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Abstract

In this article, we summarize and extend recent results with the gradient-TD family of al-
gorithms for approximate policy evaluation in Markov decision processes. In recent years,
solution methods based on dynamic programming (DP) and temporal-difference learning
(TDL) have been applied to large state spaces using parametric value-function approxi-
mation. This approach has had groundbreaking application successes, such as Tesauro’s
world-champion backgammon program in 1992, but also important failures—examples of
divergence are known for both DP and TDL when extended to non-linear approximation
or to off-policy learning. We present gradient-descent versions of DP, TD(λ), and Sarsa(λ),
called GDP, GTD(λ), and GQ(λ) respectively, that solve these problems. All three algo-
rithms converge for nonlinear function approximators and require computation that is only
linear in the number of parameters. The two learning algorithms can work directly from
data without a model, simulator, access to the underlying system state, or full control of
the policy that generates the data (off-policy learning). We also show how the focus of
approximation during off-policy learning can be controlled in a flexible way without com-
promising the convergence guarantees. Unlike the residual-gradient algorithms developed
by Baird in the late 1990s (and more recently extended to Gaussian process reinforcement
learning and Kalman TDL) our algorithms converge to a solution of the projected Bellman
equation.

Keywords: Temporal-difference learning, Dynamic programming, Reinforcement learn-
ing, Value function approximation, Gradient descent, Off-policy, Eligibility traces, Bellman
error

1. Issues in value-function approximation

Markov decision processes (MDPs) are a widely used problem formulation in artificial in-
telligence and throughout engineering. A key idea underlying almost all efficient solution
strategies is the computation or estimation of a value function mapping states of the MDP
to expected longterm future reward or cost given a decision making policy. For MDPs with
large state spaces it is generally necessary to approximate the true value function. Solution
methods without approximation, based on dynamic programming (DP) and a tabular rep-
resentation of the value function, are well understood but suitable only for small problems
in which the table can be held in main computer memory. Larger state spaces, even contin-
uous ones, can be handled by DP with discretization, state aggregation, and interpolation,
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but again, as state dimensionality increases, these methods rapidly become computationally
infeasible or ineffective. This is the effect which gave rise to Bellman’s “curse of dimension-
ality.” Large state spaces and the need to effectively and efficiently approximate the value
function has long been recognized as an important problem in DP and artificial intelligence.
It has been approached in a great many ways by different researchers depending on practical
and strategic issues, as well as on their different goals and predilections.

The first strategic issue is whether to approximate the value function for a given policy,
termed policy evaluation, or to approximate the value function for an optimal policy which
is not initially known. We focus on policy evaluation, rather than policy optimization, be-
cause it is a simpler problem and yet still includes key open problems. Focusing on policy
evaluation allows us to lay aside a host of issues including maintaining sufficient exploration
and chattering near optimal policies (see Bertsekas 2012, Chapter 6, for an overview). In
policy evaluation there are longstanding open problems regarding robust convergence, in-
cluding with nonlinear function approximators and off-policy learning, as we detail and
partially solve in this paper. To see these hard problems clearly, it is best to address them
in the simplest possible setting in which they occur. Another reason for focusing on policy
evaluation is that many methods for policy optimization involve evaluation as an inter-
mediate, repeated step; solving policy evaluation better can be expected to lead to better
optimization methods. Finally, policy evaluation is an example of longterm prediction, a
problem which is of independent interest.

A second issue is whether to use the current value estimates in building improved es-
timates, as in DP and temporal-difference learning (TDL), or to build solely on the basis
of the outcomes of complete trajectories, as in “Monte Carlo” (Sutton & Barto 1998), or
“rollout” (Bertsekas 2012), methods. The former, which has been termed “bootstrapping”
(Sutton & Barto 1998) is more complex and interesting, and is computationally convenient.
In some applications bootstrapping is clearly superior, but in others it is inferior. The
theoretical issues are not clear, but intuitively bootstrapping helps to the extent that the
state is observable and the function approximator is able to make good value-function es-
timates. Without bootstrapping, the problem of policy evaluation reduces to conventional
supervised learning and needs little specialized treatment; the problems we address in this
paper do not arise. In some algorithms, an eligibility trace parameter λ ∈ [0, 1] provides
a computationally convenient way of moving smoothly between pure bootstrapping, when
λ = 0, to no bootstrapping, when λ = 1. In this paper we choose to embrace rather than
avoid the complexities of bootstrapping.

The next issue is that of the overall structure of the function approximator. We pursue
a general parametric approach in which the value function is represented by an arbitrary
smooth approximator of fixed size and structure with many variable parameters, or weights.
For example, the approximate value function might be a weighted linear combination of non-
linear features, or a neural network with many layers of neuron-like units and connection
weights. The parameters, or weights, are then changed to reshape the approximate value
function to better match the true value function. Parametric methods for value function
approximation in DP are almost as old as DP itself (e.g., see Bellman & Dreyfus 1959)
but became much more popular when DP was combined with sampling methods to pro-
duce reinforcement learning and TDL. A key event was Tesauro’s (1992, 1995) use of a
neural network approximator together with the TD(λ) algorithm (Sutton 1988) to produce
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a computer program capable of playing backgammon at a world champion level. The game
of backgammon has over 1020 states, yet Tesauro’s program learned a good approximate
value function with less than 50,000 weights. The state was represented to the neural net-
work with a feature vector of 198 components; there does not seem to be any practical way
of approximating this value function with tabular, discretizing, or aggregation methods.
Since Tesauro’s work there have been many similar world-class successes using parametric
value-function approximation (e.g., in chess, othello, hearts, tetris, non-game applications?).
Non-parametric value-function approximation is also a popular research topic (...).

Finally, in this article, we restrict attention to methods whose computational complexity
scales linearly with the number of parameters in the function approximator, like TD(λ),
rather than quadratically, like LSTD(λ). This choice deserves some discussion. Least-
squares methods like LSTD have many attractive features, but their greater complexity
can make them infeasible for large applications. Least-squares methods are generally more
efficient in terms of data or iterations before reaching a given level of accuracy. They involve
no step-size parameters to be set (though they do have other initialization parameters that
may be equally annoying to set manually). On the other hand, it is more difficult to adapt
least-squares methods to nonstationary problems, which becomes an issue when moving
beyond policy evaluation to policy optimization. However, the biggest drawback to least-
squares methods is just the computational one and its consequences. If scaling is linear,
then parameters are cheap and one ends up with a lot of them; ten of thousands or millions
are used in typical applications such as those mentioned in the previous paragraph. If the
application is computation limited, and often it is, then the parameters are reduced to the
square root. Instead of 10,000 parameters, one gets 100. Instead of a million, one gets 1000.
Instead of being free with parameters, weighting many things just in case any of them is
important, one ends up choosing the parameters manually with great care to keep their
number down. In a typical case, the parameters are weights on nonlinear features of the
state space. Fewer parameters then means fewer features that can be taken into account in
the approximate value function. A least-squares method may find the best parameter values
faster, but in the long run may have a much worse approximated value function because it
can take into account so many fewer features of the state.

The tradeoffs between linear and quadratic complexity in bootstrapping methods such
as linear TD(λ) and LSTD(λ) closely parallels similar tradeoffs already seen in supervised
learning settings. The classical supervised-learning algorithm for incremental linear regres-
sion, known as the LMS (Least Mean Square) algorithm, or Widrow-Hoff rule, is of linear
complexity, and the corresponding quadratic complexity algorithm is the least squares (LS)
algorithm. LS is more data efficient, even optimal in a sense, but more complex; LMS is
often slower to learn but is robust, simpler to implement, and can handle many more param-
eters and features. In the academic literature, LS is much more popular, but in real-world
applications, LMS is more widely used, almost always being prefered over LS according
to those with long experience (Widrow, personal communication; Haykin, personal com-
munication). It is also telling that, when neural networks became popular for supervised
learning, beginning in the late 1980s and continuing through today, LMS was generalized
to backpropagation but quadratic-complexity generalizations have remained little used.

We have experimented with both linear- and quadratic-complexity algorithms for pre-
dicting future robot-sensor values in realtime. Making and updating predictions ten times
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per second using thousands of features, with linear-complexity methods we were able to
predict almost ten thousand different sensory events, whereas with quadratic complexity
methods we could predict only one. It is clear to us that there are already cases where
computational costs are critical and the advantage of linear methods is decisive. As the
power of modern computers increases, we can expect to have more learned parameters and
the advantage to linear-complexity methods can be expected only to increase.

Having explained the choices underlying our approach, we can now outline our main
results, as summarized in the table in Figure 1. The table has seven columns, two corre-
sponding to DP algorithms and five to TDL algorithms. The first column, for example,
corresponds to the classical algorithm TD(λ) (and Sarsa(λ), the analogous algorithm for
learning state–action values). The last two rows correspond to the new gradient-TD family
of algorithms presented in this article. The rows correspond to five issues or properties
that we would like the algorithms to have. First, as discussed just above, we would like the
algorithms to have linear computational complexity, and most do, with LSTD(λ) being one
of the listed exceptions. Another row corresponds to whether the algorithm will work with
general nonlinear function approximators (subject to smoothness conditions, as described
below). We see that TD(λ) is linear complexity, but is not guaranteed to converge with
nonlinear function approximation. In fact, counterexamples are known. We will show that
gradient-TD algorithms converge on any MDP, and in particular on these counterexamples.
TD(λ) is also not guaranteed to converge under off-policy training (third row). Again,
counterexamples are known, and we show that gradient-TD methods converge on them.
Note that according to four of the five properties listed here, TD(λ) and approximate DP
have the same properties. (The only difference is that, of course, TD(λ) is a model-free
method whereas DP is a model-based method.) Both are linear complexity per update
of the function approximator, and both fail with nonlinear approximators and off-policy
training. We discuss this in Section 4.

Note that the “Residual gradient” algorithm (Baird 1995, fifth column) does well on all
properties except “Converges to PBE=0”. All the other algorithms compute or converge
to the same asymptotic solution, at which the projected Bellman error (PBE) is zero. The
Residual gradient algorithm is the only prior algorithm based on true gradient descent.
Gradient descent is a powerful strategy for creating robustly convergent algorithms. Resid-
ual gradient algorithms illustrate this strength, but unfortunately the objective function
they use does not have its minimum in the right place. Conventional temporal-difference
algorithms have a gradient aspect to them, but are known not to be the gradient of any
objective function (Barnard 1993). Our gradient-TD methods, on the other hand, are well
thought of as gradient-descent methods, converge robustly with both linear function approx-
imation and off-policy training, and converge to zero PBE. All these issues are discussed in
Section ??

So far we have emphasized that parameterized function approximation is a way of han-
dling large state spaces, but it is also a way of handling incompletely observed state. A
partially observed MDP (POMDP), in which only observations are available to the agent
and not state variables, can always be treated just as a regular MDP with function ap-
proximation. A general approach is to map the history of observations and actions to a
feature vector and then use a function approximator that takes the feature vector as input
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GDP GTD(λ),
GQ(λ)

Linear 
computation

Nonlinear
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Off-policy 
convergent
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online

Converges to 
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✓ ✓ ✖ ✖ ✓ ✓ ✓
✖ ✖ ✖ ✓ ✓ ✓ ✓
✖ ✖ ✓ ✖ ✓ ✓ ✓
✓ ✖ ✓ ✖ ✓ ✖ ✓
✓ ✓ ✓ ✓ ✖ ✓ ✓
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Figure 1: Issues with bootstrapping algorithms for approximate parametric policy evalua-
tion. There are many aspects of each symbol that deserve further remarks and
clarifications, which will go here.

rather than the state. A related issue is the difference between the planning case, in which
a model of the full MDP is available, and the learning case, in which only the data stream
is available. Most of what we have to say about function approximation applies to both
cases, but there are a few important exceptions, which we will note as they arise.

2. Markov decision processes with value-function approximation

We use the common formulation of a Markov decision process (MDP) as a five-tuple
〈S,A, p, r, γ〉 as follows. A decision-making agent interacts with the MDP in discrete time
t = 0, 1, 2, . . .. At each time, t, the agent finds itself in state St ∈ S and selects an action
At ∈ A. The MDP then changes state, to state St+1, with probability p(St+1|St, At) (or
probability density if S is continuous) and emits a reward Rt+1 ∈ R according to some prob-
ability distribution with expected value r(s, a). The agent may select its actions according
to a stationary decision making policy π : S×A → [0, 1] where π(s, a) is the probability that
At = a given that St = s, for all t. The object is to maximize the γ-discounted cumulative
reward received from each state. To get started, define a random variable Gt, the return at
time t, as:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · · , (1)

where the dot above the equals sign indicates that this is a definition, and γ ∈ [0, 1) is known
as the discount-rate parameter. Define the state-value function vπ : S → R for policy π, the
target for all the approximations we study in this article, as the expected return from each
state given that actions are taken according to π:

vπ(s)
.
= E[Gt | St = s,At:∞ ∼ π] , ∀s ∈ S. (2)
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To solve the MDP is to find an optimal policy π∗, defined as a policy that maximizes the
value function from each state:

π∗ .
= argmax

π
vπ(s), ∀s ∈ S, (3)

but in this article we do not address this problem directly, but instead focus on policy
evaluation, the computation or estimation of vπ for a given policy π. Policy evaluation is a
key subproblem underlying almost all efficient solution strategies for MDPs. In particular,
we seek an approximation to the state-value function,

vθ(s) ≈ vπ(s), ∀s ∈ S, (4)

where θ ∈ Rn, with n � |S|, is the weight/parameter vector. The approximate value
function can have arbitrary form as long as it is everywhere differentiable with respect to
the weights. For example, it could be a cubic spline, or it could implemented by a multi-
layer neural network where θ is the concatenation of all the connection weights. Henceforth
we refer to θ exclusively as the weights, or weight vector, and reserve the word “parameter”
for things like the discount-rate parameter, γ, and step-size parameters.

An important special case is that in which the approximate value function is linear in
the weights and in features of the state:

vθ(s)
.
= θ>φ(s), (5)

where the φ(s) ∈ Rn, ∀s ∈ S, are feature vectors characterizing each state s, and x>y
denotes the inner product of two vectors x and y. The linear case is much better understood
and we will focus on it for the next four sections.

3. Objectives for linear value-function approximation

Although parametric function approximation has been used almost from the beginnings
of both DP and TDL (e.g., see Bellman & Dreyfus 1959, Samuel 1959, Sutton 1988), it
has proven difficult to obtain fully satisfactory algorithms and theory. Even for the linear
case the issues are not clear, and even the question of what kind of approximation we seek
remains without a single concensus answer. Given a linear form for vθ (5), what is the
objective for θ? What is its best value? There are at least three important possible answers
to this question, as we discuss in the three subsections below.

First, let us define the general term “value function” as any function from the MDP’s
state space S to the real numbers. For now let us assume that the state space is discrete,
S = {1, 2, . . . , |S|}, in which case a value function can be thought of as a real-valued vector
of |S| components. We can distinguish the large space of all possible value functions from
the smaller subspace of value functions that can be implemented by the linear function
approximator at some value of θ, as suggested by Figure 2. We assume that the true value
function vπ is too complex to be represented exactly as an approximation vθ for any θ. Thus
vπ is not in the subspace; in Figure 2, vπ is depicted as being above a planar subspace of
representable functions.

A goal for approximation will generally include a weighting or distribution d : S → R
specifying the degree to which we would like different states to be accurately valued. This
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is new to approximation; no such distribution arises in the conventional theory for exactly
solving discounted MDPs. If all state values can be exactly correct, there is no need to
weight how they will be traded off, but with approximation there is. This distribution
provides a natural norm and measure of distance in value-function space. For any value
function v, define

‖v‖ .
=
∑

s∈S
d(s)v(s)2. (6)

(If the state space were continuous, then the sum would be replaced by an integral.) We will
use only this d-weighted norm in this paper, so we do not explicitly indicate its dependence
on d in our notation. The distance between two value functions v1 and v2 is then simply
‖v1 − v2‖. For any value function v, the operation of finding the closest value function vθ in
the subspace of representable value functions is a projection operation. Formally, we define
the projection operator Π : R|S| → R|S| as

Πv
.
= vθ where θ = arg min

θ
‖v − vθ‖ . (7)

For a linear function approximator, the projection operator is linear, which implies that it
can be represented as an |S| × |S| matrix:

Π
.
= Φ

(
Φ>DΦ

)−1
Φ>D, (8)

where D denotes the |S| × |S| diagonal matrix with d on the diagonal, and Φ denotes the
|S| × n matrix whose rows are the feature vectors φ(s)>, one for each state s:

D
.
=




d(1) 0
d(2)

. . .

0 d(|S|)


 , Φ

.
=




−φ(1)>−
−φ(2)>−

...
−φ(|S|)>−


 . (9)

(Formally, the inverse in (8) may not exist, in which case the pseudoinverse is substituted.)
Using these matrices, the squared norm of a vector can be written

‖v‖ = v>Dv, (10)

and the approximate linear value function can be written

vθ = Φθ. (11)

3.1 Value error objective

The most obvious goal for approximation is simply to minimize the distance between the
true and approximate value functions, which we call the value error (VE) objective:

JVE(θ)
.
= ‖vπ − vθ‖ . (12)
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according to a stationary decision making policy ⇡ : S ⇥ A ! [0, 1] where ⇡(s, a) is the
probability that At = a given that St = s, for all t. To solve the MDP is to find an optimal
policy ⇡⇤, defined as a policy that maximizes the expected �-discounted reward received
from each state:

⇡⇤ = argmax
⇡

v⇡(s), 8s 2 S,

where

v⇡(s) = E⇡

⇥
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

�� St = s
⇤
, 8s 2 S, (1)

where � 2 [0, 1) is known as the discount-rate parameter, and the subscript on the E
indicates that the expectation is conditional on the policy ⇡ being used to select actions.
The function v⇡ is called the state-value function for policy ⇡.

A key subproblem underlying almost all e�cient solution strategies for MDPs is policy
evaluation, the computation or estimation of v⇡ for a given policy ⇡. For example, the
popular DP algorithm known as policy iteration involves computing the value function for
a sequence of policies, each of which is better than the previous, until an optimal policy is
found. In TDL, algorithms such as TD(�) are used to approximate the value function for
the current policy, for example as part of actor–critic methods.

