
Appeared in Proceedings of the Tenth National Conf. on Artificial Intelligence, pp. 171–176, MIT Press, 1992.

Adapting Bias by Gradient Descent:
An Incremental Version of Delta-Bar-Delta

Richard S. Sutton
GTE Laboratories Incorporated

Waltham, MA 02254
sutton@gte.com

Abstract

Appropriate bias is widely viewed as the key to
efficient learning and generalization. I present a
new algorithm, the Incremental Delta-Bar-Delta
(IDBD) algorithm, for the learning of appropri-
ate biases based on previous learning experience.
The IDBD algorithm is developed for the case
of a simple, linear learning system—the LMS or
delta rule with a separate learning-rate parameter
for each input. The IDBD algorithm adjusts the
learning-rate parameters, which are an important
form of bias for this system. Because bias in this
approach is adapted based on previous learning
experience, the appropriate testbeds are drifting
or non-stationary learning tasks. For particular
tasks of this type, I show that the IDBD algo-
rithm performs better than ordinary LMS and in
fact finds the optimal learning rates. The IDBD
algorithm extends and improves over prior work
by Jacobs and by me in that it is fully incremen-
tal and has only a single free parameter. This
paper also extends previous work by presenting
a derivation of the IDBD algorithm as gradient
descent in the space of learning-rate parameters.
Finally, I offer a novel interpretation of the IDBD
algorithm as an incremental form of hold-one-out
cross validation.

Introduction
People can learn very rapidly and generalize extremely
accurately. Information theoretic arguments suggest
that their inferences are too rapid to be justified by
the data that they have immediately available to them.
People can learn as fast as they do only because they
bring to the learning situation a set of appropriate bi-
ases which direct them to prefer certain hypotheses
over others. To approach human performance, ma-
chine learning systems will also need an appropriate
set of biases. Where are these to come from?

Although this problem is well known, there are few
general answers. The field of pattern recognition has
long known about the importance of feature selection,

and the importance of representations is a recurring
theme in AI. But in both of these cases the focus has
always been on designing in a good bias, not on acquir-
ing one automatically. This has resulted in an accu-
mulation of specialized and non-extensible techniques.
Is there an alternative? If bias is what a learner brings
to a learning problem, then how could the learner itself
generate an appropriate bias? The only way is to gen-
erate the bias from previous learning experience (e.g.,
Rendell, Seshu, & Tcheng 1987). And this is possible
only if the learner encounters a series of different prob-
lems requiring the same or similar biases. I believe
that is a correct characterization of the learning task
facing people and real-world learning machines.

In this paper, I present a new algorithm for learn-
ing appropriate biases for a linear learning system
based on previous learning experience. The new al-
gorithm is an extension of the Delta-Bar-Delta algo-
rithm (Jacobs 1988; Sutton 1982; Barto & Sutton 1981;
Kesten 1958) such that it is applicable to incremen-
tal tasks—supervised learning tasks in which the ex-
amples are processed one by one and then discarded.
Accordingly, I call the new algorithm the Incremental
Delta-Bar-Delta (IDBD) algorithm. The IDBD algo-
rithm can be used to accelerate learning even on sin-
gle problems, and that is the primary way in which
its predecessors have been justified (e.g., Jacobs 1988;
Silva & Almeida 1990; Lee & Lippmann 1990; Sutton
1986), but its greatest significance I believe is for non-
stationary tasks or for sequences of related tasks, and
it is on the former that I test it here.

