than SARSA. 
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In our discussion of decision making, we suggested that a good agent should select 

actions to maximize the sum of future rewards. This action selection process, or policy, is 

optimal for a given MDP, if the policy maximizes the sum of future rewards from every state. 

Even with sufficient data, the SARSA algorithm does not learn the optimal policy unless strict 

conditions are enforced. In contrast, under specific technical conditions, Q-learning can be 

proven to converge to the value function that will yield the optimal policy (Watkins & Dayan, 

1992). There are cases, however, when Q-learning is known to diverge (i.e., its prediction error 

grows without bounds)—for example, when the value function is only approximated because the 

state space is too large, as would be the case for most biologically relevant problems (Baird, 

1995; for newer, related algorithms that do not diverge, see Maei et al., 2009; Sutton et al., 

2009)—limiting the value of the algorithm in many computational settings. In addition, from a 

biological perspective, the maximization and counterfactual learning that drive Q-Learning may 

seem less plausible, but the evidence as to what type of action values may be used in the brain is 

mixed (Morris et al., 2005; Roesch, Calu, & Schoenbaum, 2007; Wunderlich, Rangel, & 

O’Doherty, 2009; see Section 3.3). 

In the two action-selection algorithms discussed thus far (SARSA and Q-Learning), the 

behavior of the agent is driven by the action-value function. In those cases, modifying the action 

values immediately leads to changes in behavior. There is no separation between the evaluation 

system and decision-making system, which is perhaps not ideal for modeling decision making in 

animals. A more biologically plausible approach might be to explicitly separate the policy 

evaluation from the action-selection process (e.g., Joel et al., 2002; Samejima & Doya, 2007). 

The actor-critic algorithm is one such approach. This algorithm explicitly defines modules for 

each of the two mechanisms. The critic module plays the role of the evaluator, receiving the 
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reward signal and estimating state values through an algorithm like TD learning. The critic also 

outputs an error signal to the actor, which selects actions based on a set of stored preferences. A 

positive error from the critic reinforces the actor into taking the same action again, whereas a 

negative error inhibits such behavior. To compare the actor-critic framework with SARSA and 

Q-Learning, one may think of the latter two algorithms as implicitly defining the actor module 

while explicitly representing the value function. The actor-critic framework, on the other hand, 

defines both modules explicitly.  

In this section, we introduced some of the major ideas that characterize the modern study 

of RL. We started with the concept of prediction from supervised learning and then discussed 

how RL adds time and sequentiality to the prediction problem. The main RL algorithms 

reviewed, TD-learning, SARSA, and Q-Learning, all take advantage of this temporality by 

bootstrapping or learning a guess from a guess. These simple algorithms provide the base for a 

powerful framework that has had many computational successes and is now being used as a 

model for learning in animals (see Section 1.2) and the brain (see Section 3.3). 

3. Brain Mechanisms for Reinforcement Learning 

Learning in animals requires some modification of the neuronal networks within the 

brain. One challenge for contemporary neuroscience is to determine the mechanisms underlying 

these modifications and how these mechanisms function in different forms of learning (see 

Section 2 for a discussion of computational strategies for learning). Substantial progress has been 

made over the past decade in understanding some of the neuronal events associated with 

reinforcement learning and value-based decision making as well as linking the computational 

models with neurobiological findings. This progress has been summarized in many excellent 

reviews (Daw & Doya, 2006; Dayan & Niv, 2008; Maia, 2009; Niv, 2009; Niv & Schoenbaum, 
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2008; Platt, 2002; Rangel et al., 2008; Rushworth & Behrens, 2008; Rushworth et al., 2009; 

Schultz, 2002, 2007; Schultz et al., 2008). Our goal in this section is not to go over the same 

ground as these reviews (some of which are quite advanced), but rather to describe some of the 

basic physiological processes underlying reinforcement learning in a manner that is accessible to 

investigators in the fields of machine learning and behavioral psychology wishing to become 

familiar with the relevant neurophysiology and brain anatomy.  

