
Machine Learning, 49, 233–246, 2002
c© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Technical Update: Least-Squares Temporal
Difference Learning

JUSTIN A. BOYAN jab@itasoftware.com (http://www.boyan.com/justin/)
ITA Software, 141 Portland Street, Cambridge, MA 02139, USA

Editor: Satinder Singh

Abstract. TD(λ) is a popular family of algorithms for approximate policy evaluation in large MDPs. TD(λ)

works by incrementally updating the value function after each observed transition. It has two major drawbacks: it
may make inefficient use of data, and it requires the user to manually tune a stepsize schedule for good performance.
For the case of linear value function approximations and λ = 0, the Least-Squares TD (LSTD) algorithm of Bradtke
and Barto (1996, Machine learning, 22:1–3, 33–57) eliminates all stepsize parameters and improves data efficiency.

This paper updates Bradtke and Barto’s work in three significant ways. First, it presents a simpler derivation
of the LSTD algorithm. Second, it generalizes from λ = 0 to arbitrary values of λ; at the extreme of λ = 1, the
resulting new algorithm is shown to be a practical, incremental formulation of supervised linear regression. Third,
it presents a novel and intuitive interpretation of LSTD as a model-based reinforcement learning technique.

Keywords: reinforcement learning, temporal difference learning, value function approximation, linear
least-squares methods

1. Background

We address the problem of approximating the value function V π of a fixed policy π in a
large Markov decision process (Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998). This
is an important subproblem of several algorithms for sequential decision making, including
optimistic policy iteration (Bertsekas & Tsitsiklis, 1996) and STAGE (Boyan & Moore,
1998). Vπ (x) simply predicts the expected long-term sum of future rewards obtained when
the process starts in state x and follows policy π until termination. For simplicity we
will assume that π is proper (guaranteed to terminate), which implies that V π is well-
defined without the use of a discount factor; however, the algorithms presented here extend
straightforwardly to the discounted case.

For small Markov chains whose transition probabilities are all explicitly known, comput-
ing V π is a trivial matter of solving a system of linear equations. However, in many practical
applications, the transition probabilities of the chain are available only implicitly—either
in the form of a simulation model or in the form of an agent’s actual experience executing
π in its environment. In either case, we must compute V π or an approximation thereof
(denoted Ṽ π) solely from a collection of trajectories sampled from the chain. This is where
the TD(λ) family of algorithms applies.

TD(λ) was introduced in Sutton (1988); excellent summaries may now be found in
several books (Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1998). For each state on each

234 J.A. BOYAN

observed trajectory, TD(λ) incrementally adjusts the coefficients of Ṽ π toward new target
values. The target values depend on the parameter λ ∈ [0, 1]. At λ = 1, the target at each
visited state xt is the Monte-Carlo return, i.e., the actual observed sum of future rewards
Rt + Rt+1 + · · · + REND. This is an unbiased s1ample of V π (xt), but may have significant
variance since it depends on a long stochastic sequence of rewards. At the other extreme,
λ = 0, the target value is set by a sampled one-step lookahead: Rt + Ṽ π (xt+1). This value
has lower variance—the only random component is a single state transition—but is biased
by the potential inaccuracy of the lookahead estimate of V π . The parameter λ trades off
between bias and variance. Empirically, several studies have found intermediate values of
λ to perform best (Sutton, 1988; Sutton & Barto, 1998).

TD(λ) has been shown to converge to a good approximation of V π when linear archi-
tectures are used, assuming a suitable decreasing schedule of stepsizes for the incremental
weight updates (Tsitsiklis & Van Roy, 1997). Linear architectures—which include lookup
tables, state aggregation methods, CMACs, radial basis function networks with fixed bases,
and multi-dimensional polynomial regression—approximate V π (x) by first mapping the
state x to a feature vector φ(x) ∈�K , and then computing a linear combination of those fea-
tures, φ(x)Tβ. Figure 1 gives a convenient form of TD(λ) that exploits this representation.
Table 1 summarizes the notation used throughout this paper.