If the state space is finite, then the estimated value function may be represented in a
computer as a large array with one entry for each state and the entries directly updated to
form the estimate. Such tabular methods can handle large state spaces, even continuous
ones, through discretization, state aggregation, and interpolation, but as the dimensionality
of the state space increases, these methods rapidly become computationally infeasible or
ine↵ective. This is the e↵ect which gave rise to the phrase “the curse of dimensionality.”

A more general and flexible approach is to represent the value function by a functional
form of fixed size and fixed structure with many variable parameters or weights. The weights
are then changed to reshape the approximate value function to better match the true value
function. We denote the parameterized value function approximator as

v✓(s) ⇡ v⇡(s), 8s 2 S, (2)

where ✓ 2 Rn, with n ⌧ |S|, is the weight/parameter vector. The approximate value
function can have arbitrary form as long as it is everywhere di↵erentiable with respect to
the weights. For example, it could be a cubic spline, or it could implemented by a multi-
layer neural network where ✓ is the concatenation of all the connection weights. Henceforth
refer to ✓ exclusively as the weights, or weight vector, and reserve the word “parameter”
for things like the discount-rate parameter, �, and step-size parameters.

An important special case is that in which the approximate value function is linear in
the weights and in features of the state:

v✓(s) = ✓>�(s), (3)

where the �(s) 2 Rn, 8s 2 S, are feature vectors characterizing each state s, and x>y
denotes the inner product of two vectors x and y.
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The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

p
VE

p
BE

p
PBE

p
VE

p
VE
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TheothertwogoalsforapproximationarerelatedtotheBellmanequation,whichcan
bewrittencompactlyinvectorformas

v⇡=B⇡v⇡,(7)

whereB⇡:R|S|!R|S|istheBellmanoperatorforpolicy⇡,definedby

(B⇡v)(s)=
X

a2A
⇡(s,a)

"
r(s,a)+�

X

s02S
p(s0|s,a)v(s0)

#
,8s2S,8v:S!R.(8)

(Ifthestateandactionspacesarecontinuous,thenthesumsarereplacedbyintegralsand
thefunctionp(·|s,a)istakentobeaprobabilitydensity.)Thetruevaluefunctionv⇡is
theuniquesolutiontotheBellmanequation;theBellmanequationcanbeviewedasan
alternatewayofdefiningv⇡.Foranyvaluefunctionv:S!Rnotequaltov⇡,therewill
alwaysbeatleastonestatesatwhichv(s)6=(B⇡v)(s).

ThediscrepancybetweenthetwosidesoftheBellmanequation,v⇡�B⇡v⇡,isanerror
vector,andreducingitisthebasisforoursecondandthirdgoalsforapproximation.The
secondgoalistominimizetheerrorvector’slengthinthed-metric.Thatis,tominimize
themean-squaredBellmanerror:

BE(✓)=
X

s2S
d(s)

⇥
(B⇡v✓)(s)�v✓(s)

⇤2
.(9)

Notethatifv⇡isnotrepresentable,thenitisnotbepossibletoreducetheBellmanerror
tozero.Foranyv✓,thecorrespondingB⇡v✓willgenerallynotberepresentable;itwilllie
outsidethespaceofrepresentablefunctions,assuggestedbythefigure...

Finally,inourthirdgoalofapproximation,wefirstprojecttheBellmanerrorandthen
minimizeitslength.Thatis,weminimizetheerrornotintheBellmanequation(7)butin
itsprojectedform:

v✓=⇧B⇡v✓,(10)

UnliketheoriginalBellmanequation,formostfunctionapproximators(e.g.,linearones)
theprojectedBellmanequationcanbesolvedexactly.Ifitcan’tbesolvedexactly,youcan
minimizethemean-squaredprojectedBellmanerror:

PBE(✓)=
X

s2S
d(s)

⇥
(⇧(B⇡v✓�v✓))(s)

⇤2
.(11)

Theminimumisachievedattheprojectionfixpoint,atwhich

X

s2S
d(s)

⇥
(B⇡v✓)(s)�v✓(s)

⇤
r✓v✓(s)=~0.(12)
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b
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2.2 Bellman error

The second goal for approximation is to approximately solve the Bellman equation:

v⇡ = B⇡v⇡,

(8)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s

0 |s, a)v(s
0)

#
, 8s 2 S, 8v : S ! R. (9)

(If the state and action spaces are continuous, then the sums are replaced by integrals and

the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is

the unique solution to the Bellman equation, and in this sense the Bellman equation can

be viewed as an alternate way of defining v⇡. For any value function v✓ not equal to v⇡, we

can ask the Bellman equation to hold approximately, v✓ ⇡ B⇡v✓. That is, we can minimize

the Bellman error :
BE(✓) = ||v✓ �B⇡v✓||,

(10)

though we cannot expect to drive it to zero if v⇡ is outside the representable subspace.

Figure 1 shows the geometric relationships; note that the Bellman operator is shown as

taking value functions inside the subspace outside to something that is not representable,

and that the point of minimum BE is in general di↵erent from that of minimum VE.

The BE was first proposed as an objective function for DP by Schweitzer and Seidmann

(1985). Baird (1995, 1999) extended it to TDL based on stochastic gradient descent, and

Engel, Mannor, and Meir (2003) extended it to least squares (O(n2)) methods known as

Gaussian Process TDL. In the literature, BE minimization is often referred to as Bellman

residual minimization.

2.3 Projected Bellman error

The third goal for approximation is to approximately solve the projected Bellman equation:

v✓ = ⇧B⇡v✓.

(11)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones) the

projected Bellman equation can be solved exactly. The original TDL methods (Sutton 1988,

Dayan 1992) converge to this solution, as does least-squares TDL (Bradke & Barto 1996,

Boyan 1999). The goal of achieving (11) exactly is common; less common is to consider

approximating it as an objective. The early work on gradient-TD (e.g., Sutton et al. 2009)

appears to be first to have explicitly proposed minimizing the d-weighted norm of the error

in (11), which we here call the projected Bellman error :

PBE(✓) = ||v✓ �⇧B⇡v✓||.
(12)

This objective is best understood by looking at the left side of Figure 1. Starting at v✓,

the Bellman operator takes us outside the subspace, and the projection operator takes us

back into it. The distance between where we end up and where we started is the PBE. The

distance is minimal (zero) when the trip up and back leaves us in the same place.

8

⇀

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation, and in this sense the Bellman equation can
be viewed as an alternate way of defining v⇡. For any value function v✓ not equal to v⇡,
we can ask the Bellman equation to hold approximately, v✓ ⇡ B⇡v✓. The error between the
two sides of this equation we define as the Bellman error (BE):

�̄✓
.
= B⇡v✓ � v✓. (15)

The Bellman error objective is to minimize the norm of this vector:

JBE(✓)
.
=
���̄✓
�� , (16)

Note that we cannot expect to drive �̄✓ to zero if v⇡ is outside the representable subspace.
Figure 2 shows the geometric relationships; note that the Bellman operator is shown as
taking value functions inside the subspace outside to something that is not representable,
and that the that minimizes BE is in general di↵erent from that which minimizes VE.

The BE was first proposed as an objective function for DP by Schweitzer and Seidmann
(1985). Baird (1995, 1999) extended it to TDL based on stochastic gradient descent, and
Engel, Mannor, and Meir (2003) extended it to least squares (O(n2)) methods known as
Gaussian Process TDL. In the literature, BE minimization is often referred to as Bellman
residual minimization.

3.3 Projected Bellman error

The third goal for approximation is to approximately solve the projected Bellman equation:

v✓ = ⇧B⇡v✓. (17)

Unlike the original Bellman equation, the projected Bellman equation can be solved exactly
for linear function approximators. The original TDL methods (Sutton 1988, Dayan 1992)
converge to this solution, as does least-squares TDL (Bradke & Barto 1996, Boyan 1999).
The goal of achieving (17) exactly is common; less common is to consider approximating
it as an objective. The early work on gradient-TD (e.g., Sutton et al. 2009) appears to be
first to have explicitly proposed minimizing the d-weighted norm of the error in (17), which
we here call the projected Bellman error (PBE) objective:

JPBE(✓)
.
= kv✓ �⇧B⇡v✓k =

��⇧�̄✓
�� . (18)

This objective is best understood by looking at the left side of Figure 2. Starting at v✓, the
Bellman operator takes us outside the subspace, and the projection operator takes us back
into it. The distance between where we end up and where we started is the PBE.

JPBE = 0 min JBE ✓1 ✓2 ⇧v⇡ (min JVE) ⇧v⇡ ⌘ min JVE

⌘ min kVEk min kBEk ✓1 ✓2 ⇧v⇡ (min JVE) ⇧v⇡ ⌘ min JVE
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(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation, and in this sense the Bellman equation can
be viewed as an alternate way of defining v⇡. For any value function v✓ not equal to v⇡,
we can ask the Bellman equation to hold approximately, v✓ ⇡ B⇡v✓. The error between the
two sides of this equation we define as the Bellman error (BE):

�̄✓
.
= B⇡v✓ � v✓. (15)

The Bellman error objective is to minimize the norm of this vector:

JBE(✓)
.
=
���̄✓
�� , (16)

Note that we cannot expect to drive �̄✓ to zero if v⇡ is outside the representable subspace.
Figure 2 shows the geometric relationships; note that the Bellman operator is shown as
taking value functions inside the subspace outside to something that is not representable,
and that the that minimizes BE is in general di↵erent from that which minimizes VE.

The BE was first proposed as an objective function for DP by Schweitzer and Seidmann
(1985). Baird (1995, 1999) extended it to TDL based on stochastic gradient descent, and
Engel, Mannor, and Meir (2003) extended it to least squares (O(n2)) methods known as
Gaussian Process TDL. In the literature, BE minimization is often referred to as Bellman
residual minimization.

3.3 Projected Bellman error

The third goal for approximation is to approximately solve the projected Bellman equation:

v✓ = ⇧B⇡v✓. (17)

Unlike the original Bellman equation, the projected Bellman equation can be solved exactly
for linear function approximators. The original TDL methods (Sutton 1988, Dayan 1992)
converge to this solution, as does least-squares TDL (Bradke & Barto 1996, Boyan 1999).
The goal of achieving (17) exactly is common; less common is to consider approximating
it as an objective. The early work on gradient-TD (e.g., Sutton et al. 2009) appears to be
first to have explicitly proposed minimizing the d-weighted norm of the error in (17), which
we here call the projected Bellman error (PBE) objective:

JPBE(✓)
.
= kv✓ �⇧B⇡v✓k =

��⇧�̄✓
�� . (18)

This objective is best understood by looking at the left side of Figure 2. Starting at v✓, the
Bellman operator takes us outside the subspace, and the projection operator takes us back
into it. The distance between where we end up and where we started is the PBE.

JPBE = 0 min JBE ✓1 ✓2 ⇧v⇡ (min JVE) ⇧v⇡ ⌘ min JVE

⌘ min kVEk min kBEk ✓1 ✓2 ⇧v⇡ (min JVE) ⇧v⇡ ⌘ min JVE

9

Figure 2: The geometry of linear value-function approximation. Shown as a plane here is the sub-
space of all functions representable by the function approximator. The three-dimensional
space above it is the much larger space of all value functions (functions from S to R). The
true value function vπ is in this larger space and projects down to its best approximation
in the value error (VE) sense. The best approximators in the BE and PBE senses are dif-
ferent and are also shown in the lower right. The Bellman operator takes a value function
in the plane to one outside, which can then be projected back. If you could iteratively
apply the Bellman operator outside the space (shown in gray above) you would reach the
true value function, as in conventional DP.

The value function that minimizes this distance is, of course, Πvπ, the projection of the
true value function into the subspace of representable functions, as shown in Figure 2.

To our knowledge, there is no practical deterministic algorithm for achieving this goal.
The best methods are based on averaging over sample trajectories (a.k.a. rollouts) started
according to d and evolving according to π and the MDP (which gives unbiased samples
of vπ(s)). TDL algorithms achieve this goal in essentially the same way when they use
maximally-long eligibility traces (λ = 1). All such Monte Carlo methods can be efficient
if value estimates are needed for only a small part of the state space (i.e., if d is very
concentrated) but tend to be inefficient (high variance) if the value function needs to be
accurately approximated over a large portion of the state space. Beyond these practical
considerations, it remains unclear whether achieving this goal would be better or worse
than achieving one of the other two goals. We will not consider this goal further in this
paper.

3.2 Bellman error objective

The second goal for approximation is to approximately solve the Bellman equation for policy
π:

vπ = Bπvπ, (13)
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where Bπ : R|S| → R|S| is the Bellman operator for policy π, defined by

(Bπv)(s)
.
=
∑

a∈A
π(s, a)

[
r(s, a) + γ

∑

s′∈S
p(s′|s, a)v(s′)

]
, ∀s ∈ S, ∀v : S → R, (14)

which can also be written,

Bπv = rπ + γPπv, ∀v : S → R, (15)

where rπ ∈ R|S| is a vector whose entries give the expected immediate reward from each
state under π, [rπ]s =

∑
a∈A π(s, a)r(s, a), and Pπ ∈ R|S| ×R|S| is a state-transition matrix

for policy π, with entries [Pπ]ji =
∑

a∈A π(i, a)p(j|i, a). The true value function vπ is the
unique solution to the Bellman equation, and in this sense the Bellman equation can be
viewed as an alternate way of defining vπ. For any value function vθ not equal to vπ, we
can ask the Bellman equation to hold approximately, vθ ≈ Bπvθ. The error between the
two sides of this equation we define as the Bellman error (BE):

δ̄θ
.
= Bπvθ − vθ. (16)

The Bellman error objective is to minimize the norm of this vector:

JBE(θ)
.
=
∥∥δ̄θ
∥∥ , (17)

Note that we cannot expect to drive δ̄θ to zero if vπ is outside the representable subspace.
Figure 2 shows the geometric relationships; note that the Bellman operator is shown as
taking value functions inside the subspace outside to something that is not representable,
and that the θ that minimizes BE is in general different from that which minimizes VE.

The BE was first proposed as an objective function for DP by Schweitzer and Seidmann
(1985). Baird (1995, 1999) extended it to TDL based on stochastic gradient descent, and
Engel, Mannor, and Meir (2003) extended it to least squares (O(n2)) methods known as
Gaussian Process TDL. In the literature, BE minimization is often referred to as Bellman
residual minimization.

3.3 Projected Bellman error

The third goal for approximation is to approximately solve the projected Bellman equation:

vθ = Π(Bπvθ). (18)

Unlike the original Bellman equation, the projected Bellman equation can be solved exactly
for linear function approximators. The original TDL methods (Sutton 1988, Dayan 1992)
converge to this solution, as does least-squares TDL (Bradke & Barto 1996, Boyan 1999).
The goal of achieving (18) exactly is common; less common is to consider approximating it
as an objective. Early work on gradient-TD (e.g., Sutton et al. 2009) appears to have been
the first to explicitly propose minimizing the d-weighted norm of the error in (18), which
we here call the projected Bellman error (PBE) objective:

JPBE(θ)
.
=
∥∥Πδ̄θ

∥∥ . (19)
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An intuitive understanding of this objective can be obtained by looking at the left side
of Figure 2. Starting at vθ, the Bellman operator takes us outside the subspace, and the
projection operator takes us back into it. The between between where we end up and where
we started is the PBE. An exact solution is when this vector is ~0 and JPBE = 0.

A more thorough understanding can be obtained by expanding and rewriting the PBE
objective in matrix terms:

JPBE(θ) =
∥∥Πδ̄θ

∥∥2

= δ̄>θ Π>DΠδ̄θ

= δ̄>θ DΦ
(
Φ>DΦ

)−1
Φ>Dδ̄θ (20)

(using the identity Π>DΠ = DΦ
(
Φ>DΦ

)−1
Φ>D)

=
(
Φ>Dδ̄θ

)>(
Φ>DΦ

)−1(
Φ>Dδ̄θ

)
. (21)

The middle factor is the pseudoinverse of a symmetric, positive definite matrix which we
will often denote simply as

C
.
= Φ>DΦ. (22)

The inverse of this matrix plays a key role as a metric in value function space; notice that
it also appears in the matrix representation of the norm (8). The first and third factors of
the expression above for JPBE are the same vector transposed; JPBE will be zero exactly
when this key vector is zero:

~0 = Φ>Dδ̄θ

= Φ>D (rπ + γPπΦθ − Φθ)

= Φ>Drπ − Φ>D(I − γPπ)Φθ

= b − Aθ, (23)

where
b

.
= Φ>Drπ and A

.
= Φ>D(I − γPπ)Φ. (24)

The matrix A is non-singular (Sutton 1988, Tsitsiklis & Van Roy 1997), and so this equation
always has a solution,

θ∗PBE
.
= A−1b (25)

at which JPBE = 0.
Finally, note that in the new notation, JPBE can be written

JPBE(θ) = (Aθ − b)>C−1(Aθ − b). (26)

3.4 The Bellman error controversy

There is a small controversy in the field as to whether the BE objective or PBE objective
is the most appropriate for value function approximation. It was originally argued that the
BE objective was not appropriate (see Dayan 1992, Werbos 1990) and we have recently lent
support to that argument (Sutton et al. 2009). However, Baird (1995, 1999) strongly sup-
ported BE minimization, and in recent years it has become popular with many researchers,
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most notably in gaussian process TDL and kernel-based TDL (..., see particularly Scherrer
2010) We cannot properly resolve this controvery here—that would probably take a new
theoretical result or extensive empirical comparisons, which would take us far afield. Nev-
ertheless, in this paper we focus on the PBE objective. It is appropriate, then, that we
motivate a little further our preference for the PBE objective over the seeming similar BE
objective. Ultimately, one may remain agnostic as to which of these is best and simply take
our results as the development of the PBE approach.

One of the best arguments against using the BE objective, and one that has not previ-
ously been made in the literature, is that it can not be estimated from data. This limits the
BE objective to model-based settings, as in classical DP, or to simulators in which the state
can be reset; it cannot be used for learning from a single sample trajectory. We discuss this
in a later section.