3.1. Basic concepts in cellular neurobiology 

A fundamental requirement for understanding the neurobiology of reinforcement learning 

is some basic knowledge of the cellular properties of nerve cells, the mechanisms for the 

transmission of information between nerve cells, and the processes by which the properties of 

nerve cells, and the networks they form, are modified (an essential requirement for learning). 

Thus we begin this section by briefly summarizing the key concepts related to this requirement. 

Action potentials in nerve cells. Information in the nervous system is transmitted from 

one region to another in the form of action potentials. Action potentials are brief changes in the 

voltage levels around the membrane of a nerve cell (a neuron). They are initiated at or near the 

cell body and propagate in an all-or-none manner along the axon of the neuron. The amplitude 

and duration of action potentials are about 100 mV and 1 ms, respectively, and the velocity of 

conduction along the axon ranges from about 1 to 100 m/s depending on axon diameter. 

Information about the internal state of the nervous system and external events are often 

represented by the timing and frequency of action potentials (e.g., Rieke et al., 1999).  

 Recording the activity of single neurons (i.e., the occurrence of action potentials) during a 

behavioral task is one of the most powerful methods for gaining an understanding of the 

neuronal mechanisms underlying the functioning of the nervous system. Indeed, most of what we 
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know about the connection between reinforcement learning and the brain comes from these types 

of studies in monkeys and rats (e.g., Schultz et al., 1997). Figure 3A shows how this method 

involves positioning the tip of a fine microelectrode close to the cell body of a neuron to detect 

voltage changes generated by currents produced by action potentials in the space immediately 

outside the neuron. These extracellularly recorded potentials (spikes) are relatively small, 

typically having amplitudes in the range of .1 to .5 mV (Fig. 3B and C). This method is often 

referred to as single-unit recording. Figure 3D shows the activity patterns of single neurons 

derived from single-unit recording displayed as a raster plot in which the occurrence of each 

spike during a trial is represented by a dot along a time axis; the data for multiple trials are 

aligned horizontally and separated vertically to form a raster of spike activity. An average pattern 

of activity across many trials is illustrated as a histogram (Fig. 3D, bottom; see also Fig. 5A), 

which is the sum of the spikes recorded during multiple trials relative to an event in the 

behavioral sequence, such as the time of reward delivery in a reinforcement-learning task.  

Single-unit recordings have been made during a variety of reinforcement-learning 

paradigms in rodents and non-human primates (see Section 3.3). Because of its invasive nature, 

single-unit recording cannot be used routinely in humans. Currently, the study of the 

neurobiology of reinforcement learning in humans primarily utilizes function magnetic 

resonance imaging (fMRI) to identify brain regions in which changes in blood flow produced by 

neuronal activity in large numbers of neurons are correlated with specific parameters in 

reinforcement-learning tasks. The signal detected in fMRI studies is usually referred to as the 

BOLD signal (Blood-Oxygen-Level-Dependent) and is thought to originate in brain regions 

sending and receiving task-related information (e.g., Logothetis et al., 2001). A major advantage 

of fMRI is that multiple brain systems can be examined simultaneously, but two drawbacks are 
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that it has poor spatial and temporal resolution and an inability to distinguish the activity 

between different classes of neurons. 

Synaptic transmission. Most communication between neurons occurs at specialized 

junctions called synapses between the axon terminals of one neuron (the presynaptic neuron) and 

localized sites on the dendrites and/or cell body of another neuron (the postsynaptic neuron). 

Each action potential in the presynaptic neuron causes the release of a chemical transmitter, 

which binds to receptor molecules embedded in the membrane of the postsynaptic neuron. 

Depending on the transmitter and the type of postsynaptic receptor, the transmitter can act to 

either increase (excitatory transmission) or decrease (inhibitory transmission) the activity in the 

postsynaptic neuron. In the mammalian central nervous system, the most common excitatory and 

inhibitory transmitters are glutamate and gamma-amino-butyric-acid (GABA), respectively.  