On each transition, the algorithm computes the scalar one-step TD error Rt + (φ(xt+1)−
φ(xt))

Tβ, and apportions that error among all state features according to their respective
eligibilities zt . The eligibility vector may be seen as an algebraic trick by which TD(λ)

propagates rewards backward over the current trajectory without having to remember the
trajectory explicitly. Each feature’s eligibility at time t depends on the trajectory’s history
and on λ: zt = ∑t

i=t0
λt−iφ(xi), where t0 is the time at which the current trajectory started. In

Figure 1. Ordinary TD(λ) for linearly approximating the undiscounted value function of a fixed proper policy.

LEAST-SQUARES TEMPORAL DIFFERENCE LEARNING 235

Table 1. A glossary of notation used in this paper.

Symbol Type Meaning

X set State space for a Markov Decision Problem (MDP)

Rt scalar The one-step reward received at time t

V π : X →� The true value function of a given policy π in the MDP

Ṽ π : X →� A linear approximation to V π given by Ṽ π (x) = φ(x)Tβ

K ∈ N Dimensionality of the feature vector representing each state

φ : X →�K The mapping from state to real-valued feature vector

β ∈�K The vector of coefficients that specifies Ṽ π

λ scalar ∈ [0,1] Bias-variance parameter for temporal-difference learning

αi scalar ∈ (0,1) Stepsize for incremental coefficient updating in TD(λ)

zt ∈�K “Eligibility vectors” used to trace a trajectory’s history

βλ ∈�K The coefficients to which TD(λ) converges (dependent on λ)

d ∈�K Vector used in convergence analysis of TD(λ) (see Eq. (1))

C K × K matrix Matrix used in convergence analysis of TD(λ) (see Eq. (1))

b ∈�K Vector produced by LSTD(λ) for direct solution of β (see Eq. (2))

A K × K matrix Matrix produced by LSTD(λ) for direct solution of β (see Eq. (2))

the case of TD(0), only the current state’s features are eligible to be updated, so zt =φ(xt);
whereas in TD(1), the features of all states seen so far on the current trajectory are eligible,
so zt = ∑t

i=t0
φ(xi).

To what weights does TD(λ) converge? Examining the update rule for δ in figure 1, it is
not difficult to see that the coefficient changes made by TD(λ) after an observed trajectory
(x0, x1, . . . , xL , END) have the form β :=β + αn(d + Cβ + ω), where

d = E

{
L∑

i=0

zi Ri

}
; C = E

{
L∑

i=0

zi (φ(xi+1) − φ(xi))
T

}
; (1)

and ω= zero-mean noise. The expectations are taken with respect to the distribution of
trajectories through the Markov chain. It is shown in Bertsekas and Tsitsiklis (1996, §6.3.4)
that C is negative definite and that the noiseω has sufficiently small variance, which together
with the stepsize conditions mentioned above, imply that β converges to a fixed point βλ

satisfying d + Cβλ = 0. In effect, TD(λ) solves this system of equations by performing
stochastic gradient descent on a potential function ‖β−βλ‖2. It never explicitly represents
d or C. The changes to β depend only on the most recent trajectory, and after those changes
are made, the trajectory and its rewards are simply forgotten. This approach, while requiring
little computation per iteration, wastes data and may require sampling many trajectories to
reach convergence.

One technique for using data more efficiently is “experience replay” (Lin, 1993) ex-
plicitly remember all trajectories ever seen, and whenever asked to produce an updated
set of coefficients, perform repeated passes of TD(λ) over all the saved trajectories until

236 J.A. BOYAN

convergence. This technique is similar to the batch training methods commonly used to train
neural networks. However, in the case of linear function approximators, there is another
way.