The term “forward bootstrapping” is sometimes used to describe the way the state
values in TDL are updated toward the values of the states that follow them. Backward
bootstrapping is then updating toward the value of preceding states. The PBE objective
encourages forward bootstrapping only whereas the BE objective encourages bootstrapping
in both directions. A pure example of this difference between the objectives is given by the
following small MDP:

000 𝜃 1

Here the middle state is given by the scalar weight θ while the first and last states have
fixed values of 0 and 1. (It is perfectly permissable for the approximator to assign fixed
values to some states.) The only question then, is what value to give to the center state?
Note that it is a free choice and can be done, by construction, without affecting the value
of any other state. Minimizing the BE and PBE objectives gives it different values. To
minimize the PBE objective, θ is set to 1, so that the state’s value matches the state that
follows it, whereas, to minimize the BE objective, θ is set to 1

2 as a compromise between
forward and backward bootstrapping. The BE objective favors a θ value halfway between
the 0 and the 1 before and after it, splitting the Bellman error into two pieces whose sum
of squares is minimal. As a result, minimizing JBE results in a form of smoothing.

4. Dynamic programming with linear value-function approximation

In this paper we are interested in bootstrapping methods for parametric policy evaluation
that apply in both planning (DP) and learning (TDL) settings. We cover the planning case
first, in this and the next section, because the algorithms are deterministic and thus easier
to analyze. The TDL methods can be viewed as stochastic methods for approximating the
DP planning algorithms. Moreover, and contrary to common understanding, the key chal-
lenges of off-policy training and nonlinear function approximation appear just as strongly in
planning as they do in learning. In this section our methods for addressing these challenges
are presented in the deterministic DP setting before we go on to TDL in later sections. As
in the previous section, we restrict attention to the case of linear function approximation,
postponing the nonlinear case until later (Section 7).

Consider the standard DP algorithm for policy evaluation, which involves iteratively
updating a value function. The value function v : S → R is initialized arbitrarily and then
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updated according to
v ← rπ + γPπv, (27)

The resultant sequence of value functions converges to a unique fixpoint, which is the state-
value function vπ = rπ + γPπvπ. This algorithm is not feasible for large state spaces, of
course, as it is a vector update on a vector with as many components as there are states. In
addition, there is a matrix-vector product, which nominally involves a sum over the state
space, but in practice this is not a concern as the possible next states are typically highly
concentrated.

4.1 Temporal-difference DP

To adapt DP for use with a parameterized function approximator, we must provide an
algorithm for updating the weights that is in some way analogous to the DP algorithm
(27). The following algorithm may not have ever been explicitly written down before, but
in a sense underlies much past work in TDL. We consider it to be the natural, first way to
generalize policy-evaluation DP to parametric function approximation. We call it temporal-
difference DP (TDDP) because of its close relationship to linear TD(0), a common TDL
algorithm:

θ ← θ + αΦ>Dδ̄θ (28)

= θ + α
∑

s∈S
d(s)δ̄θ(s)φ(s), (29)

where α > 0 is a constant step-size parameter, and d is the weighting of states introduced
in the previous section. Notice that the update to θ is proportional to Φ>Dδ̄θ, the key
vector that we earlier established is zero when the JPBE is zero (see Eqn. 20). Thus, the
PBE solution is a fixpoint (those not necessarily a stable fixpoint) of this method.

At first glance, TDDP may seem no more feasible for large state spaces than tabular
DP. If one literally does a sum over all states, then the update is not feasible for large state
spaces. One way for TDDP to be practical is if d is concentrated on a feasibly small subset
of the states, perhaps the center points of a grid over a continuous state space, or a finite
selection of test states. More generally, a close approximation to TDDP can be obtained
by sampling from d and performing the update with just a few states (and then doing more
iterations). Sampling introduces variance and would require that the step-size parameter
be reduced over time to obtain convergence. The computational expense of computing δ̄θ(s)
can also be reduced by sampling over the possible next states (again at the cost of variance).
As more sampling is introduced, and the samples are taken from a single sample path, this
algorithm comes closer to TDL, in particular, the TD(0) algorithm (Sutton 1988). But for
now it is useful to stick with the explicit, perhaps impractical, TDDP algorithm to assess
its strengths and weaknesses. For example, any weaknesses we uncover can be expected to
be inherited by any stochastic approximation to it.

To understand the convergence of TDDP’s iteration, it is helpful to write it in terms of
the key matrix A and the b vector (24) introduced in conjunction with the PBE objective.
Using these it can be written simply as

θ ← θ − α (Aθ − b) . (30)
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From this it is clear that the value of b will participate in determining the fixpoint of
the algorithm, but not at all in determining whether it will converge. Convergence of the
iteration is completely determined by whether or not the matrix A is positive definite. If A is
positive definite, then, for sufficiently small α, the iteration (30) is guaranteed to converge.

The matrix A has been proven to be positive definite if and only if the distribution d is
an on-policy distribution (Tsitsiklis & Van Roy 1997, Sutton 1988), meaning any distribu-
tion that could be obtained in trajectories by following policy π. The trajectories can start
anywhere, but once started must continue until an ending of some sort occurs. In general,
in non-ergodic or episodic MDPs, there may be many on-policy trajectory distributions
depending on the distribution of starting states. In our setting, without endings and as-
suming ergodicity, the only on-policy trajectory distribution is the stationary distribution
under the policy, denoted

dπ(s) = lim
t→∞

Pr{St = s | S0 = s0, A0:t−1 ∼ π}, (31)

which by assumption of ergodicity exists and is independent of s0. Thus, linear TDDP is
guaranteed to converge if and only if d = dπ.

When linear TDDP converges, it converges, of course, to a fixpoint of its update (28).
We showed earlier (20) that this is exactly when JPBE is zero. This remains true even in
the off-policy case (when d 6= dπ).

That TDDP converges to a zero of the PBE for linear FA and the on-policy distribution
is an important positive result, representing the most successful generalization ever of DP
to function approximation. It was a breakthrough of sorts, representing significant progress
towards addressing Bellman’s “curse of dimensionality.” However, linearity and the on-
policy distribution remained significant limitations. In this paper we will present methods
that remove both limitations, so let us examine them more carefully.

TDDP’s limitation to the on-policy distribution appears more fundamental. Simple
counterexamples were presented by Baird (1995), by Tsitsiklis and Van Roy (1997), and
Scherrer (2011). Perhaps the simplest counterexample, and a good one for understanding
the issues, is given by this MDP:

0

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

When approximate DP converges, it converges to a value function at which the PBE
(12) is zero and, of course, to a fixpoint of its update (14).

That approximate DP converges to a zero of the PBE for linear FA and the on-policy
distribution is an important positive result, representing the most successful generalization
of DP to a powerful class of function approximators. It was a breakthrough of sorts,
representing significant progress towards addressing Bellman’s “curse of dimensionality.”
However, linearity and the on-policy distribution remained significant limitations. In this
paper we will present methods that remove both limitations, so let us examine them more
carefully.

The status of approximate DP’s limitation to linear function approximators is not com-
pletely clear. In practice, such algorithms have been widely used with nonlinear function
approximators with good results. Tesauro’s (1992, 1995) celebrated results with backgam-
mon, for example, were obtained with a nonlinear neural-network function approximator.
It is in fact extremely di�cult to construct a example in which approximate DP fails to
converge under the on-policy distribution. The only such counterexample currently known
is Tsitsiklis and Van Roy’s spiral example, which is complex and contrived. We have tried
to construct a simpler one without success. Moreover, we have recently shown that even,
in the nonlinear case, all fixpoints of the approximate DP update are stable—that if the
approximator is started near a fixpoint it will converge to it (Maei, Sutton & Van Roy
in preparation). It seems quite likely to us that there could be a significant further posi-
tive result to be obtained for nonlinear function approximators and approximate DP. For
the moment, however, there are no positive theoretical results for approximate DP and
nonlinear function approximators.

Approximate DP’s limitation to the on-policy distribution appears more fundamental.
Simple counterexamples were presented by Baird (1995) and by Tsitsiklis and Van Roy
(1997) who also developed a theoretical understanding of the instability. Perhaps the sim-
plest counterexample, and a good one for understanding the issues, is given by this fragment
of an MDP:

0

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) �= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

2✓

So we see there is a fundamental sense in which DP does not work well with parametric
function approximation. This is the problem of DP and FA.

There is a special case that works, where the states are updated with the on-policy
distribution.

✓t+1 = ✓t + ↵
X

s

d⇡(s)
⇥
(B⇡v✓t)(s)� v✓t(s)

⇤
r✓tv✓t(s), (16)

12

0
The states are labeled to characterize the function approximator, which assigns the first
state a value of θ and the second a value of 2θ (theta is a scalar in this example). Note that
this is a linear function approximator. Now suppose d puts all weight on the first state.
Then the TDDP update reduces to

θ ← θ + α(γ2θ − θ) = (1 + α(2γ − 1))θ, (32)

which diverges if θ 6= 0 and γ > 1
2 . It is not important to this example that the second

state is given zero weight; if it is given, say, 10% of the weight, then divergence still occurs
(albeit at higher values of γ). Of course, if the second state is given equal weight, then that
would be the on-policy distribution and convergence would be guaranteed.

So we see there is a fundamental sense in which DP does not work well with parametric
function approximation. It is due to bootstrapping, the recursive update, not to TDL.
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4.2 Gradient descent

TDDP converges reliably only when d is the on-policy distribution, and has no converge
guarantees for nonlinear function approximators. In these senses, it is not a very robust
algorithm, and neither are the corresponding TDL algorithms. This contrasts with function
approximation in supervised learning settings, where methods based on gradient descent
exhibit robust convergence to a local optimum for nonlinear function approximators and
for all distributions. Gradient descent is a very general for designing robustly convergent
learning algorithms, and it is natural to consider adapting it value function approximation.

A gradient-descent algorithm is one whose update is proportional to the negative gradi-
ent of some scalar function J(θ) over the weight-vector space, called the objective function.
The objective typically represents some sort of error to be minimized, perhaps a squared
error. Also typically, J has a minimal value, perhaps zero. The general schema for a
gradient-descent algorithm is:

θ ← θ − α∇J(θt), (33)

where α is a positive step-size parameter as before. As long as the objective satisfies basic
smoothness conditions, algorithms of this form can be made convergent to a minimum of
J simply by choosing the step-size parameter to be small. For sufficiently small α, the
update must take θ downhill, to a smaller value of J . As J only decreases, yet is bounded
below, convergence becomes inevitable. Gradient descent can also be done when the true
gradient is not available, using instead an unbiased random estimate of the gradient; this is
called stochastic gradient descent, and it also converges robustly (if the step-size parameter
is reduced appropriately over time.

TDDP is not a gradient-descent algorithm for any function approximator (Barnard
1993).

4.3 Residual-gradient DP

The gradient-descent approach to parametric policy evaluation in TDL has been extensively
explored using the BE objective, as previously noted. The natural DP algorithm for gradient
descent in the BE objective is (Baird 1999, Sutton & Barto 1998):

θ ← θ − 1

2
α∇JBE(θ)

= θ − 1

2
α∇
[
δ̄>θ Dδ̄θ

]

= θ − α
[
∇δ̄θ

]>
Dδ̄θ

= θ − α∇[rπ + γPπΦθ − Φθ]>Dδ̄θ

= θ − α [Φ− γPπΦ]>Dδ̄θ

= θ + α
∑

s∈S
d(s)δ̄θ(s)

(
∇vθ(s)− γφ̄π(s)

)
, (34)

where the vector φ̄π(s) ∈ R|S| is the expected next feature after s, under policy π,

φ̄π(s)
.
=
∑

a∈A
π(s, a)

∑

s′∈S
p(s′|s, a)φ(s′). (35)
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This algorithm, which we call residual-gradient DP (RGDP) because of its close relation-
ship to Baird’s (1995, 1999) residual-gradient TDL algorithm, can be approximated with
O(n) computation and memory and has good convergence properties. In particular, it con-
verges to a local optimum of JBE for nonlinear function approximators and for an arbitrary
weighting distribution d. It does require a model or simulator, as has long been noted (but
now we know this is true for any method that minimizes JBE).

4.4 Gradient DP

We now present an algorithm based on gradient descent, like RGDP, but for JPBE. We call
the algorithm simply gradient DP, or GDP. For linear function approximation, it is defined
by the following two updates, performed in this order:

θ ← θ + αΦ>Dδ̄θ − αγ(PπΦ)>DΦwθ (36)

= θ + α
∑

s∈S
d(s)

(
δ̄θ(s)φ(s)− γ

(
w>φ(s)

)
φ̄π(s)

)
(37)

and

w ← w + βΦ>D(δ̄θ − Φw) (38)

= w + β
∑

s∈S
d(s)

(
δ̄θ(s)− w>φ(s)

)
φ(s), (39)

where w ∈ Rn is a second weight vector, and β > 0 is a second step-size parameter. To
obtain convergence, we assume that the w iteration is faster than the θ iteration (α� β).
For a fixed θ and sufficiently small β, w converges deterministically to

wθ =
(
Φ>DΦ

)−1
Φ>Dδ̄θ. (40)

We now show that, at this value for w, the main linear GDP update for θ (36) is gradient
descent in the PBE:

θ ← θ − α1

2
∇JPBE(θ)

= θ − α1

2
∇
[
δ̄>θ DΦ

(
Φ>DΦ

)−1
Φ>Dδ̄θ

]

= θ − α[∇δ̄θ]>DΦ
(
Φ>DΦ

)−1
Φ>Dδ̄θ

= θ − α∇[rπ + γPπΦθ − Φθ]>DΦwθ

= θ + α [Φ− γPπΦ]>DΦwθ.

(a gradient-based DP algorithm analogous to Sutton et al.’s (2009) GTD2)

= θ + αΦ>DΦwθ − αγ(PπΦ)>DΦwθ

= θ + αΦ>DΦ
(
Φ>DΦ

)−1
Φ>Dδ̄θ − αγ(PπΦ)>DΦwθ

= θ + αΦ>Dδ̄θ − αγ(PπΦ)>DΦwθ,

which is the desired linear GDP update for θ (36) with wθ in place of w. In this sense, GDP
is a gradient descent algorithm and, accordingly, it is relatively straightforward to prove
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that it converges for arbitrary d (next subsection) and for nonlinear function approximators
(Section 7).

The update for w (39) is a standard gradient-descent rule, often called LMS (Least Mean
Square), for estimating δ̄θ(s) as w>φ(s). For stationary θ, it is well known that this update
converges to wθ (e.g., see Widrow and Stearns 1985). This update can also be derived as
gradient descent in its mean-squared error:

w ← w − β 1

2
∇w

∥∥δ̄θ − Φw
∥∥

= w − β 1

2
∇w
[
(δ̄θ − Φw)>D(δ̄θ − Φw)

]

= w − β∇w
[
δ̄θ − Φw

]>
D(δ̄θ − Φw)

= w + βΦ>D(δ̄θ − Φw),

which is the linear GDP update for w (38), completing the derivation of linear GDP.

4.5 Convergence of linear GDP

In this subsection we prove the convergence of linear GDP. GDP is a deterministic algorithm,
and we have shown its close relationship to gradient descent in the previous subsection.
Unfortunately, we cannot use standard results for gradient descent to prove convergence of
GDP because the two updates (for θ and w) operate simultaneously, and neither is an exact
gradient descent algorithm while the other is operating.

Theorem 1 (Convergence of linear GDP) Consider the linear GDP algorithm given
by (36), (38), and (5), for any distribution d : S → R+, for any finite MDP, for any
bounded feature vectors φ : S → [−M,M ]n, and with w initialized to zero. Then there exists
a positive constant ηmin, such that, for any η > ηmin, there exists a positive constant αmax

such that, for any positive step-size parameters α < αmax and β = ηα, then JPBE converges
to zero. Moreover, ηmin is the larger of 0 and the largest eigenvalue of the n× n symmetric
matrix

−C−1A+A>

2
, (41)

where C and A are defined by (22) and (24).

Proof Linear GDP’s two iterations (eqs. 36 and 38) can be rewritten as a single iteration in
a combined parameter vector with 2n components, z> = (w>, θ>), and a new reward-related
vector g, also with 2n components, as follows:

z ← z + α (−Gz + g) , (42)

where

G
.
=

(
ηC ηA

C −A> A

)
, g

.
=

(
ηb
b

)
,

where b is defined by (24). The convergence of z is entirely determined by the real parts
of the eigenvalues of the matrix I − αG. If they are all positive and less than 1, then z
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converges to the fixed point satisfying −Gz + g = 0. Thus, we need only establish that:
(i) the real parts of the eigenvalues of G are all positive; (ii) Choose α small enough that
the largest real-part eigenvalue of αG is less than 1; (iii) Show that if −Gz + g = 0 then
JPBE = 0

The eigenvalues of G can be found by solving the characteristic equation, det(G−λI) = 0
(where det() denotes determinant). We have:

0 = det(G− λI) = det

(
ηCλ,η ηA
C −A> A− λI

)
, where Cλ,η

.
= C − λ

η
I.

This can be simplified using the determinant rule for partitioned matrices. According to this
rule, if A1 ∈ Rn1×n1 , A2 ∈ Rn1×n2 , A3 ∈ Rn2×n1 , A4 ∈ Rn2×n2 then for X = [A1A2;A3A4] ∈
R(n1+n2)×(n1+n2), det(X) = det(A1) det(A4 −A3A

−1
1 A2). Thus, we have

0 = det(G− λI) = det(ηCλ,η) det
(
A− λI − (C −A>) (ηCλ,η)

−1 ηA
)

= η2n det(Cλ,η) det
(
A− λI − (C −A>)C−1λ,η A

)
.