Significant modification in the activity of a postsynaptic neuron by synaptic input requires the 

cooperative action of large numbers of synapses because the effect of transmitter release from a 

single synapse is very small. A single presynaptic neuron may make hundreds of synapses with a 

single postsynaptic neuron, and each postsynaptic neuron can receive inputs from hundreds of 

presynaptic neurons.  

Neuromodulation. Closely related to synaptic transmission is the phenomenon of 

neuromodulation. Both neurotransmitters and neuromodulators are released in a similar manner 

from the axonal terminals, but they exert their actions on other neurons in different ways. 

Neurotransmitters bind to receptors associated with ion channels and briefly alter the ionic 

conductance of these channels, directly changing how molecules can get into and out of the 

neuron. On the other hand, neuromodulators usually exert their action much more slowly (but 

still in a sub-second range) via a relatively complex signaling pathway starting with the binding 
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of the neuromodulator to specific receptors coupled to membrane proteins (G-proteins). The G-

proteins then bind to other membrane molecules that, when activated, increase the level of 

molecules called second messengers inside the postsynaptic neurons and/or axonal terminals. 

Second messengers have a widespread influence in cells, one of which can be to modify the 

strength of the synaptic transmission for conventional synapses. For example, a neuromodulator 

may increase the number of transmitter receptors in the postsynaptic membrane. 

The most common neuromodulators are dopamine, noradrenaline, serotonin and 

acetylcholine. A striking characteristic of these four neuromodulatory systems in the mammalian 

brain is that they all originate from localized regions within the brain stem and all have diffuse 

and widespread projections to many regions of the brain. Thus these systems have the capacity to 

globally alter the functioning of the brain. For example, three of these systems (noradrenergic, 

serotonergic, and cholinergic) have important roles in regulating the sleep-wake cycle. 

Neuromodulatory systems can also have more specific actions, such as modification of the level 

of arousal (noradrenergic system) and the mediation of rewards (dopaminergic system). This 

global effect on brain function allows the dopamine reward system to potentially affect a wide 

array of behaviours. 

Neuronal plasticity. All forms of learning, and the long-term storage of information in the 

brain (memory), are associated with long-term modification in the functioning of neuronal 

networks. The capacity of neuronal networks to be modified by experience (and in response to 

injury) is termed neuronal plasticity. Over the past 20 years, enormous advances have been made 

in our understanding of the cellular and molecular mechanisms associated with neuronal 

plasticity. We now know that experiential events can alter the properties of synaptic 

transmission, change the structure of synapses, and cause the growth of dendritic and axonal 
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processes. Especially important is that the magnitude of these changes can be strongly influenced 

by neuromodulators. An example relevant for the neurobiology of reinforcement learning is that 

the long-terms effects of high-frequency stimulation on the pathways from the cerebral cortex to 

the striatum (see next section for anatomy) are highly dependent on the level of dopamine 

(Reynolds et al., 2001). When dopamine levels are low, the transmission in these pathways is 

depressed, whereas facilitation occurs when dopamine levels are high, providing a potential 

outlet for a dopamine error signal to modulate long-term changes in the brain (see Section 3.3). 

3.2. Anatomy of the brain 

General organization. Another essential requirement for understanding the neurobiology 

of reinforcement learning is some knowledge of the anatomy of the brain. The brain consists of 

reasonably well-defined major structures that include the cerebral hemispheres, the brain stem, 

and the cerebellum. The hemispheres themselves are divided into four lobes: frontal, parietal, 

occipital, and temporal. Neurons in the cerebral hemispheres are primarily confined to a thin 

layer (the cerebral cortex) covering the entire outside surface of the hemispheres. Neurons 

located in the cerebral cortex make synaptic connections with neurons in other regions of the 

cortex and to neurons located in regions outside the cortex. Many of the latter are located in the 

brain stem. Distributed throughout the brain stem, and the junction between the brain stem and 