2. The least-squares TDL(λ) algorithm

The Least-Squares TD(λ) algorithm, or LSTD(λ), converges to the same coefficients βλ

that TD(λ) does. However, instead of performing gradient descent, LSTD(λ) builds explicit
estimates of the C matrix and d vector (actually, estimates of a constant multiple of C and
d), and then solves d + Cβλ = 0 directly. The actual data structures that LSTD(λ) builds
from experience are the matrix A (of dimension K × K , where K is the number of features)
and the vector b (of dimension K):

b =
t∑

i=0

zi Ri A =
t∑

i=0

zi (φ(xi) − φ(xi+1))
T (2)

After n independent trajectories have been observed, b is an unbiased estimate of nd, and
A is an unbiased estimate of −nC. Thus, βλ can be estimated as A−1b. As is standard in
least-squares algorithms, Singular Value Decomposition is used to invert A robustly (Press
et al., 1992). The complete LSTD(λ) algorithm is specified in figure 2.

When λ = 0, LSTD(0) reduces precisely to Bradtke and Barto’s LSTD algorithm, which
they derived using a more complex approach based on regression with instrumental vari-
ables (Bradtke & Barto, 1996). At the other extreme, when λ = 1, LSTD(1) produces the
same A and b that would be produced by supervised linear regression on training pairs

Figure 2. A least-squares version of TD(λ) (compare figure 1). Note that A has dimension K × K , and b, β, z,
and φ(x) all have dimension K × 1.

LEAST-SQUARES TEMPORAL DIFFERENCE LEARNING 237

of {state features �→ observed Monte-Carlo returns}; the proof is given in the appendix.
Thanks to the algebraic trick of the eligibility vectors, LSTD(1) builds the regression matri-
ces fully incrementally—without having to store the trajectory while waiting to observe the
eventual outcome. When trajectories through the chain are long, this provides significant
memory savings over linear regression.

The computation per timestep required to update A and b is the same as least-squares
linear regression: O(K 2), where K is the number of features. LSTD(λ) must also perform a
matrix inversion at a cost of O(K 3) whenever β’s coefficients are needed—typically, once
per complete trajectory. (If updated coefficients are required more frequently, then the O(K 3)

cost can be avoided by recursive-least-squares (Bradtke & Barto, 1996) or Kalman-filtering
techniques [(Bertsekas & Tsitsiklis, 1996), §3.2.2], which update β on each timestep at a
cost of only O(K 2).) LSTD(λ) performs more computation per observation than incremental
TD(λ), which updates the coefficients using only O(K) computation per timestep. However,
as pointed out in Bradtke and Barto (1996), LSTD(λ) offers several significant advantages:

• Least-squares algorithms “extract more information from each additional observation”
(Bradtke & Barto, 1996) and would thus be expected to converge with fewer training
samples.

• TD(λ)’s convergence can be slowed dramatically by a poor choice of the stepsize param-
eters αn . LSTD(λ) eliminates these parameters.

• TD(λ)’s performance is sensitive to the initial estimate for βλ. LSTD(λ) does not rely on
an arbitrary initial estimate.

• TD(λ) is also sensitive to the ranges of the individual features. LSTD(λ) is not.

Section 4 below presents experimental results comparing the data efficiency of gradient-
based and least-squares-based TD learning.

3. LSTD(λ) as model-based learning

Surprisingly, the move from an incremental, gradient-based update rule to a direct, least-
squares-based update rule for TD(λ) turns out to be mathematically equivalent to a move
from a model-free to a model-based reinforcement learning algorithm. This equivalence pro-
vides interesting new intuitions about the space of temporal difference learning algorithms.

To begin, let us restrict our attention to the case of a small discrete state space X , over
which V π can be represented and learned exactly by a lookup table. A classical model-based
algorithm for learning V π from simulated trajectory data would proceed as follows:

1. From the state transitions and rewards observed so far, build in memory an empirical
model of the Markov chain. The sufficient statistics of this model are

• a vector n recording the number of times each state has been visited;
• a matrix T recording the observed state-transition counts: Ti j = how many times x j

was seen to directly follow xi ; and
• a vector s recording, for each state, the sum of all one-step rewards observed on

transitions leaving that state.