The IDBD Algorithm

The IDBD algorithm is a meta-learning algorithm in
the sense that it learns the learning-rate parameters of
an underlying base learning system. The base learn-
ing system is the Least-Mean-Square (LMS) rule, also
known as the delta rule, the ADALINE, the Rescorla-
Wagner rule, and the Widrow-Hoff rule (see, e.g.,
Widrow & Stearns 1985). This learning system is of-
ten thought of as a single connectionist unit as shown
in figure 1. The unit is linear, meaning that its out-
put y(t), at each time step (example number) t, is a

W1
W2

Wn

X2 Xn
X1

!

y

Figure 1: The base-level learning system is a single
linear unit using the LMS or delta rule.

weighted sum of its real-valued inputs xi(t):

y(t) =
n∑

i=1

wi(t)xi(t), (1)

were each wi(t) is the value at time t of a modifiable
weight wi associated with xi. At each time step, the
learner receives a set of inputs, xi(t), computes its out-
put, y(t), and compares it to a given desired output,
y∗(t). The aim of learning is to minimize the squared
error δ2(t), where δ(t) = y∗(t) − y(t), on future time
steps. The LMS learning rule updates the weights at
each time step according to:

wi(t + 1) = wi(t) + αδ(t)xi(t), (2)

where α is a positive constant called the learning rate.
In the IDBD algorithm there is a different learning

rate, αi, for each input xi, and these change according
to a meta-learning process (cf. Hampson & Volper
1986). The base-level learning rule is 1

wi(t + 1) = wi(t) + αi(t + 1)δ(t)xi(t). (3)

The learning rates are a powerful form of bias in this
system. Learning about irrelevant inputs acts as noise,
interfering with learning about relevant inputs. A
rough rule of thumb is that learning time is propor-
tional to the sum of the squares of the learning rates
(assuming all inputs have equal variance; see Widrow
& Stearns 1985). In effect, learning rates are a valu-
able resource that must be distributed carefully. In-
puts that are likely to be irrelevant should be given
small learning rates, whereas inputs that are likely to
be relevant should be given large learning rates.

In the IDBD algorithm, the learning rates are all of
the form

αi(t) = eβi(t). (4)

1The αi are indexed by t + 1 rather than t simply to
indicate that their update, by a process described below,
occurs before the wi update (see figure 2).

This exponential relationship between the learning
rate, αi, and the memory parameter that is actually
modified, βi, has two advantages. First, it is a natural
way of assuring that αi will always be positive. Second,
it is a mechanism for making geometric steps in αi: if
βi is incremented up and down by a fixed step-size,
then αi will move up or down by a fixed fraction of
its current value, e.g., up or down by 10%. This is de-
sirable because some αi must become very small while
others remain large; no fixed step-size would work well
for all the αi.

The IDBD algorithm updates the βi by

βi(t + 1) = βi(t) + θδ(t)xi(t)hi(t), (5)

where θ is a positive constant, the meta-learning rate,
and hi is an additional per-input memory parameter
updated by

hi(t+1) = hi(t)
[
1−αi(t+1)x2

i (t)
]+

+αi(t+1)δ(t)xi(t),
(6)

where [x]+ is x, if x > 0, else 0. The first term
in the above equation is a decay term; the product
αi(t + 1)x2

i (t) is normally zero or a positive fraction,
so this term causes a decay of hi towards zero. The
second term increments hi by the last weight change
(cf. (3)). The memory hi is thus a decaying trace of
the cumulative sum of recent changes to wi.

The intuitive idea behind the IDBD algorithm is a
simple one. Note that the increment to βi in (5) is pro-
portional to the product of the current weight change,
δ(t)xi(t), and a trace of recent weight changes, hi(t).
By accumulating this product, the overall change in βi

becomes proportional to the correlation between cur-
rent and recent weight changes. If the current step
is positively correlated with past steps, that indicates
that the past steps should have been larger (and equa-
tion (5) accordingly increases βi). If the current step
is negatively correlated with past steps, that indicates
that the past steps were too large; the algorithm is
overshooting the best weight values and then having
to re-correct in the opposite direction (here equation
(5) decreases βi).