Note, to avoid singularity issues, through out this paper, we use Moore-Penrose pseudo-
inverse for inverting matrices. To simplify the determinant term further, we can re-write
the matrix inside the second determinant as follows:

A− λI − (C −A>)C−1λ,ηA = A− λI − CC−1λ,ηA+A>C−1λ,ηA

= −λI − λ

η
C−1λ,ηA+A>C−1λ,ηA

= (−λA−1Cλ,η +A> − λ

η
I)C−1λ,ηA

= A−1(−λCλ,η +A(A> − λ

η
I))C−1λ,ηA,

where we have used the identity CC−1λ,η = I + λ
ηC
−1
λ,η with X(Y +X)−1 = (Y +X − Y )(Y +

X)−1 = I − Y (Y +X)−1. Thus, using the determinant rule det(XY ) = det(X) det(Y ) for
the two matrix X and Y , and also det(X−1) = det(X)−1, we have:

0 = det(G− λI) = η2n det(Cλ,η) det
(
A−1(−λCλ,η +A(A> − λ

η
I))C−1λ,ηA

)

η2n det(Cλ,η) det(A−1) det
(

(−λCλ,η +A(A> − λ

η
I))
)

det(C−1λ,ηA)

= η2n det(−λCλ,η +A(A> − λ

η
I)),

which implies that all the eigenvalues of matrix G satisfies (note, η > 0):

det(−λCλ,η +A(A> − λ

η
I)) = 0.

As such, there must exist a nonzero vector x ∈ Cn, such that for any λ satisfying above, we
have

x∗
(
−λCλ,η +A(A> − λ

η
I)

)
x = 0,
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where x∗ is the complex conjugate of vector x (including its transpose), and x∗x = ‖x‖2 > 0.
Using the definition of Cλ,η in the above equation, would lead us to the following quadratic
equation in terms of λ,

‖x‖2λ2 − (ηx∗Cx+ x∗Ax)λ+ η‖Ax‖2 = 0,

where ‖Ax‖2 = x∗A>Ax = x∗AA>x. This quadratic equation has two solutions, λ1 and
λ2, where 1

λ1λ2 =
η‖Ax‖2

‖x‖2
> 0, λ1 + λ2 =

(ηx∗Cx+ x∗Ax)

‖x‖2
.

Because the product of the two solutions, λ1λ2, is a positive and real number, therefore,
λ2 = κλ∗1, where κ ∈ R+. Thus, we have λ1 +λ2 = λ1 +κλ∗1. Let Re(λ) denote the real-part
of λ.

Hence, due to Re(λ1+λ2) = (1+κ)Re(λ1) = (1+1/κ)Re(λ2), if we show Re(λ1+λ2) > 0
for some conditions on η, that would imply Re(λ1) > 0 and Re(λ2) > 0.

Let us write Re(λ1+λ2) > 0 in the following form, using the indentity Re (λ) = (λ+λ∗)/2
and the fact that A and C are matrices whose elements are real numbers:

Re(λ1 + λ2) =
Re (ηx∗Cx+ x∗Ax)

‖x‖2
=

(ηx∗Cx+ x∗Ax) + (ηx∗Cx+ x∗Ax)∗

2‖x‖2

=

(
2ηx∗Cx+ x∗(A+A>)x

)

2‖x‖2
> 0,

which is equivalent to
2ηx∗Cx+ x∗(A+A>)x > 0.

Thus, η > −x∗(A+A>)x/(2x∗Cx). Clearly, the above inequality holds, for all λ eigenvalues,
if we choose η such that

η > max
z 6=0, z∈Cn

−z>Hz
z>Cz

, H
.
=
A+A>

2
.

Here, the H and C matrices are symmetric, hence their eigenvalues and eigenvectors are
reals. For any z 6= 0, z ∈ Rn, let y = C1/2z. Then when z>Cz = 1, we also have ‖y‖2 = 1.
Therefore, it suffices to have

η > max
‖y‖2=1

y>
(
−C−1/2HC−1/2

)
y,

which is equivalent to η > λmax

(
−C−1/2HC−1/2

)
. Note, C−1/2HC−1/2 is symmetric, so

its eigenvalues are all real. Also, because

λmax

(
−C−1/2HC−1/2

)
= λmax

(
−C−1H

)
,

1. The quadratic equation, ax2 + bx+ c = 0 (with a 6= 0), has two solutions. The product and the sum of
these two solutions are, x1x2 = c

a
and x1 + x2 = −b

a
, respectively.
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then, because η is positive number, we conclude

η > ηmin = max{0, λmax

(
−C−1H

)
},

which suffices to guarantee that all the real-part eigenvalues G are positive. The next step
is to choose α such that it is smaller than the inverse of largest real-part eigenvalue of
G. The latter condition makes the z-iterate convergent to the fixed point which satisfies
−Gz + g = 0.

Finally, we show that if −Gz + g = 0 then JPBE = 0. Because −Aθ + b = 0 implies
JPBE = 0, then we are done if we show that the θ-fixed point of iterate z satisfies, −Aθ+b =
0. To show this, observe that −Gz + g = 0, in terms of w and θ, can be written in the
following form:

(−Aθ + b)− (C −A>)w = 0, and − Cw + (−Aθ + b) = 0.

From the above linear equations we conclude −Aθ + b = 0, thus finishing the proof.

4.6 Empirical counterexamples for off-policy d

In this section we demonstrate empirically that TDDP diverges, and linear GDP converges,
on the small counterexample given at the beginning of this section and on Baird’s coun-
terexample.

The small example given earlier is shown inset in Figure ??, which also shows the
divergence of θ under TDDP and the convergence of both θ and w to zero under GDP. In
this example, θ was initialized to 1, w was initialized to zero, and d was 0.9 for the first
state and 0.1 for the second. The step-size parameters were α =? and β =?. Notice the
way w has to first become nonzero before it can bring θ, along with itself, back to zero.

Baird’s (1995) counterexample is shown in Figure 3. The Markov decision process
(MDP) is depicted in Fig. 3. The reward is zero in all transitions, thus the true value
functions for any given policy is zero. The behavior policy, in this example, chooses the
solid line action with probability of 1/7 and the dotted line action with probability of 6/7.
The goal is to learn the value of a target policy that chooses the solid line more often
than the probability of 1/7. In this example, the target policy choose the solid action with
probability of 1.

Value functions are approximated linearly. Both TD(0) and dynamic programming
(with incremental updates), however, will diverge on this example; that is, their learning
parameters will go to ±∞ as is illustrated in Figure 3.

Also freaky features goes in this section, maybe before Baird’s counterexample.
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Figure 3: Left panel: Baird’s counterexample (7 state version). Every transition in this
MDP receives zero reward. Each state, has two actions, represented by solid line
and dotted line. Solid line action only make transition to state state 7, while
dotted line action uniformly make transition to one of states 1-6 with probability
of 1/6.The value functions are approximated linearly in the form of V (i) = 2θ(i)+
θ0, for i ∈ {1, ..., 6}, and V (7) = θ(7) + 2θ0. Here, the discount factor is γ = 0.99.
The zero-PBE solution, in this example, is θ(i) = 0, i ∈ {1, ..., 7}, and θ0 = 0.
Right panel: The weights diverge to infinity under TDDP with all weights equally
weighted.

5. Learning and identifiability

In learning, the MDP is viewed as a generator of a sample data path, an infinite-length
trajectory of feature vectors, actions, and rewards: φ(S0), A0, R1, φ(S1), A1, R2, φ(S2), . . ..
The goal is to use this data to approximate the value function vπ for the target policy, π,
while the actions are selected according to another given policy µ, known as the behavior
policy. The two policies may be the same, the on-policy case, or they may be different, in
which case the data and learning is said to be “off” the target policy, or off-policy. Note
that the states St, t = 0, 1, 2, . . . are not in the trajectory, only the corresponding feature
vectors φ(St). This is not a limitation, as the feature vectors could in principle capture
the entire state, and allows us to include cases of partial observability. The policies, π and
µ, are left unrestricted and may depend on the state arbitrarily. We do assume that at
each step t, the action probabilities π(St, a) and µ(St, a) are known for all a ∈ A without
extensive computation. In this section we also assume linear function approximation (5),
postponing the nonlinear case until Section 7.

The MDP and µ together are assumed to form an ergodic process with stationary
distribution dµ : S → R+, defined as in (31) (if there are states that do not recur with
positive probability under µ, then they can simply be removed from the state set). Let
us assume that the initial state, S0, is also sampled from dµ. The probability distribution
over random all variables St, At, and Rt+1, for t = 0, 1, 2, . . . is then completely defined,
and we can talk unambiguously about the expectation of these random variables and other
random variables defined in terms of these. Several examples of this are given in the second
paragraph below.
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Whereas earlier we considered planning (DP) objectives based on an arbitrary distribu-
tion d, in this section we consider learning objectives only for d = dµ. The difference is that
in the planning case we have direct access to the states and can examine or sample them
arbitrarily, whereas in the learning case the states are hidden; all we know about the states
in the trajectory is that in the long run their proportion matches dµ, even though we have
no idea what dµ is. In a later section we examine some important generalizations, but for
now we assume d = dµ.

In off-policy learning we are often concerned with the ratio of taking an action under
the target and behavior policies, sometimes called the importance sampling ratio:

ρ(s, a) =
π(s, a)

µ(s, a)
. (43)

The expectation of this ratio on state–action pairs encountered in the trajectory is

E[ρ(St, At)] =
∑

s

dµ(s)
∑

a

µ(s, a)
π(s, a)

µ(s, a)
=
∑

s

dµ(s)
∑

a

π(s, a) = 1. (44)

Note that we have not explicitly conditioned on µ (or the MDP) because of our convention
for expectations that these are implicit. Next we follow this convention to express the key
components of the PBE objective, C, A, and b, as expectations. First, to further simplify
the notation, let us define ρt

.
= ρ(St, At) and φt

.
= φ(St). Then:

C = E
[
ρtφtφ

>
t

]
, A = E

[
ρtφt

(
φt − γφt+1

)> ∣∣∣ At ∼ π
]
, and b = E[ρtRt+1φt | At ∼ π] .

(45)
Note that these expectations condition only on actions, which are assumed visible in the
trajectory, and not on states, which are not observed. As such, all of these expectations
can be estimated from the data trajectory by averaging observable quantities. Recall that
the PBE objective can be written in terms of C, A, and b, (eqn. 26) so the fact that these
can be estimated from data means that JPBE itself can be estimated from data. As we will
show later, the gradient of JPBE with respect to θ and the minimizing value of θ can also
be determined from the data trajectory. This might seem like a small thing, but it turns
out it is not true for either the VE or BE objectives. Neither of these can be estimated, or
identified, from data, as we show next.

5.1 Identifiability

Let us consider more carefully the relationship between the MDP, the possible data tra-
jectories, and the objectives of learning. As already described, the MDP and behav-
ior policy together completely determine the probability distribution over data trajec-
tories. Assume for the moment that the state, action, and reward sets are all finite.
Then, for any finite sequence ξ = φ0, a0, r1, . . . , rk, φk, there is a well defined probabil-
ity (possibly zero) of it occuring as the initial portion of a trajectory, which we may
denoted Pµ(ξ) = Pr{φ(S0) = φ0, A0 = a0, R1 = r1, . . . , Rk = rk, φ(Sk) = φk}. The distri-
bution Pµ(ξ) then is a complete characterization of a source of data trajectories. To know
Pµ(ξ) is to know everything about the statistics of the data, but it is still less than knowing
the MDP. In particular it is not enough to reconstruct or identify the MDP. Further, the
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VE and BE objectives are readily computed from the MDP as described in Section 3, but
they also are not identifiable and cannot be determined from Pµ(ξ) alone.

The possible dependency relationships among the data distribution, MDPs, and var-
ious objectives are summarized in Figure 4. The left side of the figure treats the non-
bootstrapping objective, JVE (12). It indicates that two different MDPs, MDP1 and MDP2,
can produce the same data distribution, yet have different VEs. The simplest example of
this is the two MDPs shown below:

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not
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These are MDPs with only one action from each state, so they are in effect Markov chains.
Where two edges leave a state, both possibilities are assumed to occur with equal probability.
The numbers indicate the reward received on each edge traversal. All the states appear the
same; they all produce the same feature vector φ = 1 and have approximated value θ, a
scalar. Thus, the only varying part of a data trajectory is the rewards. The left MDP stays
in the same state and emits an endless stream of 0s and 2s i.i.d. at random, each with 50-50
probability. The right MDP, on every step, either stays in its current state or switches to
the other, with 50-50 probability. The reward is deterministic in this MDP, always a 0 from
one state and always a 2 from the other, but because the state is i.i.d. 50-50, the observable
data is again an endless stream of 0s and 2s at random, identical to that produced by the
left MDP. Thus, two different MDPs can produce the same data distribution as shown in
the figure. This proves that the relationship between MDPs and data distributions is many-
to-one and not invertible. We say that the MDP is not identifiable, meaning that it is not
a function of the observable data distribution, and thus in principle cannot be determined
from data.

This pair of MDPs demonstrate that JVE is also not identifiable. Let γ = 0 and θ = 1.
Then the true values of the three states are 1, 0, and 2, left to right, and the JVE of the
left MDP is 0 while the JVE of the right MDP is 1, for any d. Thus, the JVE is different for
two MDPs with the same data distribution and the JVE cannot be determined from data.
There is a saving grace, however. Even though the two JVEs can be different, the value
of θ that minimizes them is always the same and can always be determined by minimizing
another objective, based on the return error (RE), which is identifiable, as shown in the
figure. The RE objective is the mean-squared error between the approximate values and
what the returns would be under the target policy:

JRE(θ)2 = E
[(
vθ(St)−Gt

)2 ∣∣∣ At:∞ ∼ π
]
. (46)

It is not difficult to show that

JRE(θ)2 = JVE(θ)2 + E
[(
vπ(St)−Gt

)2 ∣∣∣ At:∞ ∼ π
]
, (47)

where the second term does not depend on θ, but only on characteristics of π and the MDP.
Thus, if one finds the minimal θ for JRE, then one will also have found the minimum for
JVE, even though JVE itself is not identifiable. The RE objective is identifiable as it is a

22



MDP1 MDP2

BE1 BE2

policy together completely determine the probability distribution over data trajectories.
Assume for the moment that the state, action, and reward sets are all finite. Then,
for any finite sequence ⇠ = �0, a0, r1, . . . , rk, �k, there is a well defined probability (pos-
sibly zero) of it occuring as the initial portion of a trajectory, which we may denoted
P(⇠) = Pr{�(S0) = �0, A0 = a0, R1 = r1, . . . , Rk = rk, �(Sk) = �k}. The distribution P
then is a complete characterization of a source of data trajectories. To know P is to know
everything about the statistics of the data, but it is still less than knowing the MDP. In
particular, the VE and BE objectives are readily computed from the MDP as described in
Section 3, but these cannot be determined from P alone.
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TDE RE VE
The problem can be seen in very simple, POMDP-like examples, in which the observable

data produced by two di↵erent MDPs is identical in every respect, yet the BE is di↵erent.
In such a case the BE is literally not a function of the data, and thus there is no way to
estimate it from data. One of the simplest examples is the pair of MDPs shown below:
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These MDPs have only one action (or, equivalently, no actions), so they are in e↵ect Markov
chains. Where two edges leave a state, both possibilities are assumed to occur with equal
probability. The numbers on the edges indicate the reward emitted if that edge is traversed.
The MDP on the left has two states that are represented distinctly; each has a separate
weight so that they can take on any value. The MDP on the right has three states, two
of which, B and B0, are represented identically and must be given the same approximate
value. We can imagine that the value of state A is given by the first component of ✓ and
the value of B and B0 is given by the second. Notice that the observable data is identical
for the two MDPs. In both cases the agent will see single occurrences of A followed by a
0, then some number of Bs each followed by a �1, except the last which is followed by a
1, then we start all over again with a single A and a 0, etc. All the details are the same
as well; in both MDPs, the probability of a string of k Bs is 2�k. Now consider the value
function v✓ = ~0. In the first MDP, this is an exact solution, and the overall BE is zero. In
the second MDP, this solution produces an error in both B and B0 of 1, for an overall BE
of
p

d(B) + d(B0), or
p

2/3 if the three states are equally weighted by d. The two MDPs,
which generate the same data, have di↵erent BEs. Thus, the BE cannot be estimated from
data alone; knowledge of the MDP beyond what is revealed in the data is required.

Moreover, the two MDPs have di↵erent minimal-BE value functions.2 For the first MDP,
the minimal-BE value function is the exact solution v✓ = ~0 for any �. For the second MDP,

2. This is a critical observation, as it is possible for an error function to be unobservable and yet still be
perfectly satisfactory for use in learning settings because the value that minimizes it can be determined
from data. For example, this is what happens with the VE. The VE is not observable from data, but its
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Whereas earlier we considered planning (DP) objectives based on an arbitrary distribu-
tion d, in this section we consider learning objectives only for d = dµ. The di↵erence is that
in the planning case we have direct access to the states and can examine or sample them
arbitrarily, whereas in the learning case the states are hidden; all we know about the states
in the trajectory is that in the long run their proportion matches dµ, even though we have
no idea what dµ is. In a later section we examine some important generalizations, but for
now we assume d = dµ.

In o↵-policy learning we are often concerned with the ratio of taking an action under
the target and behavior policies, sometimes called the importance sampling ratio:

⇢(s, a) =
⇡(s, a)

µ(s, a)
. (41)

The expectation of this ratio on state–action pairs encountered in the trajectory is

E [⇢(St, At)] =
X

s

dµ(s)
X

a

µ(s, a)
⇡(s, a)

µ(s, a)
=
X

s

dµ(s)
X

a

⇡(s, a) = 1. (42)

Note that we have not explicitly conditioned on µ (or the MDP) because of our convention
for expectations that these are implicit. Next we follow this convention to express the key
components of the PBE objective, C, A, and b, as expectations. First, to further simplify
the notation, let us define ⇢t

.
= ⇢(St, At) and �t

.
= �(St). Then:

C = E
h
⇢t�t�

>
t

i
, A = E

h
⇢t�t

�
�t � ��t+1

�> ��� At ⇠ ⇡
i
, and b = E [⇢tRt+1�t | At ⇠ ⇡] .