238 J.A. BOYAN

2. Whenever a new estimate of the value function V π is desired, solve the linear system of
Bellman equations corresponding to the current empirical model. Writing N = diag(n),
the solution vector of V π values is given by

v = (N − T)−1s. (3)

This model-based technique contrasts with TD(λ), a model-free approach to the same
problem. TD(λ) does not maintain any statistics on observed transitions and rewards; it
simply updates the components of v directly. In the limit, assuming a lookup-table repre-
sentation, both converge to the optimal V π . The advantage of TD(λ) is its low computational
burden per step; the advantage of the classical model-based method is that it makes the most
of the available training data. The relative advantages of model-based and model-free re-
inforcement learning methods have been investigated in, e.g., Sutton (1990), Moore and
Atkeson (1993) and Atkeson and Santamaria (1997).

Where does LSTD(λ) fit in? In fact, for the case of λ = 0, it precisely duplicates the
classical model-based method sketched above. The assumed lookup-table representation for
Ṽ π means that we have one independent feature per state: the feature vectorφ corresponding
to state 1 is (1, 0, 0, . . . , 0); corresponding to state 2 is (0, 1, 0, . . . , 0); etc. Referring to the
algorithm of figure 2, we see that LSTD(0) performs the following operations upon each
observed transition:

b := b + φ(xt)Rt A := A + φ(xt)(φ(xt) − φ(xt+1))
T (4)

Clearly, the role of b is to sum all the rewards observed at each state, exactly as the vector s
does in the classical technique. A, meanwhile, accumulates the statistics (N − T). To see
this, note that the outer product in Eq. (4) is a matrix consisting of an entry of +1 on the single
diagonal element corresponding to state xt ; an entry of −1 on the element in row xt , column
xt+1; and all the rest zeroes. Summing one such sparse matrix for each observed transition
gives A ≡ N − T. Finally, LSTD(0) performs the inversion β := A−1b = (N − T)−1s,
giving the same solution as in Eq. (3).

Thus, when λ = 0, the A and b matrices built by LSTD(λ) effectively record a model of
all the observed transitions. What about when λ > 0? Again, A and b record the sufficient
statistics of an empirical Markov model—but in this case, the model being captured is
one whose single-step transition probabilities directly encode the multi-step TD(λ) backup
operations. That is, the model links each state x to all the downstream states that follow x
on any trajectory, and records how much influence each has on estimating Ṽ π (x) according
to TD(λ). In the case of λ = 0, the TD(λ) backups correspond to the one-step transitions,
resulting in the equivalence described above. The opposite extreme, the case of λ = 1, is
also interesting: the empirical Markov model corresponding to TD(1)’s backups is the chain
in which each state x leads directly to absorption, and β then simply computes the average
Monte-Carlo return at each state. For general λ, we produce the statistics of the “simple
beta-model” of multi-scale reinforcement learning (Sutton, 1995). In short, if we assume
a lookup-table representation for the function Ṽ π , we can view the LSTD(λ) algorithm as
performing these two steps:

LEAST-SQUARES TEMPORAL DIFFERENCE LEARNING 239

1. It implicitly uses the observed simulation data to build a Markov chain. This chain
compactly models all the backups that TD(λ) would perform on the data.

2. It solves the chain by performing a matrix inversion.

The lookup-table representation for Ṽ π is intractable in practical problems; in practice,
LSTD(λ) operates on states only via their (linearly dependent) feature representationsφ(x).
In this case, LSTD(λ) implicitly builds a compressed version of the empirical model’s
transition matrix N − T and summed-reward vector s:

b = ΦTs A = ΦT(N − T)Φ (5)

where Φ is the |X | × K matrix representation of the function φ: X →�K . From the com-
pressed empirical model, LSTD(λ) computes these coefficients for Ṽ π :

βλ = A−1b = (ΦT(N − T)Φ)−1(ΦTs). (6)

Ideally, these coefficients βλ would be equivalent to the empirical optimal coefficients
β∗

λ. The empirical optimal coefficients are those that would be found by building the full
uncompressed empirical model (represented by N − T and s), using a lookup table to solve
for that model’s value function (v = (N − T)−1s), and then performing a least-squares
linear fit from the state features Φ to the lookup-table value function:

β∗
λ

def= (ΦTΦ)−1(ΦTv) = (ΦTΦ)−1ΦT(N − T)−1s. (7)

It can be shown that Eqs. (6) and (7) are indeed equivalent for the case of λ = 1, because
that setting of λ implies that T = 0, thus (N − T)−1 is diagonal and commutes. However, for
the case of λ < 1, solving the compressed empirical model does not in general produce the
optimal least-squares fit to the solution of the uncompressed model (Tsitsiklis & Van Roy,
1997).