The intuitive idea of the IDBD algorithm as de-
scribed above is the same as that of Jacob’s (1988)
Delta-Bar-Delta algorithm. The primary difference is
that Jacobs’s algorithm can be applied only on a batch-
by-batch basis, with updates after a complete presen-
tation of a training set, whereas here we assume exam-
ples arrive one-by-one and are not necessarily revisited
afterwards. The key to making the new algorithm in-
cremental is the way the trace hi is defined such that
it fades away only to the extent that the correspond-
ing input xi is present, as indicated by x2

i (t). The new
algorithm also improves over Jacobs’s in that the de-
cay rate is not a separate free parameter, but is tied to
the current learning rate. The new algorithm in fact
has only one free parameter, the meta-learning rate, θ,
whereas Jacobs’s algorithm has three free parameters.

Initialize hi to 0, and wi, βi as desired, i = 1, . . . , n

Repeat for each new example (x1, . . . , xn, y∗):
y ←

∑n
i=1 wixi

δ ← y∗ − y

Repeat for i = 1, . . . , n:
βi ← βi + θδxihi

αi ← eβi

wi ← wi + αiδxi

hi ← hi[1− αix
2
i]

+ + αiδxi

Figure 2: The IDBD Algorithm in Pseudocode

On the other hand, Jacobs’s algorithm was designed
for nonlinear networks. While I do not foresee great
difficulties extending the IDBD algorithm to the non-
linear case, that is beyond the scope of this paper.

In practice, it is often useful to bound each βi from
below by, say, −10, to prevent arithmetic underflows.
In addition, it is prudent to limit the change in βi on
any one step to, say, ±2. However, these boundings
were not required to obtain the empirical results pre-
sented in the next section.

Results
The capabilities of the IDBD algorithm were assessed
using a series of tracking tasks—supervised-learning
or concept-learning tasks in which the target concept
drifts over time and has to be tracked (cf. Schlimmer
1987). Non-stationary tasks are more appropriate here
than conventional learning tasks because we are trying
to assess the IDBD algorithm’s ability to learn biases
during early learning and then use them in later learn-
ing. To study this one needs a continuing learning
problem, not one that can be solved once and is then
finished.

Experiment 1: Does IDBD help?
Experiment 1 was designed to answer the question:
Does the IDBD algorithm perform better than the or-
dinary LMS algorithm without IDBD? The task in-
volved 20 real-valued inputs and one output. The in-
puts were chosen independently and randomly accord-
ing to a normal distribution with mean zero and unit
variance. The target concept was the sum of the first
five inputs, each multiplied either by +1 or −1, i.e.:

y∗ = s1x1 + s2x2 + s3x3 + s4x4 + s5x5

+ 0x6 + 0x7 + · · ·+ 0x20,

where all the si are either +1 or −1. To make it a
tracking problem, every 20 examples one of the five
si was selected at random and switched in sign, from
+1 to −1, or vice versa. Thus, the same five inputs
were always relevant, but their relationship to the tar-
get concept occasionally changed. If the IDBD algo-
rithm can successfully identify which inputs are rele-

2

4

6

8

0 0.02 0.04 0.06 0.08

0 0.005 0.01 0.015 0.02

!

"

LMS(!)

As
ym

pt
ot

ic
 E

rro
r

IDBD(")

Figure 3: Comparison of the average asymptotic per-
formances of IDBD and LMS algorithms over the rel-
evant ranges of their step-size parameters (α, upper
axis, for LMS, and θ, lower axis, for IDBD). The IDBD
algorithm results in less than half the level of error over
a broad range of values of its step-size parameter. For
parameter values above those shown, both algorithms
can become unstable.

vant, then it should be able to track the drifting target
function more accurately than ordinary LMS.

Because this is a tracking task, it suffices to per-
form one long run and measure the asymptotic track-
ing performance of the algorithms. In this experiment
I ran each algorithm for 20,000 examples so as to get
past any initial transients, and then ran another 10,000
examples. The average mean-squared error over that
10,000 examples was used as the asymptotic perfor-
mance measure of the algorithm. The algorithms used
were ordinary LMS with a range of learning rates and
the IDBD algorithm with a range of meta-learning
rates. The βi in the IDBD algorithm were set initially
such that αi = 0.05, for all i (but of course this choice
has no affect on asymptotic performance).