(43)
Note that these expectations condition only on actions, which are assumed visible in the
trajectory, and not on states, which are not observed. As such, all of these expectations
can be estimated from the data trajectory by averaging observable quantities. Recall that
the PBE objective can be written in terms of C, A, and b, (eqn. 24) so the fact that these
can be estimated from data means that JPBE itself can be estimated from data. As we will
show later, the gradient of JPBE with respect to ✓ and the minimizing value of ✓ can also
be determined from the data trajectory. This might seem like a small thing, but it turns
out it is not true for either the VE or BE objectives we considered earlier. None of these
can be estimated, or identified, from data, as we show next.

5.1 Identifiability

Let us consider more carefully the relationship between the MDP, the possible data tra-
jectories, and the objectives of learning. As already described, the MDP and behav-
ior policy together completely determine the probability distribution over data trajec-
tories. Assume for the moment that the state, action, and reward sets are all finite.
Then, for any finite sequence ⇠ = �0, a0, r1, . . . , rk, �k, there is a well defined probabil-
ity (possibly zero) of it occuring as the initial portion of a trajectory, which we may
denoted Pµ(⇠) = Pr{�(S0) = �0, A0 = a0, R1 = r1, . . . , Rk = rk, �(Sk) = �k}. The distri-
bution Pµ(⇠) then is a complete characterization of a source of data trajectories. To know
Pµ(⇠) is to know everything about the statistics of the data, but it is still less than knowing
the MDP. In particular it is not enough to reconstruct or identify the MDP. Further, the
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Figure 4: Causal relationships among the data distribution, MDPs, and errors for non-
bootstrapping (left) and bootstrapping (right) objectives. In both cases, two
different MDPs can produce the same data distribution. For non-bootstrapping
objectives, the VE can be different for the two MDPs, and thus is not identifiable,
but the optimal weights are the same and can be determined by optimizing the
RE objective, which is identifiable. For bootstrapping objectives, both the BE
and its optimum can be different for the two MDPs, and they have no coincidence
with the identifiable errors, PBE and TDE, or their optima. Thus, minimizing
JBE is not a feasible objective for learning.

function only of the data distribution and the two policies. In the on-policy case at least,
the RE objective can also be estimated easily from the data (the off-policy case is probably
also possible using importance sampling techniques (e.g., Precup & Sutton 2000)).

But let us return to the bootstrapping objectives, JBE and particularly JPBE, which are
of primary interest in this article. The dependencies here are summarized in the right half
of Figure 4. To show the full range of possibilities we need a slightly more complex example
than that considered above. Consider the following two MDPs:

BA
1

0

-1
BA

0

-1 B'

0

1 -1

The MDP on the left has two states that are represented distinctly; each has a separate
weight so that they can take on any value. The MDP on the right has three states, two of
which, B and B′, are represented identically and must be given the same approximate value.
We can imagine that θ has two components and that the value of state A is given by the
first component and the value of B and B′ is given by the second. Notice that the observable
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data is identical for the two MDPs. In both cases the agent will see single occurrences of A
(or rather the feature vector for A) followed by a 0, then some number of Bs, each followed
by a −1 except the last which is followed by a 1, then we start all over again with a single A
and a 0, etc. All the statistical details are the same as well; in both MDPs, the probability
of a string of k Bs is 2−k.

Now consider the value function vθ = ~0. In the first MDP, this is an exact solution, and
JBE is zero. In the second MDP, this solution produces a squared error in both B and B′

of 1, such that JPBE =
√
d(B)1 + d(B′)1 =

√
2/3 if d = dµ. As with the previous example

(there for the VE objective), these two MDPs, which generate the same data, have different
JBEs.

In this case, however, there is no saving grace; the minimizing value of θ is also different
for the two MDPs For the first MDP, the minimal-JBE value function is the exact solution
vθ = ~0 for any γ. For the second MDP, the minimum-JBE value function is a complicated
function of γ, but in the limit, as γ → 1, it is vθ(B) = vθ(B

′) = 0 and vθ(A) = −1
2 . Thus

the value function that minimizes JBE cannot be estimated from data alone; knowledge of
the MDP beyond what is revealed in the data is required. In this sense, it is impossible in
principle to pursue the BE objective from data alone.

It may be surprising that the JBE-minimizing value of A is so far from zero. Recall that
A has a dedicated weight and thus its value is unconstrained by function approximation. A
is followed by a reward of 0 and transition to a state with a value of nearly 0, which suggests
vθ(A) should be 0; why is its optimal value substantially negative rather than 0? The answer
is that making the value of A negative reduces the error upon arriving in A from B. The
reward on this deterministic transition is 1, which implies that B should have a value 1 more
than A. Since vθ(B) is approximately zero, vθ(A) is driven toward −1. The JBE-minimizing
value of vθ(A) ≈ −1

2 is a compromise between reducing the errors on leaving and on entering
A. Alternatively, one could seek to minimize only the error on leaving states; this is what
happens with the PBE objective.

5.2 The TDE objective

As we have shown, JBE and its minimum are not identifiable from data or even from
complete knowledge of Pµ. They cannot be estimated without taking multiple samples
from the same state, which requires a model/simulator. This may be a bit surprising, as
it is natural to think of JBE as an expectation. It is the expectation of the square of the
Bellman error:

JBE(θ)2
.
=
∥∥δ̄θ
∥∥ = E

[
δ̄θ(s)

2
]
, (48)

and the Bellman error itself can be written as an expectation:

δ̄θ(s) = E[δt | St = s,At ∼ π] = E[ρtδt | St = s] (49)

where δt is a random variable, dependent on θ, known as the TD error (TDE).

δt
.
= Rt+1 + γvθt(St+1)− vθt(St). (50)

Unfortunately, if (48) and (49) are combined, the result is an expectation of an expectation,
which cannot be sampled or otherwise estimated from data as we have shown. If one ignores
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the second expectation, but simply uses δt directly, one obtains the TDE objective:

JTDE(θ)2
.
= E

[
δ2t
∣∣ At ∼ π

]
= E

[
ρtδ

2
t

]
.

This objective is identifiable and can be minimized from data, but of course the minimum
is not the same as that of JBE.

5.3 Multi-step bootstrapping objectives

[This is where we introduce lambda-generalizations of the PBE. Or maybe do all the multi-
step stuff together, later.]

We define the multi-step bootstrapping Bellman operator, Bλ
π , according to

(Bλ
πv)(s)

.
=
∑

a∈A
π(s, a)

[
r(s, a) + γ(s)

∑

s′∈S
p(s′|s, a)

[
(1− λ(s′))v(s′) + λ(s′)(Bλ

πv)(s′)
]]
,

(51)
where γ(s) : S 7→ [0, 1] is state-dependent discount factor, and λ : S 7→ [0, 1] is a state
dependent bootstrapping parameter.

Now the multi-step bootstrapping JPBE is

JPBE(θ, λ)
.
=
∥∥∥vθ −ΠBλ

πvθ

∥∥∥ =
∥∥∥Πδ̄λθ

∥∥∥ , (52)

where δ̄λθ is multi-step bootstrapping Bellman error (also called λ− weighted Bellman error)

δ̄λθ
.
= Bλ

πvθ − vθ. (53)

[since we are doing DP here maybe we don’t need to introduce forward-backward view
here?]

5.4 Action values

Maybe we should do all the action-value stuff later, together.
It is appropriate to introduce this here because it is primarily in a learning setting that

our goal becomes to approximate action values rather than state values. Perhaps we will
be able to formulate this in such a way that we can handle state values and action values
simultaneously. But we should not press that if it is looking tricky or complicated.

6. Gradient temporal-difference learning (GTD)

We are now ready to present our main learning algorithms. The first of these, linear
GTD(0), is a one-step gradient-TD algorithm for learning an an approximate linear state-
value function. It is defined by the following two iterations:

θt+1 = θt + αtρt

[
δtφt − γφt+1

(
φ>t wt

)]
, (54a)

wt+1 = wt + βtρt
(
δt − φ>t wt

)
φt, (54b)
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where θt ∈ Rn and wt ∈ Rn are two modifiable weight vectors, αt > 0 and βt > 0 are
two sequences of step-size parameters, and ρt, φt, and δt are as defined in Section 5 with
vθt(s) = θ>t φ(s). These updates are chosen so that in expectation the weight vectors θt and
wt evolve as θ and w do in GDP. That is, for any θ, w, α, and β, suppose αt = α and
βt = β, then

E[θt+1 − θt | θt = θ, wt = w] = E
[
αρt
[
δtφt − γφt+1

(
φ>t w

)] ∣∣∣ θt = θ
]

= αE
[
ρtδtφt − γρtφt+1

(
φ>t w

) ∣∣∣ θt = θ
]

= α
∑

s

d(s)
[
δ̄θ(s)φ(s)− γφ̄π(s)

(
φ(s)>w

)]

(using (48) and (35)), which is the linear GDP update for θ (37), and

E[wt+1 − wt | θt = θ, wt = w] = E
[
βρt
(
δt − φ>t w

)
φt

∣∣∣ θt = θ
]

= βE
[
ρtδtφt − ρt

(
φ>t w

)
φt

∣∣∣ θt = θ
]

= β
∑

s

d(s)
[
δ̄θ(s)φ(s)−

(
φ>t w

)
φt

]

(using (48) and (44)), which is the linear GDP update for w (39).
The first step is to introduce a general linear stochastic update in the following form:

Zt+1 = Zt + αt [−G(Xt)Zt + g(Xt)] , (55)

where G(Xt) and g(Xt) are... So G(Xt) matrix will become
(Xt)t≥0 is a Markov Process with an underlying unique invariant distribution, and G(Xt)

and g(Xt) are stochastic matrix and vector, respectively, as a function of process Xt.
Therefore the following expectations are well-defined G

.
= limt→+∞ E[Gt(Xt)], g =

limt→+∞ E[g(Xt)]. For brevity, here we denote E∞[.] to refer the expectation of random
variable with respect to invariant distribution. Thus, we have

G = E∞[G(Xt)], g = E∞[g(Xt)]. (56)

where H is a constant matrix and h is a constant vector.
Then, we re-write the iterate() in the following form:

Zt+1 = Zt + αt [−GZt + g +M(Xt, Zt)] , (57)

where
M(Xt, Zt) = − (G(Xt −G))Zt + (g(Xt)− g) , (58)

denotes the noise term.

Theorem 2 (Convergence of Linear Stochastic Iterate (55)) Let (Xt)t≥0 be a uni-
formly bounded sequence generated according to a Markov Process with a unique invariant
stationary distribution. Assume that matrix G and vector g in (57) are well-defined and
all the real-part eigenvalues of matrix G in (55) are positive.Then the stochastic iterate
(55) converges to z∞ with probability one, where z∞ satisfies Gz∞ + g = 0, if the following
conditions hold
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(C1) The determinisitc update, z ← z+α(Gz+g), is convergent, for a small enough positive
α.

(C2) The process (Xt)t≥0 is uniformly bounded, and thus is stable as t→ +∞.

(C3) There exist scalars K and q such that

∞∑

t=0

‖E[M(Xt, z) | X0 = x] ‖ ≤ K(1 + ‖z‖)(1 + ‖x‖q2),

where M(Xt, z) matrix is defined in (58). This condition can be seen as Mixing
condition, that is, it implies G(Xt)Z + g(Xt) approaches to GZ + g at a sufficiently
rapid rate.

(C4) Considering ν(x, z) =
∑∞

t=0 E[M(Xt, z) | X0 = x], then there exists K and q, such
that ‖ν(x, z)− ν(x, z′)‖ ≤ K‖z− z′‖ (1 + ‖x‖q). This condition controls the growth of
noise term as z increases.

(C5)
∑∞

t=0 αt = +∞ and
∑∞

t=0 α
2
t < +∞.

Proof This theorem is a special case of Theorem 17 (page 239) of Benveniste et al. (1990)
for stochastic linear systems.

now we need a corollary for the above theorem customized for GTD(0).

For example, for GTD(0), we can write Zt = (wt, θt)
> and thus get the following special

form for H(Xt):

−ρt
(
ηφtφ

>
t ηφt (φ− γφt+1)

>

γφtφ
>
t φt (φt − γφt+1)

>

)
,

g(Xt)
> .

= Rt(ηet, et)
> .

Xt = (St, At, Rt, St+1, φt, φt+1, ρt)

Zt is another process and is initialized with an arbitrary value Z0 and has the iterate ()
. Assume G has positive real-part eigenvalues. Assume Mt+1 is Martingale noise and has
the following properties.... The with step-size condition... Zt converges to the solution ....
w.p.1.

Let E0[.] stand for the invariant distribution, therefore we can write E0[G(Xt)]
.
=

limt→+∞ E[G(Xt)], and E0[g(Xt)]
.
= limt→+∞ E[g(Xt)], thus G and g are well defined.

construct matrix Gt+1 and vector gt+1 as follows:

G(Xt)
.
=

(
−ηρtφtφ>t ηρtφt(γφt+1 − φt)>
−γρtφt+1φ

>
t ρtφt(γφt+1 − φt)>

)
, g(Xt)

> .
= (ηρtRtφ

>
t , ρtRtφ

>
t ) .
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Let us consider random variable Xt
.
= (St, At, Rt+1, φt) which is generated according to

a Markov process [why?]. where Xt is stationary sequence obtained according to a Markov
Process? Xt has Markovian structure, that is, Xt only depends on Xt−1.

we need to say something about the way we prove convergence before the following
lemma. Let’s concatenate the updates and construct stochastic iterates based on matrix G.
Then we want to say we want to say Markov- noise diminishes over time,

Lemma 1 (Martingale Noise Lemma for GTD(0)) Let us consider random variable

Xt
.
= (St, At, St+1, Rt+1, φt, ρt),

which is generated according to a Markov process. Assume Xt is uniformly bounded for all
t. Then (a) (Mt,Ft)t≥1 are martingale difference sequences, where Ft .

= σ(Z0, X1, ..., Xt),
where Xt sequence are increasing σ-fields ; (b) ∃K0 s.t. E

[
M2
t+1

∣∣ Ft
]
≤ K0(1 + ‖Zt‖2).

Proof Let G = limt→+∞ E[G(Xt)] and g = limt→+∞ E[g(Xt)]. Then there exists scalars K
and q > 0 s.t.: (i) ‖∑∞t=0 E[G(Xt)−G | X0 = x] ‖ ≤ K(1+‖x‖q); and (ii) ‖∑∞t=0 E[g(Xt)− g | X0 = x] ‖ ≤
K(1 + ‖x‖q).

Here, the sequence {%0, (Xt)t≥0} is defined on a probability space (w, E ,P) and the
sequence %0, X1, ..., Xt generates σ-field of events denoted by Ft .

= σ(%0, X0, . . . , Xt). Let
H(%t, Xt)

.
= Gt+1%t + gt+1 and h(%)

.
= E[H(%,Xt)]. For the case (i), we need to verify the

following conditions in ?? the following conditions
Let ν(x, %) =

∑∞
t=0 E[H(Xt, %)− h(%) | X0 = x].

There exist Ci, qi, i = 1, ..., 3 and Cq(q > 0), such that for all % ∈ R2d, then: (a)
‖H(%, x)‖ ≤ C1(1 + ‖%‖)(1 + ‖x‖q1); (b) E[‖Xt‖q | X0 = x] ≤ Cq(1 + ‖x‖q); (c) ‖ν(x, %)‖ ≤
C2(1 + ‖%‖)(1 + ‖x‖q2); (d) ‖ν(x, %)− ν(x, %′)‖ ≤ C3‖%− %′‖

(
1 + ‖x‖q3

)
.

Our main convergence theorem should be something like:

Theorem 3 (Convergence of linear GTD(0)) Consider the linear GTD(0) iterations
(54a)-(54b). For any finite MDP, for any uniformely bounded feature vectors φ : S 7→
[−M,M ]n, and importance sampling ratio ρ : S × A 7→ [0,M ], there exists a positive
constant ηmin, such that, for any positive step-size parameters αt and βt with the following
conditions: (i) βt = ηαt, where η > ηmin, (ii)

∑∞
t=0 αt = +∞ and

∑∞
t=0 α

2
t < +∞. Then,

JPBE converges to zero with probability one. Moreover, ηmin is the larger of 0 and the largest
eigenvalue of the n× n symmetric matrix

−C−1A+A>

2
,

where C and A are defined by (22) and (24).

[GTD(0). Markov-noise theorem building on GDP theorem. On-policy GTD empirical
experiments. GQ(0). this section also deals with existing solution methods, their failings,
and the failure of other ideas. e.g., freaky features and averagers.]

To derive the GTD(0) algorithm we conduct gradient descent in the projected Bellman-
error objective function (??). First, for simplicity let us define φ

.
= φt, φ

′ .
= φt+1, ρ

.
= ρt,

and using the identity E[ρφφ] = E[φφ], we have
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−1

2
∇JPBE(θ)

= E
[
ρ(φ− γφ′)φ>

]
E[φφ>]

−1E[ρδφ]

=
(
E
[
φφ>

]
− γE

[
ρφ′φ>

])
E[φφ>]

−1E[ρδφ]

= E[ρδφ]− γE
[
ρφ′φ>

]
E[φφ>]

−1E[ρδφ]

= E[ρδφ]− γE
[
ρφ′φ>

]
wπ(θ), (59)

where

wπ(θ) = E[φφ>]
−1E[ρδφ] , (60)

which looks the same as the solution we get from least-mean-square (LMS) method in
supervised learning by replacing ρδ with supervised signals. Now assuming that we have an
estimate for w(θt) at time step t, say wt, we can sample from the gradient descent direction,
resulting in the following O(n) algorithm, called GTD(0):

θt+1 = θt + αtρt

[
δtφt − γφt+1(φ

>
t wt)

]
, (61)

(62)

Given that θt does not change quickly, we could use the supervised learning update wt+1 =
wt + βt(ρtδt − φ>t wt)φt, because given a fixed value of θ, the solution of this update is w(θ)
as βt → 0. However, one also could use wt+1 = wt + βtρt(δt − φ>t wt)φt update, because
E
[
ρtφtφ

>
t

]
= E

[
φtφ
>
t

]
. This update is more sensible because when ρt = 0 we do not expect

to update the weights. Thus, we can use the following update for the w weights:

wt+1 = wt + βtρt(δt − φ>t wt)φt. (63)

Note that the update to θt is the sum of two terms: the first term is exactly the same
as the TD(0) update (??), and the second term is essentially an adjustment or correction
of the TD(0) update so that it follows the gradient of the PBE objective function. If the
second parameter vector is initialized to w0 = 0, and βt is small, then this algorithm will
start out making almost the same updates as conventional linear TD. Note also that after
the convergence of θt, wt will converge to zero again.