cerebral hemispheres are numerous clusters of neurons, called nuclei. Some major nuclei are 

illustrated in Figure 4A. These nuclei are the regions in which synaptic connections between 

neurons within the nuclei, and onto these neurons from other brain regions, are made. Two of the 

major structures in the forebrain are the thalamus and basal ganglia. The latter is known to be 

especially important for reinforcement learning in the brain, so it is necessary to consider the 

organization of the basal ganglia in detail. 
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The basal ganglia and dopaminergic neurons. The basal ganglia are situated on both 

sides of the upper brain stem and consist of an aggregation of anatomically distinct nuclei that 

are conventionally divided into two groups: the striatum consisting of the caudate nucleus, 

putamen, and nucleus accumbens, and the globus pallidus consisting of internal and external 

segments (Fig. 4B). The basal ganglia are traditionally thought to be important in the control and 

initiation of movement and are the main area of the brain damaged in certain movement 

disorders, such as Parkinson’s and Huntington’s disease. 

The striatum receives inputs from the cortex and from numerous nuclei in the brain stem. 

Cortical inputs terminate largely in dorsal (upper) regions of the striatum (caudate nucleus and 

putamen), whereas inputs from brain stem nuclei terminate in both the dorsal and ventral (lower) 

regions of the striatum (especially the nucleus accumbens). This division may be related to the 

fact that neuronal systems in the dorsal and ventral regions of the striatum are differentially 

recruited in different reinforcement-learning paradigms (e.g., O'Doherty et al., 2004). Prediction-

learning tasks (classical conditioning) recruit neuronal systems in the ventral striatum, while 

more complex action-choice tasks (instrumental conditioning) recruit networks in both the dorsal 

and ventral regions. Output from the basal ganglia originates primarily from the globus pallidus, 

with feedback to the cerebral cortex going via the thalamus.   

Although the neuronal circuitry formed by the basal ganglia with other brain regions is 

quite complex (see Fig. 4B), a number of pathways important for mediating reinforcement 

learning have been well defined. By far the most intensively investigated are the input pathways 

to the striatum from the substantia nigra pars compacta (SNc) and ventral tegmental area 

(VTA). Neurons in these pathways release the neuromodulator dopamine. Neurons releasing 

dopamine are termed dopaminergic neurons. One critical function of dopaminergic neurons is to 
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provide information about rewards, which, in turn, modifies neuronal networks in the basal 

ganglia mediating behavioral actions (Schultz, 2002; Doya, 2007). Two observations provided 

initial evidence for the importance of dopaminergic neurons in behavioral modification: (1) 

electrical stimulation at sites close to the axons of dopaminergic neurons can function as the 

primary reward for instrumental conditioning, and (2) depletion of dopamine disrupts reward-

based learning (see Schultz, 2007). Recently, a causal role for dopaminergic neurons in 

mediating reward has been demonstrated in genetically engineered mice (Tsai et al., 2009). 

Selective activation of dopaminergic neurons by light pulses in these animals can directly modify 

behavioral choice. We should also emphasize that the dopaminergic neurons originating in the 

VTA project in a diffuse manner to many other regions of the brain (not only the striatum) and 

thus have a role in other aspects of behavior apart from those involving reward, such as memory 

consolidation (e.g., Rossato et al., 2009) and mood (e.g., Yadid & Friedman, 2008).  

3.3. The Neurobiology of Reinforcement Learning 

A striking advance in the field of reinforcement learning has been the linking of the 

computational theory with the neurobiology of the brain. Numerous brain regions have been 

identified as being involved in different aspects of reinforcement learning and decision making, 

and strong correlations have been found between the activity of neurons in some of these regions 

with important variables from the computational models. In this section, we focus on the 

neuronal representation of only three of these variables: reward prediction error, reward value, 

and action value. Our goal is to illustrate, with a few examples, the neurobiological approach to 

reinforcement learning.  