The results for both algorithms are summarized in
figure 3. With its best learning rate, ordinary LMS
attains a mean squared error of about 3.5, while the
IDBD algorithm performs substantially better over a
wide range of θ values, attaining a mean squared er-
ror of about 1.5. The standard errors of all of these
means are less that 0.1, so this difference is highly sta-
tistically significant. The IDBD algorithm apparently
learns biases (learning rates) that enable substantially
more accurate tracking on this task.

Exp. 2: Does IDBD find the optimal αi?
Experiment 1 shows that the IDBD algorithm finds a
distribution of learning rates across inputs that is bet-
ter than any single learning rate shared by all, but it
does not show that it finds the best possible distribu-
tion of learning rates. While this may be difficult to
show as a general result, it is relatively easy to confirm
empirically for special cases. To do this for the task
used in Experiment 1, I chose a small value for the

0
0 50 100 150 200 250

TIME STEPS (1000's of Examples)

0.05

0.1

0.15

RELEVANT

IRRELEVANTLE
AR

NI
NG

 R
AT

E
(!

)

Figure 4: Time course of learning-rate parameters, un-
der IDBD, for one relevant and one irrelevant input.

meta-learning rate, θ = 0.001, and ran for a very large
number of examples (250,000) to observe the asymp-
totic distribution of learning rates found by the algo-
rithm (as before, the learning rates were initialized to
0.05). Figure 4 shows the behavior over time of two of
the αi, one for a relevant input and one for an irrele-
vant input.

After 250,000 steps, the learning rates for the 15 ir-
relevant inputs were all found to be less than 0.007
while the learning rates for the 5 relevant inputs were
all 0.13±0.015. The learning rates for the irrelevant in-
puts were apparently heading towards zero (recall that
they cannot be exactly zero unless βi = −∞), which is
clearly optimal, but what of the relevant inputs? They
should all share the same optimal learning rate, but
is it ≈ 0.13, as found by the IDBD algorithm, or is it
some other value? We can determine this empirically
simply by trying various sets of fixed learning rates.
The irrelevant inputs were all given fixed zero learning
rates and the relevant inputs were fixed at a variety of
values between 0.05 and 0.25. Again I ran for 20,000
examples, to get past transients, and then recorded the
average squared error over the next 10,000 examples.
The results, plotted in figure 5, show a clear minimum
somewhere near 0.13±0.01, confirming that the IDBD
algorithm found learning rates that were close to opti-
mal on this task.

Derivation of the IDBD Algorithm
as Gradient Descent

Many useful learning algorithms can be understood as
gradient descent, including the LMS rule, backpropa-
gation, Boltzmann machines, and reinforcement learn-
ing methods. Gradient descent analysis can also be
used to derive learning algorithms, and that in fact is
the way in which the IDBD algorithm was invented. In
this section I derive the IDBD algorithm as gradient
descent.

To illustrate the basic idea of gradient-descent anal-
ysis, it is useful to first review how the base learn-

 with fixed

1.4

1.6

1.8

2.0

2.2

0.05 0.10 0.15 0.20

!'s of Relevant Inputs

Performance
!' s

As
ym

pt
ot

ic
 E

rro
r

Figure 5: Average error as a function of the learning-
rate parameter of the relevant inputs (the irrelevant
inputs had zero learning-rate parameters). Error is
minimized near α = 0.13, the value found by the IDBD
algorithm.

ing rule, the LMS rule (2), can be derived as gradient
descent. Recall that we are trying to minimize the
expected value of the squared error δ2(t), where δ(t) =
y∗(t) − y(t). The expected error as a function of the
weights forms a surface. In gradient descent, a current
value for w is moved in the opposite direction of the
slope of that surface. This is the direction in which
the expected error falls most rapidly, the direction of
steepest descent. Because the expected error is not
itself known, we use instead the gradient of the sample
error δ2(t):

wi(t + 1) = wi(t)−
1
2
α

∂δ2(t)
∂wi(t)