6.1 Empirical results

To begin to assess the practical utility of the new family of TD algorithms based on gradient-
descent on on-policy problems, we compared the empirical learning rate of the following
algorithms: 1) The algorithm by Sutton, Szepesvári and Maei (2008), which we call it here
GTD12, 2) GTD2 in Sutton et al. (2009), 3) GTD(0), which is analogous to TDC in Sutton

2. Note this algorithm originally was called GTD(0). However, later more efficient algorithms were devel-
oped, thus, we call it here GTD1.
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et al. (2009), and 4) conventional TD(0). Particularly, we compare the performance of these
algorithms with linear function approximation on four small problems—three random-walk
problems and a Boyan-chain problem. All of these problems were episodic, undiscounted,
and involved only on-policy training with a fixed policy.

The random-walk problems were all based on the standard Markov chain (Sutton and
Barto, 1998) with a linear arrangement of five states plus two absorbing terminal states at
each end. Episodes began in the center state of the five, then transitioned randomly with
equal probability to a neighbouring state until a terminal state was reached. The rewards
were zero everywhere except on transition into the right terminal state, upon which the
reward was +1.

We used three versions of this problem, differing only in their feature representations.
The first representation, which we call tabular features, was the familiar table-lookup case
in which, for example, the second state was represented by the vector φ2 = (0, 1, 0, 0, 0)>.
The second representation, which we call inverted features, was chosen to cause exten-
sive inappropriate generalization between states; it represented the second state by φ2 =
(12 , 0,

1
2 ,

1
2 ,

1
2)> (the value 1

2 was chosen to give the feature vectors unit norm). The third
representation, which we called dependent features, used only n = 3 features and was not
sufficient to solve the problem exactly. The feature vectors for the five states, left to
right, were φ1 = (1, 0, 0)>, φ2 = ( 1√

2
, 1√

2
, 0)>, φ3 = ( 1√

3
, 1√

3
, 1√

3
)>, φ4 = (0, 1√

2
, 1√

2
)>, and

φ5 = (0, 0, 1)>.

The Boyan-chain problem is a standard episodic task for comparing TD-style algorithms
with linear function approximation (see Boyan, 2002 for details). We used the version with
14 states and d = 4 features.

We applied GTD(0), GTD2, GTD1, and TD(0) to these problems with a range of
constant values for their step-size parameters. The parameter α was varied over a wide
range of values, in powers of 2. For the GTD(0), GTD2, and GTD1 algorithms, the ratio
η = β/α took values from the set {14 , 12 , 1, 2} for the random-walk problems; one lower power
of two was added for the Boyan-chain problem. The initial parameter vectors, θ0 and w0,
were set to 0 for all algorithms.

Each algorithm and parameter setting was run for 100-500 episodes depending on the
problem, with the square root of the MSPBE, MSBE, NEU, and MSE (see Sutton et al.
, 2009) computed after each episode, then averaged over 100 independent runs. Figure 5
summarizes all the results on the small problems using the MSPBE as the performance
measure. The results for the other objective functions were similar in all cases and produced
the same rankings. The standard errors are all very small (in the order of 10−2 to 10−3),
thus, are not shown. All the algorithms were similar in terms of their dependence and
sensitivity to the step sizes. Overall, GTD1 learned the slowest, followed after a significant
margin by GTD2, followed by GTD(0) and TD(0). It is important to note that our step-
sizes in these empirical results are kept constant and as a result the RMSPBE as shown
in Figure 5 (right sub-panel) will never go to zero. To get a measure of how well the new
algorithms perform on a larger problem , such as 9x9 Computer Go (in on-policy domain),
we refer the reader to Sutton et al. (2009). The results are remarkably consistent with what
we saw in the small problems. The GTD1 algorithm was the slowest, followed by GTD2,
GTD(0), and TD(0).
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Figure 5: Empirical results on the four small problems—three versions of the 5-state random
walk plus the 14-state Boyan chain. In each of the four panels, the right sub-
panel shows a learning curve at best parameter values (RMSPBE denotes root
of MSPBE objective function), and the left sub-panel shows a parameter study
plotting the average height of the learning curve for each algorithm, for various
η = β/α, as a function of α. TD label shown in the graph represents TD(0)
algorithm.

Finally, Figure 6 shows the results for an off-policy learning problem, demonstrating
that the gradient methods converge on Baird’s counterexample for which TD diverges.

6.2 GQ

Analogous to state-value functions, we define the λ-return for action-value functions:

Gλt (Q) = Rt+1 + γ
[
(1− λ)Q(St+1, At+1) + λGλt+1(Q)

]
, (64)

where Q(s, a) denotes the value of taking action a from state s, γ ∈ (0, 1], and λ ∈ [0, 1].
Under MDP assumption, for every entry of state-action pair we get the following λ-weighted
Bellman equation for action-value functions:

Qπ(s, a) = Eπ
[
Gλt (Qπ) | St = s,At = a, π

]
.

= (T πλQπ)(s, a),

where T πλ is a λ-weighted state–action version of the affine Bellman operator for the target
policy π.

To estimate action-value functions, we use linear function approximation, where Q ≈
Qθ = Φθ is the vector of approximate action values for each state–action pair (s, a) ∈ S×A,
and Φ is the matrix whose rows are the state–action feature vectors φ(s, a)> ∈ Rd.
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Figure 6: Learning curves on Baird’s off-policy counterexample: TD diverges, whereas the
gradient methods converge. This is the 7-state version of the “star” counterex-
ample (Baird 1995), for which divergence is monotonic. Updating was done syn-
chronously in dynamic-programming-like sweeps through the state space. For
TD, α = 0.1. For the gradient algorithms, α = 0.05 and η = 10. The initial
parameter value was θ0 = (1, 1, 1, 1, 1, 1, 10, 1)>, and γ = 0.99.

Following our approach for derivation of GTD(λ)in Section 8.4, we consider the follow-
ing projected Bellman-error objective function:

J(θ) = ‖Qθ −ΠT πλQθ‖2d =
(
Pπd δλt (θ)φt

)>
E[φtφ

>
t ]
−1 (Pπd δλt (θ)φt

)
, (65)

where δλt denotes λ-weighted TD error at time t:

δλt (θ)
.

= Gλt (θ)− θ>φt, (66)

and Gλt (θ) is

Gλt (θ) = Rt+1 + γ
[
(1− λ)θ>φt+1 + λGλt+1(θ)

]
, (67)

where φt ≡ φ(St, At).
In the next section, first, we introduce the GQ(λ) algorithm, whose learning parameter

is updated along the stochastic gradient descent of the above objective function, J(θ).

6.3 The GQ(λ) algorithm

First, we specify the GQ(λ) algorithm as follows: The weight vector θ ∈ Rn is initialized
arbitrarily. The secondary weight vector w ∈ Rn is initialized to zero. An auxiliary memory
vector known as the eligibility trace e ∈ Rn is also initialized to zero. Their update rules
are

θt+1 = θt + αtIt
[
δtet − γ(1− λ)(w>t et)φ̄t+1

]
, (68a)
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wt+1 = wt + βtIt
[
δtet − (w>t φt)φt

]
, (68b)

where It is a desirable positive weight (see the GTD(λ) algorithm),

et = φt + γλρtet−1, (69)

δt = Rt+1 + γθ>t φ̄t+1 − θ>t φt, (70)

φ̄t =
∑

a

π(a | St)φ(St, a), (71)

ρt =
π(At | St)
π(At | St)

,

where φt is an alternate notation for φ(St, At), and αt > 0, βt > 0, are positive step-size
parameters for θ and w weights respectively.

In the next section we derive GQ(λ) based on gradient-descent in projected (λ-weighted)
Bellman error objective function.

Algorithm 1 GQ(λ) with linear function approximation

1: Initialize w0 to 0, and θ0 arbitrarily.
2: Choose proper (small) positive values for α, β, and set values for γ ∈ (0, 1], λ ∈ [0, 1].
3: Repeat for each episode:
4: Initialize e = 0.
5: Take At from St according to π, and arrive at St+1.
6: Observe sample, (St, Rt+1, St+1) at time step t (with their corresponding state-action

feature vectors).
7: for each observed sample do
8: φ̄t+1 ←

∑
a π(a | St+1)φ(St+1, a).

9: δt ← Rt+1 + γθ>t φ̄t+1 − θ>t φt.
10: ρt ← π(At|St)

π(At|St)
.

11: et ← φt + ρtγλet−1.
12: θt+1 ← θt + αIt

[
δtet − γ(1− λ)(e>t wt)φ̄t+1

]
.

13: wt+1 ← wt + βIt
[
δtet − (φ>t wt)φt

]
.

14: end for

6.4 Derivation of GQ(λ)

To derive GQ(λ), we follow the GTD(λ) derivation steps (for simplicity, first, we assume It
functions are one).

7. Nonlinear function approximation

Remarks about challenges and open issues. Algorithms for all cases. Proof of convergence.
Spiral counterexample.
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The status of TDDP’s limitation to linear function approximators is not completely
clear. In practice, such algorithms have been widely used with nonlinear function approx-
imators with good results. Tesauro’s (1992, 1995) celebrated results with backgammon,
for example, were obtained with a nonlinear neural-network function approximator. It is
in fact extremely difficult to construct a example in which TDDP fails to converge under
the on-policy distribution. The only such counterexample currently known is Tsitsiklis and
Van Roy’s spiral example, which is complex and contrived. We have tried to construct a
simpler one without success. Moreover, we have recently shown that even, in the nonlinear
case, all fixpoints of the TDDP update are stable—that if the approximator is started near
a fixpoint it will converge to it (Maei, Sutton & Van Roy in preparation). It seems likely to
us that there could be a significant further positive result to be obtained for nonlinear func-
tion approximators and TDDP. For the moment, however, there are no positive theoretical
results for TDDP and nonlinear function approximators.

For linear function approximation, there always exists a θ at which the trip up and back
leaves us in the same place and the PBE is zero. For nonlinear function approximators this
is not true, as in this simple example:

1

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

For linear function approximation, there always exists a ✓ at which the trip up and back
leaves us in the same place and the PBE is zero. For nonlinear function approximators this
is not true, as in this simple example

figures/theta-theta-squared.pdf

✓2

2.4 The Bellman error controversy

There is a small controversy in the field as to whether the BE or the PBE is the most ap-
propriate objective for value function approximation. It was originally argued that the BE
was not an appropriate objective (see Dayan 1992, Werbos 1990) and we have recently lent
support to that argument (Sutton et al. 2009). However, Baird (1995, 1999) strongly sup-
ported the BE approach, and in recent years is has become popular with many researchers,
most notably in gaussian process TDL and kernel-based TDL (..., see particularly Scherrer
2010) We cannot properly resolve this controvery here—that would probably take a new
theoretical result or extensive empirical comparisons, which would take us far afield. Nev-

9

The first state is assigned a value of θ (here a scalar) and the second state is assigned a
value of θ2 (thus making the approximator linear). For simplicity, assume d puts all weight
on the first state. Then the value that minimizes the PBE (as well as the BE) is θ = 1

2γ , at

which value the PBE (also the BE) is
√

3/4.

In this section, our goal is to extend the linear GTD(0) algorithm to nonlinear GTD(0).
Particularly, we consider the case in which parametrized value function, Vθ, is an arbitrary
differentiable nonlinear function. In the linear case, the objective function (MSPBE) was
chosen as a projection of the Bellman error on a natural hyperplane - the subspace to which
Vθ is restricted. However, in the nonlinear case, the value function is no longer restricted
to a plane, but can move on a nonlinear surface.

More precisely, assuming that Vθ is a differentiable function of θ, M = {Vθ ∈ R|S| | θ ∈
Rn} becomes a differentiable sub-manifold of R|S|. Projecting onto a nonlinear manifold is
not computationally feasible; to get around this problem, we will assume that the parameter
vector θ changes very little in one step (given that the value function is smooth and learning
rates are usually small); in this case, the surface is locally close to linear, and we can project
onto the tangent plane at the given point. We now detail this approach and show that this
is indeed a good objective function.

7.1 Objective function for nonlinear function approximation

The tangent plane PMθ ofM at θ is the hyperplane of R|S| that (i) passes through Vθ and
(ii) is orthogonal to the normal of M at θ. The tangent space TMθ is the translation of
PMθ to the origin. Note that TMθ = {Φθa | a ∈ Rn}, where Φθ ∈ R|S|×n is defined by
(Φθ)s,i = ∂

∂θi
Vθ(s). Let Πθ be the projection that projects vectors of (R|S|, ‖ · ‖d) to TMθ.

If Φ>θ DΦθ is non-singular then Πθ can be written as

Πθ = Φθ(Φ
>
θ DΦθ)

−1Φ>θ D. (72)
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The objective function that we will optimize is:

J(θ) = ‖Πθ(T
πVθ − Vθ)‖ . (73)

This is a natural generalization of the objective function defined by (??), as the plane
on which we project is parallel to the tangent plane at θ. More precisely, let Υθ be the
projection to PMθ and let Πθ be the projection to TMθ. Because the two hyperplanes are
parallel, for any V ∈ R|S|, ΥθV − Vθ = Πθ(V − Vθ). In other words, projecting onto the
tangent space gives exactly the same distance as projecting onto the tangent plane, while
being mathematically more convenient. Fig. 7 illustrates visually this objective function.

Vθ

Υ θ
T
V θ

T

TVθ

� J
(θ

)
Υ
θ

Tangent plane  

Υθ∗TVθ∗ = Vθ∗

V θ
∗

TVθ
∗

TD(0) solution 

Figure 7: The MSPBE objective for nonlinear function approximation at two points in the
value function space. Here T represents a Bellman operator. The figure shows
a point, Vθ, at which, J(θ), is not 0 and a point, Vθ∗ , where J(θ∗) = 0, thus
Υθ∗T

πVθ∗ = Vθ∗ , so this is a TD(0) solution.

We now show that J(θ) can be re-written in the same way as done in (Sutton et al,
2009b).

Lemma 1 Assume Vθ(s) is continuously differentiable as a function of θ, ∀s ∈ S s.t.
d(s) > 0. Let δ(θ)

.
= δ(S,A, S′; θ) = r(S,A, S′) + γθ>φ(S′)− θ>φ(S) is a sample TD error

for the sample transition (S, S′) generated according to policy π, ρ = π(A|S)/π(A|S), and
(S, δ(θ), ρ) be jointly distributed random variables, and assume that E[∇Vθ(S)∇Vθ(S)>] is
nonsingular. Then

J(θ) = E[ ρ δ(θ)∇Vθ(S) ]> E[∇Vθ(S)∇Vθ(S)> ]−1 E[ ρ δ∇Vθ(S) ]. (74)

Proof The derivation of the identity is similar to the derivation of mean-square projected
Bellman objective function for off-policy formulation with linear function approximation
(see Sec.??), except that here Πθ is expressed by (72).

Note that the assumption that E[∇Vθ(S)∇Vθ(S)> ]−1 is non-singular is akin to the assump-
tion that the feature vectors are independent in the linear function approximation case. We
make this assumption here for convenience; it can be lifted, but the proofs become more
involved.
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Corollary 1 Under the conditions of Lemma 1, J(θ) = 0, if and only if Vθ is a TD(0)
solution (i.e., if and only if it satisfies E[ ρ δ∇Vθ(S) ] = 0).

This is an important corollary (it is immediate ), because it shows that optimizing the pro-
posed objective function will indeed produce TD(0) solutions. We now proceed to compute
the gradient of this objective.

Theorem 4 Assume that (i) Vθ(s) is twice continuously differentiable in θ for any s ∈
S s.t. d(s) > 0 and (ii) W (·) defined by W (θ̂) = E[∇Vθ̂(S)∇Vθ̂(S)>] is non-singular in a
small neighbourhood of θ. Let δ

.
= δ(θ), and (S, δ, ρ) be jointly distributed random variables.

Let φ ≡ ∇Vθ(S), φ′ ≡ ∇Vθ(S′) and

ĥ(θ, u) = E[ ρ(δ − φ>u)∇2Vθ(S)u ], (75)

where u ∈ Rn. Then

−1

2
∇J(θ) = E[ρδφ]− γE[ρφ′φ>w(θ)]− ĥ(θ, w(θ)), (76)

where w(θ) = E[φφ>]−1 E[ρδφ].

The main difference between Equation (76) and Equation (59), which shows the gradient for
the linear case, is the appearance of the term h(θ, w), which involves second-order derivatives
of Vθ (which are zero when Vθ is linear in θ).
Proof The conditions of Lemma 1 are satisfied, so (74) holds. Denote ∂i = ∂

∂θi
.

From its definition and the assumptions, W (u) is a symmetric, positive definite matrix,
so d

du(W−1)|u=θ = −W−1(θ) ( d
duW |u=θ) W−1(θ), where we use the assumption that d

duW
exists at θ and W−1 exists in a small neighborhood of θ. From this identity, we have:

−1

2
[∇J(θ)]i

= −(∂iE[δφ])>E[φφ>]−1E[δφ]− 1

2
E[δφ]> ∂i

(
E[φφ>]−1

)
E[δφ]

= −(∂iE[ρδφ])>E[φφ>]−1E[ρδφ] +
1

2
E[ρδφ]> E[φφ>]−1(∂iE[φφ>]) E[φφ>]−1 E[ρδφ]

= −E[∂i(ρδφ)]>(E[φφ>]−1E[ρδφ]) +
1

2
(E[φφ>]−1E[ρδφ])> E[∂i(φφ

>)] (E[φφ>]−1E[ρδφ]).