4. Experimental comparison of TD(λ) and LSTD(λ)

This section reports experimental results comparing TD(λ) and LSTD(λ) on two domains:
a simple illustrative Markov chain and the large-scale game of backgammon. We begin with
the simple chain, pictured in figure 3. It consists of 13 states, each of which is represented
by four state features as shown. We seek to represent the value function compactly as a
linear function of these four state features. In fact, this domain’s optimal V π function is
exactly linear in these features: the optimal coefficients β∗

λ are (−24, −16, −8, 0).
Because V π is exactly linear in this domain, LSTD(λ) is guaranteed to converge with

probability 1 to the optimal β∗
λ for any λ. TD(λ) is also guaranteed to converge to β∗

λ,
under the additional condition that an appropriate schedule of stepsizes is chosen. The
following three criteria on the schedule (αn) are sufficient: αn ≥ 0 ∀n;

∑∞
n=1 αn = ∞; and

240 J.A. BOYAN

Figure 3. A 13-state Markov chain. In states 2–12, each outgoing arc is taken with probability 0.5. For value
function approximation, each state is represented by four features, as follows: the representations for states 12, 8,
4, and 0 are, respectively, [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1]; and the representations for the other
states are obtained by linearly interpolating between these.

∑∞
n=1 α2

n < ∞. Our experiments use schedules that satisfy these criteria, having the form:

αn
def= a0

n0 + 1

n0 + n
n = 1, 2, . . . (8)

The parameter a0 determines the initial stepsize, and n0 determines how gradually the step-
size decreases over time. Each TD(λ) experiment was run with six different stepsize sched-
ules, corresponding to the six combinations of a0 ∈ {0.1, 0.01} and n0 ∈ {102, 103, 106}.
These settings produce a range of learning rates that is typical for applications of gradient
descent. TD(λ) also requires an initial setting for the coefficients β; we initialized β to 0
on each experiment.

Comparative results are given in figures 4 and 5. Figure 4 focuses on the case of λ = 0.4,
comparing the learning curve for LSTD(λ) against those of all six schedules of TD(λ).
Each point plotted represents the average of 10 trials. The plot shows clearly that for

Figure 4. Performance of TD(0.4) and LSTD(0.4) on the sample domain. Note the log scale on the x-axis. All
points plotted represent the average of 10 trials.

LEAST-SQUARES TEMPORAL DIFFERENCE LEARNING 241

Figure 5. Summary of results at six settings of λ. At each setting, seven algorithms are compared: TD(λ)

(with six different stepsize schedules) and LSTD(λ). The plotted segment shows the mean RMS value function
approximation error after 100 trajectories (top of segment) and 10,000 trajectories (bottom of segment). Note the
log scale on the y-axis. LSTD(λ) is best in all cases.

λ = 0.4, LSTD(λ) learns a good approximation to V π in fewer trials than any of the TD(λ)

experiments, and performs better asymptotically as well.
Figure 5 graphically summarizes six learning-curve plots similar to figure 4, correspond-

ing to varying λ over the settings {0, 0.2, 0.4, 0.6, 0.8, 1.0}. The results may be summarized
as follows:

• Across all values of λ, LSTD(λ) learns a good approximation to V π in fewer trials than
any of the TD(λ) experiments, and performs better asymptotically as well.

• The performance of TD(λ) depends critically on the stepsize schedule chosen. LSTD(λ)
has no tunable parameters other than λ itself.

• Varying λ has a relatively small effect on LSTD(λ)’s performance.