. (7)

The scalar quantity 1
2α is the step-size, determining

how far the weight vector moves in the direction of
steepest descent. The 1

2 drops out as we expand the
righthand side:

wi(t + 1) = wi(t)−
1
2
α

∂δ2(t)
∂wi(t)

= wi(t)− αδ(t)
∂δ(t)
∂wi(t)

= wi(t)− αδ(t)
∂[y∗(t)− y(t)]

∂wi(t)
(8)

= wi(t) + αδ(t)
∂y(t)
∂wi(t)

= wi(t) + αδ(t)
∂

∂wi(t)

[n∑
j=1

wj(t)xj(t)
]

= wi(t) + αδ(t)xi(t),

thus deriving the LMS rule (2).
The derivation for the IDBD algorithm is very sim-

ilar in principle. In place of (7), we start with

βi(t + 1) = βi(t)−
1
2
θ
∂δ2(t)
∂βi

, (9)

where now 1
2θ is the (meta) step-size. In this equa-

tion, the partial derivitive with respect to βi without
a time index should be interpretted as the derivative
with repect to an infintesimal change in βi at all time
steps. A similar technique is used in gradient-descent
analyses of recurrent connectionist networks (c.f., e.g.,
Williams & Zipser 1989). We then similarly rewrite
and expand (9) as:

βi(t + 1) = βi(t)−
1
2
θ
∑

j

∂δ2(t)
∂wj(t)

∂wj(t)
∂βi

≈ βi(t)−
1
2
θ

∂δ2(t)
∂wi(t)

∂wi(t)
∂βi

. (10)

The approximation above is reasonable in so far as the
primary effect of changing the ith learning rate should
be on the ith weight. Thus we assume ∂wj(t)

∂βi
≈ 0 for

i 6= j. From (8) we know that − 1
2

∂δ2(t)
∂wi(t)

= δ(t)xi(t);
therefore we can rewrite (10) as

βi(t + 1) ≈ βi(t) + θδ(t)xi(t)hi(t), (11)

where hi(t) is defined as ∂wi(t)
∂βi

. The update rule for hi

is in turn derived as follows:

hi(t + 1) =
∂wi(t + 1)

∂βi

=
∂

∂βi

[
wi(t) + eβi(t+1)δ(t)xi(t)

]
(12)

= hi(t) + eβi(t+1)δ(t)xi(t) + eβi(t+1) ∂δ(t)
∂βi

xi(t),

using the product rule of calculus. Using the same
approximation as before (in (10)), we write

∂δ(t)
∂βi

= −∂y(t)
∂βi

= − ∂

∂βi

∑
j

wj(t)xj(t)

≈ − ∂

∂βi

[
wi(t)xi(t)

]
= −hi(t)xi(t).

Finally, plugging this back into (12) yields

hi(t + 1) ≈ hi(t) + eβi(t+1)δ(t)xi(t)− eβi(t+1)x2
i (t)hi(t)

≈ hi(t)
[
1− αi(t + 1)x2

i (t)
]
+αi(t + 1)δ(t)xi(t),

which, after adding a positive-bounding operation, is
the original update rule for hi, (6), while the derived
update (11) for βi is the same as (5).

The above demonstrates that the IDBD algorithm is
a form of stochastic gradient descent in the learning-
rate parameters βi. In other words, the algorithm will
tend to cause changes according to their effect on over-
all error. At local optima, the algorithm will tend to be
stable; elsewhere, it will tend to reduce the expected
error. These might be considered necessary properties
for a good learning algorithm, but they alone are not
sufficient. For example, there is the issue of step-size.