The interchange between the gradient and expectation is possible here because of assump-
tions (i) and (ii) and the fact that S is finite. Now consider the identity

1

2
x>∂i(φφ>)x = φ>x (∂iφ

>)x,

which holds for any vector x ∈ Rn. Hence, using the definition of w,

−1

2
[∇J(θ)]i

= −E[∂i(ρδφ)]>w +
1

2
w>E[∂i(φφ

>)]w = −E[ρ(∂iδ)φ
>w]− E[δ(∂iφ

>)w] + E[φ>w(∂iφ
>)w].
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Using ∇δ = γφ′ − φ and ∇φ> = ∇2Vθ(S), we get

−1

2
∇J(θ)

= −E[ρ(γφ′ − φ)φ>w]− E[(ρδ − φ>w)∇2V (S)w] = E[ρ(φ− γφ′)φ>w]− E[(ρδ − φ>w)∇2V (S)w]

= E[ρ(φ− γφ′)φ>w]− E[ρ(δ − φ>w)∇2V (S)w].

Finally, observe that

E[ρ(φ− γφ′)φ>w] = E[ρ(φ− γφ′)φ]> (E[φφ>]−1E[ρδφ]) = E[ρδφ]− E[γρφ′φ>w],

where we have used E[φφ>] = E
[
ρφφ>

]
, concluding the proof.

7.2 The nonlinear GTD(0) algorithm

Using the expression derived in Theorem 4, it suggests the following generalization of linear
GTD(0), to the nonlinear case. Weight wk is updated as before on the “faster” timescale:

wt+1 = wt + βkρt(δt − φ>t wt)φt. (77)

The parameter vector θk is updated on a “slower” timescale, either according to

θt+1 = Γ
(
θt + αtρt

{
δtφt − γφt+1(φ

>
t wt)− ht

})
, (78)

where
ht = (δt − φ>t wt)∇2Vθt(St)wt (79)

and Γ : Rn → Rn is a mapping that projects its argument into a set C, which is a parameter
of the algorithm. Normally, one selects C to be a bounded set that has a smooth boundary
and which is large enough so that the set of TD(0) solutions, U = { θ |E[ δ∇Vθ(S)] = 0 },
is subsumed by C. The purpose of this projection step is to prevent the algorithms’ pa-
rameters diverge in the initial phase. Without the projection step this could happen due
to the presence of the nonlinearities in the algorithm. Note that the projection is a com-
mon technique for stabilizing the transient behavior of stochastic approximation algorithms
(Kushner and Yin, 1997). In practice, one selects C just large enough (by using a priori
bounds on the size of the rewards and the derivative of the value function) in which case it
is very likely that the parameter vector will not get projected at all during the execution
of the algorithm. We also emphasize that the main reason for the projection is to facilitate
convergence analysis. In many applications, this may not be needed at all.

Let us now analyze the computational complexity of these algorithms per update. Here
we assume that we can compute Vθ(s) and its gradient with the cost of O(n) computation
which is normally the case (e.g., neural networks). If the product of the Hessian of Vθ(s) and
w can be computed in O(n) time in ( 79), we immediately see that the computational cost of
these algorithms per update will be O(n). We show this is normally the case including neural
networks. In the case of neural networks, let Vθ(s) = σ(θ>x(s)), where σ(a) = 1

1+exp(−a) ,

then ∇Vθ(s) = [Vθ(s)(1− Vθ(s))]x and ∇2Vθ(s)w =
[
Vθ(s) (1− Vθ(s)) (1− 2Vθ(s))x

>w
]
x,
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where the terms in [...] are scalar. The product of Hessian of Vθk(s) and wk in ( 79) generally

can be written as ∇(∇Vθk(s)>wk), because wk does not depend on θk. As a result, because

the scalar term, ∇Vθk(s)>wk, cost only O(n) to compute its gradient which is a vector also
has O(n) complexity. In general the observation that the product of a Hessian matrix and
a vector of size n can be computed with the cost of O(n) is due to (Pearlmutter, 1994).

7.3 Convergence of Non-linear GTD(0) (two-time scales)

Let C(Rn) be the space of Rn → Rn continuous functions. Define operator Γ̂ : C(Rn) →
C(Rn) by

Γ̂v (θ) = lim
0<ε→0

Γ
(
θ + ε v(θ)

)
− θ

ε
.

In fact, because by assumption Γ(θ) = arg minθ′∈C ‖θ′−θ‖ and the boundary of C is smooth,
Γ̂ is well defined and in particular Γ̂v (θ) = v(θ) when θ ∈ C◦ and otherwise Γ̂v (θ) is the
projection of v(θ) to the tangent space of ∂C at Γ(θ). Consider the ODE

θ̇ = Γ̂(−1
2∇J)(θ). (80)

Let K be the set of all asymptotically stable fixed points of (80). By its definition, K ⊂ C.
Further, for U∩C ⊂ K (i.e., if θ is a TD(0)-solution that lies in C then it is an asymptotically
stable fixed point of (80)).

The next theorem shows that under some technical conditions, the iterates produced
by nonlinear GTD(0) converge to K with probability one. Thus, apart from the projection
step, the algorithm converges to the stationary points of the objective function J(θ), which
is the best result one can in general hope when using a stochastic gradient algorithm with
a non-convex objective function.

Theorem 5 (Convergence of nonlinear GTD(0)) Let (St, Rt+1, St+1)t≥0 is a station-
ary Markov process sequence generated according to the fixed policy π. Consider the non-
linear GTD(0) iterations (77), (78). With positive deterministic step-size sequences that
satisfy

∑∞
t=0 αt =

∑∞
t=0 βt = ∞,

∑∞
t=0 α

2
t ,
∑∞

t=0 β
2
t < ∞ and αt

βt
→ 0, as t → ∞. Assume

that for each s ∈ S such that µ(s) > 0 (µ represents the state distribution), for all θ ∈ C,
Vθ(s) is three times continuously differentiable. Further assume that for each θ ∈ C, E[φθφ

>
θ ]

is nonsingular. Then θk → K, with probability one, as t→∞.

Proof Just like the proof of convergence for linear GTD(0), for simplicity, let us use
index k instead of time-step t and Let (Sk, Rk, S

′
k) be a random transition whose law is the

same as the law underlying (St, Rt+1, St+1)t≥0. Further, let φθ = ∇Vθ(S), φ′θ = ∇Vθ(S′),
φk = ∇Vθk(Sk), and φ′k = ∇Vθk(S′k).

We begin by rewriting the updates (77)-(78) as follows:

wk+1 = wk + βk(f(θk, wk) +Mk+1), (81)

θk+1 = Γ
(
θk + αk(g(θk, wk) +Nk+1)

)
, (82)

where

f(θk, wk) = E[ρkδkφk|θk]− E[ρkφkφ
>
k |θk]wk,
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Mk+1 = ρk(δk − φ>k wk)φk − f(θk, wk),

g(θk, wk) = E
[
ρk

(
δkφk − γφ′kφ>k wk − hk

)
|θk, wk

]
,

Nk+1 = ρk(δkφk − γφ′kφ>k wk − hk)− g(θk, wk).

We need to verify that there exists a compact set B ⊂ R2n such that (a) the functions
f(θ, w), g(θ, w) are Lipschitz continuous over B, (b) (Mk,Gk), (Nk,Gk), k ≥ 0 are Markov
noise sequences,

some conditions?

where Gk = σ(ri, θi, wi, si, i ≤ k; s′i, i < k), k ≥ 0 are increasing σ-fields, (c) {(wk(θ), θ)}
with wk(θ) obtained as δk(θ) = Rk + γVθ(S

′
k)− Vθ(Sk), φk(θ) = ∇Vθ(Sk),

wk+1(θ) = wk(θ) + βkρk

(
δk(θ)− φk(θ)>wk(θ)

)
φk(θ)

almost surely stays in B for any choice of (w0(θ), θ) ∈ B, and (d) {(w, θk)} almost surely
stays in B for any choice of (w, θ0) ∈ B. From these, thanks to the conditions on the
step-sizes, standard arguments (c.f.

we need to combine Benveniste and Borakar results. But because the iterates by as-
sumption are bounded, is this easy?

) allow us to deduce that θk almost surely converges to the set of asymptotically stable
fixed points of

θ̇ = Γ̂F (θ),

where F (θ) = g(θ, wθ). Here for θ ∈ C fixed, wθ is the (unique) equilibrium point of

ẇ = E[ρδθφθ]− E[φθφ
>
θ ]w, (83)

where δθ = R + γVθ(S
′) − Vθ(S). Clearly, w(θ) = E

[
φθφ

>
θ

]−1 E[ρδθφθ], which exists by
assumption. Then by Theorem [add REF] it follows that F (θ) = −1

2 ∇J(θ). Hence, the
statement will follow once (a)–(d) are verified.

Note that (a) is satisfied because Vθ is three times continuously differentiable. For (b),
we need to verify

some conditions on noise—we should add Benveniste conditions, but do we need to be
strict here as the iterates are bounded?

Condition (c) follows since, by a standard argument (e.g., similar to the convergence of
linear GTD(0)), wk(θ) converges to w(θ), which by assumption stays bounded if θ comes
from a bounded set. Now for condition (d), note that {θk} is uniformly bounded since
θk ∈ C, ∀k, and by assumption C is a compact set.

7.4 Empirical results

To illustrate the convergence properties of the algorithms, we applied them to the “spiral”
counterexample mentioned in Section 12, originally used to show the divergence of TD(0)
with nonlinear function approximation. The Markov chain with 3 states is shown in the
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Figure 8: Empirical evaluation results for spiral counterexample. The selected parameters
for GTD2 ( see Maei et al., 2009), are α = 0.8 and β = 0.1.

Figure 8. The reward is always zero and the discount factor is γ = 0.9. The value function
has a single parameter, θ, and takes the nonlinear spiral form

Vθ(s) =
(
a(s) cos (λ̂θ)− b(s) sin (λ̂θ)

)
eεθ.

The true value function is V = (0, 0, 0)> which is achieved as θ → −∞. Here we used
V0 = (100,−70,−30)>, a = V0, b = (23.094,−98.15, 75.056)>, λ̂ = 0.866 and ε = 0.05.
Note that this is a degenerate example, in which our theorems do not apply, because the
optimal parameter values are infinite. Hence, we run our algorithms without a projection
step.

We also use constant learning rates, in order to facilitate gradient descent through an
error surface which is essentially flat. For GTD(0) we used α = 0.5, β = 0.05, For TD(0)
we used α = 2× 10−3 (as argued by Tsitsiklis & Van Roy (1997), tuning the step-size does
not help with the divergence problem). All step sizes are then normalized by ‖V >θ D d

dθVθ‖.
Figure 8, shows the performance measure,

√
J , as a function of the number of updates

(we used expected updates for all the algorithms). GTD(0) converge to the correct solution,
while TD(0) diverges. We note that convergence happens despite the fact that this example
is outside the scope of the theory.

The nonlinear GTD(0) has the same form as nonlinear TDC (Maei et al., 2009) on
on-policy problems, and its performance has been assessed on 9x9 computer Go (see Maei,
et al., 2009).

8. Multi-step gradient TDL

[to derive GTD(λ) and GQ(λ) we need to do forward-view/backward view and do derivation
concisely because it share many parts of derivations for for GTD(0) and GQ(lambda). also
we need to define ] Before presenting the algorithms such as TD/RG, GTD and GQ, we
remind our notation φt

.
= φ(St).

40



8.1 Forward-view objective function based on importance weighting

Let us define the following λ−weighted return function:

Gλρt (θ) = Rt+1 + γ
[
(1− λ)θ>φ̄t+1 + λρt+1G

λρ
t+1(θ)

]
,

where

φ̄t
.
=
∑

a

π(a | St)φ(St, a), ρt
.
=
π(At | St)
π(At | St)

,

and let

δλρt (θ)
.
= Gλρt (θ)− θ>φt. (84)

The next Theorem shows Pπd δλt (θ)φt (see Eq. 108) can be replaced by E
[
δλρt (θ)φt

]
.

Theorem 6 (Off-policy TD with important weighting) Let π and π denote the behavior and

target policies, respectively. Consider δλt (θ), δλρt (θ) defined in equations (109) (84). Then,

Pπd δλt (θ)φt = E
[
δλρt (θ)φt

]
. (85)

Proof
We show this by expanding the right-hand side

E
[
Gλρt (θ) | St = s,At = a

]

= E
[
Rt+1 + γ

(
(1− λ)θ>φ̄t+1 + λρt+1G

λρ
t+1(θ)

)
| St = s,At = a

]

= E
[
Rt+1 + γ(1− λ)θ>φ̄t+1 | St = s,At = a, π

]

+γλE
[
ρt+1G

λρ
t+1(θ) | St = s,At = a

]

= E
[
Rt+1 + γ(1− λ)θ>φ̄t+1|St = s,At = a, π

]

+
∑

s′
P (s′ | s, a)

∑

a′
π(a′ | s′) π(a′|s′)

π(a′ | s′)γλE
[
Gλρt+1(θ) | St+1 = s′, At+1 = a′

]

= E
[
Rt+1 + γ(1− λ)θ>φ̄t+1 | St = s,At = a, π

]

+
∑

s′,a′
P (s′ | s, a)π(a′ | s′)γλE

[
Gλρt+1 | St+1 = s′, At+1 = a′

]

= E
[
Rt+1 + γ(1− λ)θ>φ̄t+1 + γλE

[
Gλρt+1(θ) | St+1 = s′, At+1 = a′

]
| St = s,At = a, π

]
,

which, as it continues to roll out, gives us E
[
Gλρt (θ) | St = s,At = a

]
= E

[
Gλt (θ) | St = s,At = a, π

]
,

and, eventually it yields E
[
δλρt (θ)φt

]
= Pπd δλt (θ)φt, because the state-action distribution is

based on behavior state-action pair distribution, d.
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Therefore, from Theorem 6, the forward-view objective function (108) can be written
as:

J(θ) = E
[
δλρt (θ)φt

]>
E[φtφ

>
t ]−1E

[
δλρt (θ)φt

]
. (86)

8.2 Backward-view objective function

In this section, we transform the TD forward-view to a mechanistic backward-view. To
do this, we propose the following theorem, which provides a great tool for forward-view to
backward-view transformation.

Theorem 7 (Equivalence of TD forward-view and backward-view) The forward-view de-
scription of TD update is equivalence to the following mechanistic backward-view:

E
[
δλρt (θ)φt

]
= E[δt(θ)et] , (87)

where δλρt (θ) is defined in Equation (84), δt(θ) = Rt+1+γθ>φ̄t+1−θ>φt, and et is eligibility
trace vector at time-step t, and has the following recursive update:

et = φt + γλρtet−1. (88)

Proof Consider

Gλρt (θ) = Rt+1 + γ
[
(1− λ)θ>φ̄t+1 + λρt+1G

λρ
t+1(θ)

]

=
[
Rt+1 + γ(1− λ)θ>φ̄t+1

]
+ γλρt+1G

λρ
t+1(θ)

=
(
Rt+1 + γθ>φ̄t+1

)
− γλθ>φ̄t+1 + γλρt+1G

λρ
t+1(θ)

=
(
Rt+1 + γθ>φ̄t+1 − θ>φt + θ>φt

)
− γλθ>φ̄t+1 + γλρt+1G

λρ
t+1(θ)

=
(
δt(θ) + θ>φt

)
− γλθ>φ̄t+1 + γλρt+1G

λρ
t+1(θ) + γλρt+1

(
θ>φt+1 − θ>φt+1

)

=
(
δt(θ) + θ>φt

)
+ γλρt+1

(
Gλρt+1(θ)− θ>φt+1

)
+ γλ

(
ρt+1θ

>φt+1 − θ>φ̄t+1

)

=
(
δt(θ) + θ>φt

)
+ γλρt+1δ

λρ
t (θ) + γλ

(
ρt+1θ

>φt+1 − θ>φ̄t+1

)
,

thus,

δλρt (θ) = Gλρt (θ)− θ>φt
= δt(θ) + γλρt+1δ

λρ
t (θ) + γλ

(
ρt+1θ

>φt+1 − θ>φ̄t+1

)
.

Note that the last part of the above equation has expected value of vector zero under the
behavior policy because E[ρtφt | St] =

∑
a π(a | St)φ(St, a) ≡ φ̄t. Putting all these together,

we can write the TD update (in expectation) in a simple way in terms of eligibility traces
which leads to backward-view:

E
[
δλρt φt

]
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= E
[(
δt + γλρt+1δ

λρ
t+1

)
φt

]
+ E

[
γλθ>

(
ρt+1φt+1 − φ̄t+1

)
φt

]

= E[δtφt] + E
[
γλρt+1δ

λρ
t+1φt

]
+ 0

= E[δtφt] + E
[
γλρtδ

λρ
t φt−1

]

= E[δtφt] + Eb[γλρt
(
δt + γλρt+1δ

λρ
t+1 + γλθ>

(
ρt+1φt+1 − φ̄t+1

) )
φt−1]

= E[δtφt] + E[γλρtδtφt−1] + E
[
γλρtγλρt+1δ

λρ
t+1φt−1

]
+ 0

= E[δt (φt + γλρtφt−1)] + E
[
γλt−1ρt−1γλρtδ

λρ
t φt−2

]

...

= Eb
[
δt

(
φt + γλρtφt−1 + γλρtγλt−1ρt−1φt−2 + · · ·

)]

= E[δtet] , (89)

where et = φt + γλρtet−1, which gives us a backward view algorithm for the TD(λ) update.

8.3 Stochastic gradient-descent derivation

Now from Equation (86) and Theorem 7, we get

J(θ) = E[δt(θ)et]
> E[φtφ

>
t ]−1E[δt(θ)et] .

Following the derivation of GTD(λ), we get:

−1

2
∇J(θ) = −E

[(
γφ̄t+1 − φt

)
e>t
]
E[φtφ

>
t ]
−1E[δt(θ)et] . (90)

We use the following identity:

E
[
φte
>
t

]
= E

[
φt(φt + γλρtet−1)>

]

= E
[
φtφ
>
t + γλρtφte

>
t−1
]

= E
[
φtφ
>
t + γλρt+1φt+1e

>
t

]

= E
[
φtφ
>
t + γλφ̄t+1e

>
t

]
,

where we have used E
[
ρt+1φt+1e

>
t

]
= E

[
φ̄t+1e

>
t

]
.