4.1. Large-scale example: Backgammon policy evaluation

We now turn to a larger-scale test domain, familiar in the reinforcement-learning literature:
the game of backgammon. In this larger domain, we compare TD(λ) with LSTD(λ) in terms
of overall computational efficiency as well as data efficiency.

We generate trajectories by opposing two fixed, pre-trained backgammon policies:
“Fiona,” a neural network patterned after TD-Gammon (Tesauro, 1994), and “pubeval,”
a benchmark backgammon evaluator.1 We sidestep the two-player aspect of backgammon
by defining a Markov chain consisting of only those states in which it is Fiona’s turn to
play. That is, each single transition covers two backgammon moves, one by Fiona and one
by pubeval. The value function we seek to learn specifies, for any backgammon position,
the expected winnings of Fiona over pubeval, starting from that position with Fiona to roll
the dice and move first.

In the small-scale domain of the previous section, both TD(λ) and LSTD(λ) were known
to converge to the optimal value function V π , because V π was exactly linear in that domain’s

242 J.A. BOYAN

features. In backgammon, by contrast, we cannot guarantee convergence to the optimal value
function—nor do we even have that function available for measuring learning performance.
Instead, we measure performance against a “gold standard” value function approximation
G̃(x), built by training LSTD(1) on a set of 100,000 sample games (amounting to nearly
3 million positions). The learning architecture for G̃(x) was quadratic regression over 15
backgammon-specific high-level features.2 To measure the performance of a new value
function approximation Ṽ π , then, we compute the sampled RMS difference between Ṽ π

and G̃:

Error(Ṽ π)
def=

(
1

|S|
∑
x∈S

(Ṽ π (x) − G̃(x))2

)1/2

over an independent test set S of 10,000 backgammon positions.
Our experiments compared TD(λ) with LSTD(λ) using both linear and quadratic ap-

proximations over the 15 backgammon features noted above. The coefficient vectors corre-
sponding to these approximations comprise K = 16 and K = 136 parameters, respectively.
The parameter λ was set arbitrarily to 0.9. For TD(λ), four different learning rate schedules
were used: a0 ∈ {10−2, 10−3, 10−4, 10−5}, n0 = 1000. The coefficients β were always ini-
tialized to 0. Performance measurements were taken after every 50 games. Each algorithm
was trained on the same 9 sets of 10,000 games each, and the average error curves over
these 9 runs are plotted.

Results are shown in figure 6. The upper row of the figure shows the average error curves
for the linear case (at left) and quadratic case (at right) as a function of the number of
sample trajectories observed. As in the smaller-scale results presented earlier, we can see
that LSTD(λ) brings down the approximation error using far less sample data than TD(λ).
We also see again that TD(λ) is quite sensitive to the learning rate schedule chosen; in fact,
in the quadratic case, the highest learning rate of a0 = 0.01 produced error curves greater
than the bounds of the plot.

The lower row of figure 6 plots the same error curves, but with respect to elapsed time
rather than the number of trajectories observed. Experiments were run on a 296 MHz
Ultrasparc II. The linear regression results (at left) show that when β has relatively few
parameters, the time penalty for using LSTD(λ) is slight. With quadratic regression (at right),
by contrast, the large matrix inversions performed by LSTD(λ) cause it to run markedly
more slowly than TD(λ) (note the semilog scale). Nevertheless, because of its better data
efficiency, the RMS error of LSTD(λ) surpasses that of the best TD(λ) run after only about
10 seconds of computation.