It is often not recognized that the size of the step in
the direction of the gradient may depend on the cur-
rent value of the parameters being modified. Moreover,
even the direction of the step can be changed, as long
as it it is in the same general direction as the gradi-
ent (positive inner product), without losing these key
properties.2 For example, one could add a factor of αp

i ,
for any p, to the increment of βi in (9) to obtain an en-
tire new family of algorithms. In fact, experiments in
progress suggest that some members of this family may
be more efficient than the IDBD algorithm at finding
optimal learning rates. There is little reason beyond
simplicity for prefering the IDBD algorithm over these
other possibilities a priori.

The gradient analysis presented in this section tells
us something about the IDBD algorithm, but it may
also tell us something about incremental bias-learning
algorithms in general. In particular, it suggests how
one might derive bias-learning algorithms for other
base learning methods, such as instance-based learn-
ing methods. In instance-based learning systems an
important source of bias is the parameters of the inter-
instance distance metric. Currently these parameters
are established by people or by offline cross-validation
methods. An interesting direction for further research
would be to attempt to repeat the sort of derivation
presented here, but for instance-based methods.

Conclusion
The results presented in this paper provide evidence
that the IDBD algorithm is able to distinguish relevant
from irrelevant inputs and to find the optimal learning
rates on incremental tracking tasks. Depending on the
problem, such an ability to find appropriate biases can
result in a dramatic reduction in error. In the tasks
used here, for example, squared error was reduced by
approximately 60%. The IDBD algorithm achieves this
while requiring only a linear increase in memory and
computation (both increase by roughly a factor of three
over plain LMS). This algorithm extends prior work
both because it is an incremental algorithm, operating
on an example-by-example basis, and because it has
fewer free parameters that must be picked by the user.
Also presented in this paper is a derivation of the IDBD
algorithm as gradient descent. This analysis refines
previous analyses by improving certain approximations
and by being applicable to incremental training.

On the other hand, only a linear version of the IDBD
algorithm has been explored here. In addition, the
results presented do not show that the IDBD algorithm
is the best or fastest way to find optimal learning rates.
Further work is needed to clarify these points.

A good way of understanding the IDBD algorithm
may be as an incremental form of cross validation.
Consider the form of cross validation in which one ex-

2Such algorithms are no longer steepest-descent algo-
rithms, but they are still descent algorithms.

ample is held out, all the others are used for training,
and then generalization is measured to the one held
out. Typically, this is repeated N times for a training
set of size N, with a different example held out each
time, and then the parameters are set (or stepped, fol-
lowing the gradient) to optimize generalization to the
one held out, averaged over all N cases. Obviously, this
algorithm can not be done incrementally, but some-
thing similar can be. At each time step, one could
take the new example as the one held out, and see how
all the training on the prior examples generalized to
the new one. One could then adjust parameters to im-
prove the generalization, as the IDBD algorithm does,
and thereby achieve an effect very similar to that of
conventional cross validation. Such methods differ fun-
damentally from ordinary learning algorithms in that
performance on the new example is optimized without
using the new example.

The IDBD algorithm is being explored elsewhere as
a psychological model. The base learning algorithm
used here, the LMS rule, has often been used to model
human and animal learning behavior. Although that
modeling has been generally successful, there have also
been a number of areas of divergence between model
and emperiment. In many cases the discrepancies can
be significantly reduced by augmenting the LMS model
with relevance-learning methods (e.g., Kruschke 1992;
Hurwitz 1990). The IDBD algorithm is also being ex-
plored in this regard, and the initial results are very
encouraging (Gluck, Glauthier, & Sutton, in prepara-
tion; Gluck & Glauthier, in preparation; see also Sut-
ton 1982).

One possible use of the IDBD algorithm is
to assess the utility (relevance) of features cre-
ated by constructive-induction methods or other
representation-change methods. It is intriguing to
think of using IDBD’s assessments in some way to ac-
tually direct the feature-construction process.