The general strategy used in neurobiological studies has been to record neuronal activity 

in different brain regions during a reinforcement-learning task designed to focus on a specific 
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variable (or a set of variables) from a computational model. In animals (primarily rats and 

monkeys), this strategy usually involves recording the activity of single neurons (Figure 3), 

whereas, in humans, the most common technique is to image the brain using functional magnetic 

resonance imaging (fMRI). 

Representing reward-prediction errors. Most algorithms for reinforcement learning use a 

reward-prediction error (δ) to either predict a reward (as in classical conditioning) or to modify 

the probability of choosing different actions (as in instrumental/operant conditioning). Earlier, 

we detailed one computational use of a reward-prediction error in describing the temporal-

difference (TD) algorithm (see Sections 1.1 and 2.2). A neuronal correlate to this TD error has 

been found in dopaminergic neurons through single-unit recording. Figure 5 illustrates the 

activity of a dopaminergic neuron at the beginning of a classical conditioning procedure and after 

conditioning has been established (Schultz et al., 1997; figure from Doya, 2007). This highly 

influential finding catalyzed the growing body of research looking at the correspondence 

between reward-based learning in the brain and the algorithms of RL. 

We will now step through this important result in some detail (see Fig. 5). In the Schultz 

et al. (1997) study, at the beginning of training, dopamine neurons discharge briefly to an 

unpredicted reward (top row in Figure 5A). After conditioning has been established, the neurons 

discharge only in response to the conditioned stimulus (CS), but not to the reward (middle row). 

This shift in the timing of this activity burst from the time of reward to the time of the CS is 

exactly what is expected if the activity is related to the reward-prediction error, as formalized in 

the TD algorithm. Prior to conditioning, an unpredicted reward leads to a large prediction error 

because the animal is not predicting any rewards. After conditioning, the CS produces a large 

prediction error because the animal is not predicting any reward prior to the CS, but the arrival of 
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the CS leads to an increase in the predicted value of the upcoming reward and a corresponding 

reward-prediction error. During the interval between the CS and reward, the predicted value of 

the upcoming reward does not change (ignoring any temporal discounting), so there is no 

prediction error, corresponding to the low level of activity in dopaminergic neurons. Finally, 

when the predicted reward arrives, there is no difference between the predicted reward and the 

reward received, thus there is still no prediction error, which corresponds to the absence of 

activity in dopaminergic neurons. If, instead, the reward is reduced or omitted when predicted, 

then there is a negative prediction error because the animal received less reward than expected 

and, notably, there is a reduction in the activity of the dopaminergic neurons (bottom row in 

Figure 5). This real-time, moment-to-moment correspondence between the behaviour of 

dopamine neurons and the reward-prediction error in the TD algorithm is quite remarkable, and 

provides strong support for a real-time reinforcement-learning model, such as TD, over other 

trial-based, error-correcting algorithms, such as the Rescorla-Wagner model from psychology 

(see Sections 1.1 and 2.2). 

 This reward-prediction error can also serve as a crucial signal in modifying behaviour in 

instrumental learning tasks (see section 1.2), and the activity of dopaminergic neurons has been 

found to reflect this error in these tasks (Morris et al., 2005; O’Doherty et al., 2004; Roesch et 

al., 2007). Reward-prediction error signals in instrumental learning tasks have been postulated to 

change the probabilities of specific actions by modifying the strengths of pathways between the 

cortex and the striatum (see Samejima & Doya, 2007). 

Representing reward value. Another component that plays a prominent role in many RL 

algorithms is the reward value (V) or expected reward (illustrated in Figure 5B; see Section 2.2). 