In interpreting these timing results, two important points should be considered. First,
LSTD(λ) only performed its coefficient update β := A−1b once every 50 trajectories, when
needed to collect performance statistics. Practical applications may require updating the
β coefficients more or less frequently, with a corresponding increase or decrease in com-
putational requirements. Second, the timings reported here measure only the time spent
in the algorithmic calculations of TD(λ) or LSTD(λ); the time spent in trajectory gener-
ation is excluded. In many practical domains, including backgammon, the time spent in
generating sample state transitions in the Markov chain may exceed the time required for

LEAST-SQUARES TEMPORAL DIFFERENCE LEARNING 243

Figure 6. Results of TD(0.9) and LSTD(0.9) on backgammon policy evaluation. The upper two graphs plot
learning curves with respect to the number of trajectories sampled, for linear and quadratic models, respectively.
The lower two graphs plot the identical learning curves, but with respect to the amount of elapsed wall-clock time
used by the learning algorithms (excluding time spent generating moves). All points plotted represent the average
of 9 trials.

temporal-difference learning. When data is expensive to generate, maximizing the data ef-
ficiency of learning as LSTD(λ) does will reduce overall running times despite the greater
computation spent in learning.

5. Conclusions and future work

We have argued, both from the experimental results above and from the deep connection to
model-based reinforcement learning presented in Section 3, that the least-squares formula-
tion of TD learning makes better use of simulation data than TD(λ). As a practical matter,
the decision of when to prefer one algorithm over the other will depend on the application
domain. If a domain has many features and simulation data is available cheaply, then incre-
mental methods such as TD(λ) may have better real-time performance than least-squares
methods (Sutton, 1992). On the other hand, some reinforcement learning applications have
been successful with small numbers of features (e.g., Singh & Bertsekas, 1997; Boyan &
Moore, 1998), and in these situations LSTD(λ) should be superior.

244 J.A. BOYAN

LSTD(λ) has been applied successfully in the context of STAGE, a reinforcement learning
algorithm for combinatorial optimization (Boyan, 1998). An exciting possibility for future
work is to apply LSTD(λ) in the context of approximation algorithms for general Markov
decision problems. LSTD(λ) provides an alternative to TD(λ) for the inner loop of optimistic
policy iteration (Bertsekas & Tsitsiklis, 1996), and should enable good control policies to
be discovered with fewer trial simulations.

Appendix

Equivalence of LSTD(1) and linear regression

We show here that when λ = 1, the LSTD(λ) algorithm of figure 2 produces an approximate
value function which is equivalent to that which would be produced by standard, non-
incremental, least-squares linear regression. To be precise, assume we are given a sample
trajectory (x0, x1, . . . , xL , END) of a Markov chain, with corresponding feature vectors φt

and one-step rewards Rt on each step. From this trajectory, a supervised-learning system
learning from Monte-Carlo returns would generate the following training pairs:

φ0 �→ R0 + R1 + · · · + RL

φ1 �→ R1 + · · · + RL

...
...

φL �→ RL

Performing standard least-squares linear regression on the above training set would produce
the coefficients β = A−1b, with A and b computed as follows:

ALR =
L∑

i=0

φiφ
T
i bLR =

L∑
i=0

φi yi where yi =
L∑

j=i

R j

We now show that, thanks to the algebraic trick of the eligibility vectors zt , LSTD(1)
builds the equivalent A and b fully incrementally—without having to store the trajectory
while waiting to observe the eventual outcome yi .

Proof: With simple algebraic manipulations, the sums built by LSTD(1)’s A and b tele-
scope neatly into ALR and bLR, as follows:

A =
L∑

i=0

zt (φi − φi+1)
T

=
L∑

i=0

(
i∑

j=0

φ j

)
(φi − φi+1)

T (by definition of zt)

LEAST-SQUARES TEMPORAL DIFFERENCE LEARNING 245

=
L∑

i=0

i∑
j=0

φ jφ
T
i −

L∑
i=0

i∑
j=0

φ jφ
T
i+1

=
(
φ0φ

T
0 +

L∑
i=1

i∑
j=0

φ jφ
T
i

)
−

(
L+1∑
k=1

k−1∑
j=0

φ jφ
T
k

)
(substituting k ≡ i + 1)

= φ0φ
T
0 +

L∑
i=1

i∑
j=0

φ jφ
T
i −

L∑
k=1

k−1∑
j=0

φ jφ
T
k (since φL+1

def= 0)

= φ0φ
T
0 +

L∑
i=1

(
i∑

j=0

φ jφ
T
i −

i−1∑
j=0

φ jφ
T
i

)
(substituting i ≡ k)

=
L∑

i=0

φiφ
T
i

= ALR, as desired;

and

b =
L∑

i=0

zi Ri

=
L∑

i=0

(
i∑

j=0

φ j

)
Ri (by definition of zt)

=
L∑

i=0

L∑
j=0

1(j ≤ i)φ j Ri (where 1(True)
def= 1, 1 (False)

def= 0)

=
L∑

j=0

L∑
i=0

1(j ≤ i)φ j Ri

=
L∑

j=0

φ j

L∑
i= j

Ri

= bLR, as desired.