Finally, a broad conclusion that I make from this
work has to do with the importance of looking at a
series of related tasks, such as here in a non-stationary
tracking task, as opposed to conventional single learn-
ing tasks. Single learning tasks have certainly proved
extremely useful, but they are also limited as ways
of exploring important issues such as representation
change and identification of relevant and irrelevant
features. Such meta-learning issues may have only a
small, second-order effect in a single learning task, but
a very large effect in a continuing sequence of related
learning tasks. Such cross-task learning may well be
key to powerful human-level learning abilities.

Acknowledgements

The author wishes to thank Mark Gluck, without
whose prodding, interest, and assistance this paper
would never have been written, and Oliver Selfridge,
who originally suggested the general approach. I also
thank Richard Yee, Glenn Iba, Hamid Benbrahim,

Chris Matheus, Ming Tan, Nick Littlestone, Gregory
Piatetsky, and Judy Franklin for reading and providing
comments on an earlier draft of this paper.

References

Barto, A.G. & Sutton, R.S. (1981) Adaptation of learn-
ing rate parameters, Appendix C of Goal Seeking Com-
ponents for Adaptive Intelligence: An Initial Assessment.
Air Force Wright Aeronautical Laboratories/Avionics Lab-
oratory Technical Report AFWAL-TR-81-1070, Wright-
Patterson AFB, Ohio.

Gluck, M.A. & Glauthier P.T. (in preparation) Representa-
tion of dimensional stimulus structure in network theories
of associative learning.

Gluck, M.A., Glauthier, P.T., & Sutton, R.S. (in prepara-
tion) Dynamically modifiable stimulus associability in net-
work models of category learning.

Hampson, S.E. & Volper, D.J. (1986) Linear function neu-
rons: Structure and training. Biological Cybernetics 53,
203-217.

Hurwitz, J.B. (1990) A hidden-pattern unit network model
of category learning. PhD thesis, Harvard Psychology
Dept.

Jacobs, R.A. (1988) Increased rates of convergence through
learning rate adaptation. Neural Networks 1, 295–307.

Kesten, H. (1958) Accelerated stochastic approximation.
Annals of Mathematical Statistics 29, 41–59.

Kruschke, J.K. (1992) ALCOVE: An exemplar-based con-
nectionist model of category learning. Psychological Re-
view.

Lee, Y. & Lippmann, R.P. (1990) Practical characteristics
of neural network and conventional pattern classifiers on
artificial and speech problems. In Advances in Neural In-
formation Processing Systems 2, D.S. Touretzky, Ed., 168–
177.

Rendell, L.A., Seshu, R.M., and Tcheng, D.K. (1987) Lay-
ered concept learning and dynamically-variable bias man-
agement, Proc. Tenth International Joint Conference on
Artificial Intelligence, 308-314.

Schlimmer, J.C. (1987) Concept acquisition through rep-
resentation adjustment. PhD thesis, University of Califor-
nia, Information and Computer Science Dept., Technical
Report 87-19.

Silva, F.M. & Almeida, L.B. (1990) Acceleration tech-
niques for the backpropagation algorithm. In Neural Net-
works: EURASIP Workshop 1990, L.B. Almeida and C.J.
Wellekens, Eds., 110-119. Berlin: Springer-Verlag.

Sutton, R.S. (1982) A theory of salience change dependent
on the relationship between discrepancies on successive tri-
als on which the stimulus is present. Unpublished working
paper.

Sutton, R.S. (1986) Two problems with backpropagation
and other steepest-descent learning procedures for net-
works. Proceedings of the Eighth Annual Conference of the
Cognitive Science Society, 823–831.

Widrow, B. & Stearns, S.D. Adaptive Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1985.

Williams, R.J. & Zipser, D. (1989) Experimental analysis
of the real-time recurrent learning algorithm. Connection
Science 1, 87–111.

This is a digitally re-mastered version of the original article.
A small error (an extra plus sign) was removed from the
last line of figure 2.