This value is the reward prediction from which the reward-prediction error (TD error) is 
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generated. The reward value can be manipulated in decision-making tasks by varying the 

magnitude and probability of rewards associated with different choice options. For example, in 

behaving monkeys, Tobler et al. (2005) found that the phasic bursts of activity in dopaminergic 

neurons following the presentation of the choice options were related to the expected reward 

value of the choice made by the animal. Larger and more probable rewards produced larger 

bursts in dopaminergic firing, presumably reflecting a larger reward-prediction error, due to the 

larger expected reward values. It is important to note that the increased activity occurred before 

the onset of any overt behavior and was therefore related to the decision-making process and not 

the motor action performed by the animal. This neuronal representation of expected reward value 

is not restricted to dopaminergic neurons. For example, single-unit recordings in behaving 

monkeys and rats have also revealed neuronal responses related to reward value in the striatum 

(Ito & Doya, 2009), orbitofrontal and prefrontal cortex (Duuren et al., 2009; Kennerley & 

Wallis, 2009; for a review, see Schoenbaum et al. 2009), and the posterior parietal cortex 

(Sugrue et al., 2004, 2005). Given the widespread projections of midbrain dopaminergic neurons, 

it is not surprising that expected reward value would be represented in widespread networks 

within the brain. This view receives support from fMRI studies in humans in which the 

magnitude of BOLD signals in the ventral striatum and regions of the prefrontal cortex, both of 

which receive strong input from dopaminergic neurons, are related to expected reward value 

(Knutson et al., 2005; Tobler et al., 2007). 

Representing action value. During instrumental learning tasks, an action or a sequence of 

actions must be selected to maximize reward. A fundamental question, therefore, is how does an 

animal learn the best action to execute from each state? (see discussion in Section 2.3 on 

computational schemes for action selection). A number of RL algorithms utilize a variable 
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termed the action value (or Q-value), where the action value represents the expected reward for a 

given action. A neurophysiological correlate of these action values has been found in the activity 

patterns of neurons in the striatum of monkeys (Samejima et al., 2005; see also Kim et al., 2009; 

Morris et al., 2006; Roesch et al., 2007, 2009). In their experiment, monkeys were trained to 

choose between two actions (a left or right movement of a handle) in a task in which the 

probabilities of receiving a large juice reward for each action was varied. The reward 

probabilities were arranged in blocks, so that each action was reinforced either 10%, 50%, or 

90% of the time. From an RL perspective, this probability manipulation would result in different 

action values for the actions, pending the reward probability currently in place for that action. 

The main finding was that nearly 50% of the recorded neurons in the striatum (putamen and 

anterior caudate) significantly changed their activity based on the change in the reward 

probability of only one action (i.e., the action value). These action-value specific neurons did not 

change their activity when the reward probability for the other action changed, suggesting that 

they were not encoding a composite value across both actions. Instead, the response of these 

neurons is related to a combination of the reward value and action. The action-value algorithms 

in reinforcement learning (such as Q-learning or SARSA; see Section 2.3) propose that action 

values are directly involved in the selection of future actions. How the representation of action 

value in the activity of striatal neurons might be utilized to determine future actions is currently 

unknown, but the close association of these neurons with other neuronal networks in the basal 

ganglia involved in motor actions suggests that these neurons may also be elements in the action 

selection networks. 

In this section, we started with a didactic overview of broad issues in neuroscience 

important for understanding the neural basis of reinforcement learning, specifically intended for 
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a non-neuroscience audience. We then briefly introduced some of the main neuroscience 

findings providing evidence that certain areas of the brain may be understood as implementing 

algorithms from RL. We reviewed findings that some of the major constructs from these RL 

algorithms, such as predictions errors, reward values, and action values, have strong correlates in 

the dopaminergic system and related areas of the brain. Together, these ideas from RL are having 

a transformational effect on this area of neuroscience, providing a well-grounded, normative 

framework for detailing what these neurons are computing while animals are making value-

based decisions. 

4. Implications of the Computational Neuroscience of Reinforcement Learning 

Throughout this chapter, we have illustrated the remarkable synergy between 

neuroscience, computer science, and psychology that characterizes the modern multi-disciplinary 

study of reinforcement learning. Our purpose in this chapter has been two-fold. We primarily 

attempted to provide an introduction to the key ideas in these three fields that is accessible to 

those unfamiliar with this literature. In addition, we played out some examples of how 

reinforcement learning is studied within each of these disciplines—from classical conditioning in 

psychology to TD learning in computer science to the firing of dopamine neurons in the brain. 