These reductions prove that the contributions to A and b by any single trajectory are
identical in LSTD(1) and least-squares linear regression. In both algorithms, contributions
from multiple trajectories are simply summed into the matrices. Thus, LSTD(1) and lin-
ear regression compute the same statistics and, ultimately, the same coefficients for the
approximated value function. ✷

Acknowledgments

Thanks to Andrew Moore, Jeff Schneider, Geoff Gordon, Jeremy Frank, Hamid Berenji,
and the anonymous reviewers for many helpful comments. Thanks to Marc Ringuette for

246 J.A. BOYAN

helping with the design of the backgammon evaluator. This work was supported by a NASA
GSRP fellowship while the author was at Carnegie Mellon University.

Notes

1. The Fiona network, designed by Marc Ringuette and myself, consists of 200 input units, 20 sigmoidal hid-
den units, and 3 linear output units. Pubeval is a linear network designed by Gerry Tesauro, available from
http://www.cs.cmu.edu/afs/cs/project/connect/code/tesauro/.

2. The 15 backgammon features used for training were measures of the race status, amount of contact, prime
strength, inner board strength, checkers on bar, and immediate hit probability. Please contact the author for
details.

References

Atkeson, C. G., & Santamaria, J. C. (1997). A comparison of direct and model-based reinforcement learning. In
International Conference on Robotics and Automation.

Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-dynamic programming. Belmont, MA: Athena Scientific.
Boyan, J. A. (1998). Learning evaluation functions for global optimization. Ph.D. Thesis, Carnegie Mellon

University.
Boyan, J. A., & Moore, A. W. (1998) Learning evaluation functions for global optimization and Boolean satisfia-

bility. In Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI).
Bradtke, S. J., & Barto, A. G. (1996). Linear least-squares algorithms for temporal difference learning. Machine

Learning, 22:1–3, 33–57.
Lin, L.-J. (1993). Reinforcement learning for robots using neural networks. Ph.D. Thesis, Carnegie Mellon

University.
Moore, A. W., & Atkeson, C. G. (1993). Prioritized sweeping: Reinforcement learning with less data and less

time. Machine Learning, 13, 103–130.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes in C: The art of

scientific computing. (2nd ed.), Cambridge: Cambridge University Press.
Singh, S., & Bertsekas, D. (1997). Reinforcement learning for dynamic channel allocation in cellular telephone

systems. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), NIPS-9 (p. 974). Cambridge, MA: The MIT Press.
Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3.
Sutton, R. S. (1990). Integrated architectures for learning, planning, and reacting based on approximating dynamic

programming. In Proceedings of the Seventh International Conference on Machine Learning. San Mateo, CA:
Morgan Kaufmann.

Sutton, R. S. (1992). Gain adaptation beats least squares. In Proceedings of the 7th Yale Workshop on Adaptive
and Learning Systems (pp. 161–166).

Sutton, R. S. (1995). TD models: Modeling the world at a mixture of time scales. In Machine Learning: Proceedings
of the 12th International Conference (pp. 531–539). San Mateo, CA: Morgan Kaufmann.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.
Tesauro, G. (1994). TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neural

Computation, 6:2, 215–219.
Tsitsiklis, J. N., & Van Roy, B. (1997). An analysis of temporal-difference learning with function approximation.

IEEE Trans. Auto. Control, 42:5, 674–690.

Received March 16, 1999
Revised November 3, 1999
Accepted November 3, 1999
Final manuscript November 3, 1999