Along the way, we tried to clarify some of the subtler aspects of the different theories to perhaps 

enhance understanding of each domain for researchers in the other disciplines. We hope that our 

readers are now better prepared to learn more about this exciting and rapidly growing field. 

One interesting question is how these findings from the computational neuroscience of 

RL have resonated back into the constitutive disciplines. In neuroscience, the effects have been 

clearly transformative—the ideas from reinforcement learning are central to all discussions of 

neural valuation and decision making, and new papers on the subject are published weekly. The 
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ideas have taken less of a hold in psychology, where a long tradition of theorizing in animal 

learning has yet to absorb the potential insights from RL, still preferring older formalisms such 

as the Rescorla-Wagner rule (see Section 1.1). More broadly in cognitive science, the associative 

mechanisms of RL as a potential account for human cognition face a significant uphill battle in 

an environment where information processing is often viewed as strictly symbolic (e.g., Gallistel 

& King, 2009). In the future, as these RL models come to explain more behavioural data, and as 

neuroscience ideas become more mainstream in psychology, we expect RL to gain a central 

place in psychology, as well. 

Somewhat surprisingly, the least influenced home discipline seems to have been AI and 

computer science. The transfer of ideas here has been mostly a one-way street, with neuroscience 

using the formalisms of RL for modeling the brain and behavior, but with little direct feedback. 

A potential future avenue for this sort of reciprocating feedback may eventually come from more 

detailed knowledge of the psychological and neural mechanisms that drive reward-based 

learning and decision making than what exists today. Indeed, historically, the computational 

study of RL was originally inspired by exactly these sorts of psychological and neural 

considerations (see Sutton & Barto, 1981, 1998). For example, one of the very first RL 

algorithms, the associative search network (Barto, Sutton, & Brewer, 1981), drew on the fact that 

animals do not require target outputs, such as which motor command to execute at each moment, 

to learn about the world. This algorithm stood in contrast to the existing supervised-learning 

approaches of the time, and started setting the way for the full development of RL ideas within 

AI that has followed over the past 25 years (see Section 2.1).  

Another angle for potential feedback from the computational neuroscience to AI is 

suggested by the fact that many of the computational challenges currently facing RL stem from 
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tasks that the brain seems to handle naturally. For instance, the action-selection mechanisms 

discussed here (Q-Learning, SARSA, actor-critic, see Section 2.3) all depend on the explicit 

enumeration of the actions in order to obtain their values—something not possible when many 

different actions are possible. By studying action selection in the brain more closely, we might 

gain insight into appropriate algorithms that may be applicable to large-scale problems, such as 

real-world robots.  

Perhaps the most likely source for the transmission of ideas back to AI from this area of 

computational neuroscience, however, lies not in direct inspiration from the biological substrate, 

but rather from the new models that have grown up to explain the neuroscientific and 

psychological data. Though the initial RL models in neuroscience came from AI, newer models 

have grown from these roots and adapted as they attempt to accommodate more and more data. 

Variations on well-known RL ideas to deal with issues like temporal discounting (Kurth-Nelson 

& Redish, 2009), motivational effects (Niv et al., 2005), or response timing (Ludvig et al., 2008) 

could eventually provide a new source of inspiration for those researchers interested in creating 

artificial systems with human- or animal-like learning abilities. 
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Figure 1. Learning rule schematics for an experiment with a negative shock reward. A. Learning 

in the Rescorla-Wagner rule is driven by the difference (two-sided arrow) between the reward 

prediction and the actual reward on a given trial. This reward-prediction error is used to create a 

new reward prediction (down arrow), which can be used on the next trial (curved arrow). B. 

Learning in the temporal-difference (TD) algorithm. The Old prediction is the reward prediction 

based on the stimuli that were around on the last time step. The Current prediction is the 

prediction based on the stimuli that are currently available. An error is generated by comparing 

these two predictions with the reward (two-sided arrow). This error is then used to change the 

way the algorithm makes its predictions (down arrow). As a result, a New prediction can be made 

based on the stimuli that are still currently available. In some sense, the learning process converts 

the Current prediction into the New prediction. On the next time step, this New prediction 

becomes the Old prediction, and the process begins all over again (curved arrow). 
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Figure 2. Reinforcement Leaning and Markov Decision Processes. A. The world according to 

reinforcement learning. There is an agent that interacts with an environment by emitting actions, 

and receiving states (or observations) and rewards in return. B. A small maze in which the rat at 

the bottom can navigate and obtain various rewards. Signed values (+ or -) are the reward 

magnitudes at different end points. Probabilities (p) of previous actions at the final choice points 

are indicated. The states are numbered S1 through S4. C. Same maze problem, but abstracted to a 

series of connected states. Numbers in the circles indicate the values of various states, given the 

history. 
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Figure 3. Single unit recording. A. Schematic showing the placement of the tip of an electrode 

outside but close to the body of a nerve cell. B-C. Drawings of a single spike (action potential) 

(B) and train of spikes (C) recorded in the extracellular space. Note the small amplitude and the 

biphasic shape. The time of the occurrence of spikes in a spike train are usually illustrated by a 

small marker as shown above the spike train. D. Top. Raster display of spike trains recorded in 

response to multiple presentation of a stimulus. Each dash represents a single potential and each 

row represents a separate trial, each aligned on the time of the stimulus. Bottom. Peri-stimulus 

time histogram showing the average activity across all trials.
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Figure 4. Basic anatomy of brain regions involved in reinforcement learning. A. Drawing of 

sagittal (side) section through the brain showing the location of the basal ganglia (shaded grey) 

and some brain stem nuclei (filled black). B. Schematic diagram showing the anatomy of the 

basal ganglia in more detail (note the striatum is the combination of the caudate nucleus, 

putamen and nucleus accumbens) and some of the main connections to and from the basal 

ganglia. Dopaminergic pathways (DA, thick arrows) originate in the ventral tegmental area 

(VTA) and project densely to the nucleus accumbens in the ventral striatum and to the prefrontal 

cortex. 
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Figure 5. Dopamine neurons and reinforcement learning. A. Results from Schultz et al. (1997) of 

dopamine neuron activity in three situations. In the first case, an unpredicted reward (R) occurs, 

and a burst of dopamine firing follows. In the second case, a predicted reward occurs, and a burst 

follows the onset of the predictor (CS or conditioned stimulus), but there is no firing after the 

now-predicted reward. Finally, in the bottom case, a predicted reward is omitted, with a 

corresponding trough in dopamine responding. B. How the various elements of the TD learning 

algorithm—reward (r), value (V), and error (δ)—change during the time course of the different 

trials (adapted with permission from Doya, 2007). 
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Keywords and Definitions 

Reinforcement Learning (RL). Branch of Artificial Intelligence (AI) that focuses on learning 

from interactive experience. Also used to describe the collection of processes whereby humans 

and animals learn through rewards. 

Classical Conditioning. Simple learning process whereby humans and animals learn predictive 

relationships between stimuli and rewards. 

Operant Conditioning. Simple learning process whereby humans and animals learn to perform 

actions based on rewarding experience. 

Dopamine. Small molecule that is used in the brain as a neurotransmitter to communicate 

between neurons. Thought to encode the error in reward predictions.  

Temporal-difference (TD) algorithm. Reinforcement-learning technique that learns to predict 

rewards based on the error between predicted outcomes and actual outcomes. 

Striatum. Brain area that receives heavy input from dopamine neurons. Thought to be important 

for reward valuation and action selection. 

Reward. An important outcome, which can be positive or negative. Maximization of reward 

serves as the goal for reinforcement-learning agents. 

Neuroeconomics. New multi-disciplinary enterprise that attempts to explain how value-based 

decisions are made in the brain. 