Thus, from above and Equation (90), we get

−1

2
∇J(θ)

= −E
[(
γφ̄t+1 − φt

)
e>t
]
E[φtφ

>
t ]
−1E[δt(θ)et]

= −E
[
γφ̄t+1e

>
t − φte>t

]
E[φtφ

>
t ]
−1E[δt(θ)et]
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= −E
[
γφ̄t+1e

>
t −

(
φtφ
>
t + γλφ̄t+1e

>
t

)]
E[φtφ

>
t ]
−1E[δt(θ)et]

= −E
[
γ(1− λ)φ̄t+1e

>
t − φtφ>t

]
E[φtφ

>
t ]
−1E[δt(θ)et]

= E[δt(θ)et]− E
[
γ(1− λ)φ̄t+1e

>
t

]
E[φtφ

>
t ]
−1E[δt(θ)et]

= E[δt(θ)et]− E
[
γ(1− λ)φ̄t+1e

>
t

]
w(θ), (91)

where w(θ) = E[φtφ
>
t ]
−1E[δt(θ)et].

Thus, by direct sampling from the above gradient-descent direction and weight-duplication
trick we get:

θt+1 = θt + αtIt
[
δtet − γ(1− λ)φ̄t+1(e

>
t wt)

]
,

wt+1 = wt + βtIt
[
δtet − (w>t φt)φt

]
,

where positive It weighted are added based on our discussion on TD solution (see the
GTD(λ) algorithm).

Convergence remarks: Convergence analysis of GQ(λ) is similar to GTD(0) (see the
convergence remarks for GTD(λ)in Section 8.7).

The GTD(λ)algorithm By direct sampling from Equation ... and following we get the
GTD(λ)algorithm :

θt+1 = αt

[
δtet − γ(1− λ)(e>t wt)φt+1

]
, (92a)

wt+1 = βt

[
δtet − (w>t φt)φt

]
, (92b)

where αt, βt are positive step-sizes at time-step t, δt refers to TD error at time t, ρt =
π(St,At)
µ(St,At)

, and

et = ρt (φt + γλet−1) ,

[In Algorithm 2, I have used It > 0, which represent a weight for the importance of
state(s) at time t. I’m not sure, we should put it here.]

Eligibility traces are essential for TD learning because they bridge the temporal gaps in
cause and effect when experience is processed at a temporally fine resolution. In previous
sections we discussed one-step TD prediction. Several important properties of eligibility
traces are as follows: 1) They make TD methods more like efficient incremental Monte-
Carlo algorithms. For example, in TD(λ), λ ∈ [0, 1] refers to eligibility function and is
equivalent to Monte-Carlo methods when λ = 1, 2) They are particularly of interest when
reward is delayed by many steps, thus, by adjusting λ function we may get faster and
efficient learning. For further detail description of eligibility traces we refer the reader to
Sutton & Barto (1998).
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Algorithm 2 GTD(λ)with linear function approximation

1: Initialize w0 to 0, and θ0 arbitrarily.
2: Choose proper (small) positive values for α, β, and set values for γ ∈ (0, 1], λ ∈ [0, 1].
3: Repeat for each episode:
4: Initialize e = 0.
5: Take At from St according to µ, and arrive at St+1.
6: Observe sample, (φt, Rt+1, φt+1) at time step t.
7: for each observed sample do
8: δt ← Rt+1 + γθ>t φt+1 − θ>t φt.
9: ρt ← π(At|St)

π(At|St)
.

10: et ← ρt (φt + γλet−1).
11: θt+1 ← θt + αIt

[
δtet − γ(1− λ)(e>t wt)φt+1

]
.

12: wt+1 ← wt + βIt
[
δtet − (φ>t wt)φt

]
.

13: end for

8.4 Problem formulation and objectives

Without loss of generality we use linear value function approximation— similar analysis
can be used for the nonlinear setting. We define the λ-return (function) according to

Gλt (V )
.
= Rt+1 + γ

[
(1− λ)V (St+1) + λGλt+1

]
,

where λ ∈ [0, 1] is a constant eligibility trace parameter. For the table-look up case, a λ-
weighted version of the Bellman equation follows from MDP property, which can be written
as:

V π(s) = E
[
Gλt (V π) | St = s, π

]
.

= (T πλV π)(s),

where T πλ is called the λ-weighted Bellman operator for policy π. For detailed description
of λ-weighted Bellman equation we refer the reader to Tsitsiklis and Van Roy (1997).

Our objective is to find off-policy TD-solution, θ, which satisfies Vθ = ΠT πλVθ (Π is
defined in Equation (??)), while the data is generated according to a behavior policy π,
with state distribution d, that is, s ∼ d(.).

Objective function We consider the following mean-square projected Bellman-error
(MSPBE) objective function:

J(θ) = ‖Vθ −ΠT πλVθ‖2d. (93)

Let us, first, consider the following definitions and identities. We start with the following
definitions: φt

.
= φ(St),

Gλt (θ)
.
= Rt+1 + γ

[
(1− λ)θ>φt+1 + λGλt+1(θ)

]
, (94)

δλt (θ)
.

= Gλt (θ)− θ>φt, Pπd δλt (θ)φt
.
=

∑

s

d(s)E
[
δλt (θ)|St = s, π

]
φ(s), (95)
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where Pπd is an operator. And now consider the following identities:

E
[
δλt (θ)|St = s, π

]
= (T πλVθ − Vθ)(s), E

[
φtφ
>
t

]
= Φ>DΦ,

Pπd δλt (θ)φt = Φ>D
(
T πλVθ − Vθ

)
,

where D and Φ are defined in Sec. ??. Using the above definitions and identities and
following, we have:

J(θ) = ‖Vθ −ΠT πλVθ‖2d = (Pπd δλt (θ)φt)
>E[φtφ

>
t ]
−1

(Pπd δλt (θ)φt). (96)

Practically, there are two major issues with the objective function (96): 1) The expecta-
tion term is with respect to the policy π, while the data is generated according to behavior
policy π, 2) We cannot estimate forward-view TD error as it needs future data. We call the
above objective function forward-view objective function.

To overcome the first issue, we use importance-weighting scenario (also see Sec ??).
In the next section, we show how to use importance weighting, and show a forward-view
objective function whose expectation terms are with respect to behavior policy π. Later,
we use the mechanistic TD backward-view to deal with the second issue.

8.5 Forward-view objective function

The expectation TD update term in J(θ), is with respect to target policy π. In order to
convert it to π, we need to use the notion of importance sampling. After we conduct this
step, we will show how to transform the forward-view TD update terms into mechanistic
backward-view.

Importance-weighting: First, let us introduce the following recursive λ−return equa-
tion at time t,

Gλρt (θ) = ρt

(
rt+1 + γ

[
(1− λ)θ>φt+1 + λGλρt+1(θ)

])
, (97)

which is based on the likelihood ratio

ρt
.
=
π(At | St)
π(At | St)

. (98)

Let

δλρt (θ) = Gλρt (θ)− θ>φt, (99)

then according to the following theorem we have Pπd δλt (θ)φt = E
[
δλρt (θ)φt

]
.

Theorem 8 (Off-policy TD with importance weighting) Let π and π denote the behavior

and target policies, respectively. Consider δλt (θ), δλρt (θ) defined in equations (95) (99).
Then,

Pπd δλt (θ)φt = E
[
δλρt (θ)φt

]
. (100)

46



Proof

We show this by expanding the right-hand side

E
[
Gλρt (θ) | St = s

]
= E

[
ρt

(
Rt+1 + γ(1− λ)θ>φt+1

)
+ ρtγλG

λρ
t+1(θ) | St = s

]

= E
[
ρt

(
Rt+1 + γ(1− λ)θ>φt+1

)
| St = s

]
+ ρtγλE

[
Gλρt+1(θ) | St = s

]

= E
[
Rt+1 + γ(1− λ)θ>φt+1 | St = s, π

]

+
∑

a,s′
P (s′ | s, a)π(a | s) π(a|s)

π(a | s)γλE
[
Gλγρt+1(θ) | St+1 = s′

]

= E
[
Rt+1 + γ(1− λ)θ>φt+1 | St = s, π

]

+
∑

a,s′
P (s′ | s, a)π(a | s)γλE

[
Gλγρt+1(θ) | St+1 = s′

]

= E
[
Rt+1 + γ(1− λ)θ>φt+1 + γλE

[
Gλγρt+1(θ) | St+1 = s′

]
| St = s, π

]
,

which, as it continues to roll out, gives us E
[
Gλρt (θ) | St = s

]
= E

[
Gλt (θ) | St = s, π

]
. And,

eventually we get E
[
δλρt (θ)φt

]
= Pπd δλt (θ)φt, because the state-distribution is based on

behavior state-distribution, d.

Now using the above theorem, the forward-view objective function (96), can be written as

J(θ) = E
[
δλρt (θ)φt

]>
E[φtφ

>
t ]−1E

[
δλρt (θ)φt

]
. (101)

8.6 Backward-view objective function

The forward-view objective function is a function of E
[
δλρt (θ)φt

]
, which is not practical

to estimate because it depends on future data. The following theorem, however, makes it
possible through a mechanistic backward-view.

Theorem 9 (Equivalence of the TD forward-view and backward-view) The forward-view
description of TD update is equivalence to the following mechanistic backward-view:

E
[
δλρt (θ)φt

]
= E[δt(θ)et] , (102)

where δλρt (θ) is defined in Equation (99), δt(θ) is the conventional TD error, δt(θ) = Rt+1+
γθ>φt+1 − θ>φt, and et is the eligibility trace vector at time-step t, and has the following
recursive update:

et = ρt (φt + γλet−1) . (103)

Proof Consider

Gλρt (θ) = ρt

(
Rt+1 + γ

[
(1− λ)θ>φt+1 + λGλρt+1(θ)

])
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= ρt

(
Rt+1 + γθ>φt+1 − θ>φt + θ>φt

)
− ρtγλθ>φt+1 + ρtγλG

λγρ
t+1(θ)

= ρt

(
Rt+1 + γθ>φt+1 − θ>φt

)
+ ρtθ

>φt + ρtγλ
(
Gλγρt+1(θ)− θ>φt+1

)

= ρtδt(θ) + ρtθ
>φt + ρtγλδ

λγρ
t+1(θ),

thus,

δλρt (θ) = Gλρt (θ)− θ>φt
= ρtδt(θ) + ρtθ

>φt + ρtγλδ
λρ
t+1(θ)− θ>φt

= ρtδt(θ) + (ρt − 1)θ>φt + ρtγλδ
λρ
t+1(θ).

Also, consider the following identity:

E
[
(1− ρt)θ>φtφt

]
=

∑

s,a

d(s)π(a | s)
(

1− π(a | s)
π(a | s)

)
θ>φ(s)φ(s)

=
∑

s

d(s)

(∑

a

π(a | s)−
∑

a

π(a | s)
)
θ>φ(s)φ(s)

=
∑

s

d(s) (1− 1) θ>φ(s)φ(s)

= 0,

and consequently, E
[
(1− ρt)θ>φtφk

]
= 0, for k < t.

Putting all above together, we get:

E
[
δλρt (θ)φt

]

= E
[
ρtδt(θ)φt + (ρt − 1)θ>φt + ρtγλδ

λρ
t+1(θ)φt

]

= E[ρtδt(θ)φt] + 0 + Eπ
[
ρtγλδ

λρ
t+1(θ)φt

]

= E
[
ρtδt(θ)φt + ρt−1γλδ

λρ
t φt−1

]

= E
[
δ γρ
t (θ)φt + ρt−1γλ

(
ρtδt(θ)φt + (ρt − 1)θ>φt + ρtγλδ

λρ
t+1(θ)φt

)
φt−1

]

= E
[
ρtδt(θ)φt + ρt−1γλ

(
ρtδt(θ) + ρtγλδ

λρ
t+1(θ)

)
φt−1

]

= E
[
ρtδt(θ) (φt + ρt−1γλφt−1) + ρt−1γλρtγλδ

λρ
t+1(θ)φt−1

]

= E
[
ρtδt(θ) (φt + γλρt−1φt−1) + ρt−2γλρtγλδ

λρ
t (θ)φt−2

]

...

= E[δt(θ)ρt (φt + ρt−1γλφt−1 + ρt−2γλρt−1γλφt−2 + · · · )]
= E[δt(θ)et] , (104)

where et = ρt(φt + γλet−1) .

48



8.7 Derivation of the GTD(λ) algorithm

Now from Equation (101) and Theorem 9, we get

J(θ) = E[δt(θ)et]
> E[φtφ

>
t ]−1E[δt(θ)et] .

Just like derivation of GTD(0), first, we compute the steepest-descent direction of J(θ) is:

−1

2
∇J(θ)

= −1

2
∇
(
E[δt(θ)et]

> E[φtφ
>
t ]
−1E[δt(θ)et]

)

= −∇E
[
δt(θ)e

>
t

]
E[φtφ

>
t ]
−1E[δt(θ)et]

= −E
[
(γφt+1 − φt) e>t

]
E[φtφ

>
t ]
−1E[δt(θ)et] .

We use the following identity:

E
[
φte
>
t

]
= E

[
φtρt(φt + γλet−1)>

]

= E
[
φtρtφ

>
t + φtγλe

>
t−1
]

= E
[
φtρtφ

>
t + φt+1ρtγλe

>
t

]

= E
[
φtφ
>
t + φt+1γλe

>
t

]
,

where we have used shifting indices trick and the following identities

E
[
φtρtφ

>
t

]
= E

[
φtφ
>
t

]
, E

[
φt+1ρtγλe

>
t

]
= E

[
φt+1γλe

>
t

]
.

Thus,

−E
[
(γφt+1 − φt) e>t

]
= E

[
γφt+1e

>
t − φte>t

]

= −E
[
γφt+1e

>
t −

(
φtφ
>
t + φt+1γλe

>
t

)]

= E
[
φtφ
>
t − γ(1− λ)φt+1e

>
t

]
.

Using the above identity, we get

−1

2
∇J(θ)

= −E
[
(γφt+1 − φt) e>t

]
E[φtφ

>
t ]
−1E[δt(θ)et]

= E
[
φtφ
>
t − γ(1− λ)φt+1e

>
t

]
E[φtφ

>
t ]
−1E[δt(θ)et]

= E[δt(θ)et]− E
[
γ(1− λ)φt+1e

>
t

]
E[φtφ

>
t ]
−1E[δt(θ)et]

= E[δt(θ)et]− E
[
γ(1− λ)φt+1e

>
t

]
w(θ), (105)

where w(θ) = E[φtφ
>
t ]
−1E[δt(θ)et].
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The GTD(λ)algorithm By direct sampling from Equation (105) and following the GTD(0)
derivations steps we get the GTD(λ)algorithm3:

θt+1 = αt

[
δtet − γ(1− λ)(e>t wt)φt+1

]
, (106a)

wt+1 = βt

[
δtet − (w>t φt)φt

]
, (106b)

where

δt = rt+1 + γt+1θ
>
t φt+1 − θ>t φt,

et = ρt (φt + γλet−1) ,

ρt =
π(At | St)
π(At | St)

.

The off-policy TD algorithm, GTD(0), that we have discussed so far always has been
weighted by the agent behavior distribution. This weighting, although seems natural, but
can change the quality of TD fixed point (see Kolter, 2011 ). However, by addicting a
desired weighted function (as a function of data), GTD(0) can be easily generalized to the
cases where it can cover variety of solution as has been discussed in Precupt et al. (2001)
and Kolter (2011). Algorithm 3 shows how to do this by addicting a term It ∈ R+ in the
update, which can be some cumulative product of weights (Precupt, 2001) or some desirable
state-occupancy weight based on history of observed data.

Algorithm 3 GTD(λ)with linear function approximation

1: Initialize w0 to 0, and θ0 arbitrarily.
2: Choose proper (small) positive values for α, β, and set values for γ ∈ (0, 1], λ ∈ [0, 1].
3: Repeat for each episode:
4: Initialize e = 0.
5: Take At from St according to π, and arrive at St+1.
6: Observe sample, (φt, Rt+1, φt+1) at time step t.
7: for each observed sample do
8: δt ← Rt+1 + γθ>t φt+1 − θ>t φt.
9: ρt ← π(At|St)

π(At|St)
.

10: et ← ρt (φt + γλet−1).
11: θt+1 ← θt + αIt

[
δtet − γ(1− λ)(e>t wt)φt+1

]
.

12: wt+1 ← wt + βIt
[
δtet − (φ>t wt)φt

]
.

13: end for

Convergence remarks: Just like the convergence of GTD(0) in Section ??, it can
be shown that GTD(λ) is guaranteed to converge under standard conditions and proper
choice of step-sizes. Please note addicting the positive weights (It) does not change

3. Note, GTD(λ)is named after GTD(λ) in Maei (2011).
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the convergence proof as the objective function for this case would be in the form of

J(θ) = E[Itδtet]> E
[
Itφtφ>t

]−1 E[Itδtet] (note It can be a function of generated data in
the past, that is, history.).

8.8 GQ

Analogous to state-value functions, we define the λ-return for action-value functions:

Gλt (Q) = Rt+1 + γ
[
(1− λ)Q(St+1, At+1) + λGλt+1(Q)

]
, (107)

where Q(s, a) denotes the value of taking action a from state s, γ ∈ (0, 1], and λ ∈ [0, 1].
Under MDP assumption, for every entry of state-action pair we get the following λ-weighted
Bellman equation for action-value functions:

Qπ(s, a) = Eπ
[
Gλt (Qπ) | St = s,At = a, π

]
.

= (T πλQπ)(s, a),

where T πλ is a λ-weighted state–action version of the affine Bellman operator for the target
policy π.

To estimate action-value functions, we use linear function approximation, where Q ≈
Qθ = Φθ is the vector of approximate action values for each state–action pair (s, a) ∈ S×A,
and Φ is the matrix whose rows are the state–action feature vectors φ(s, a)> ∈ Rd.

Following our approach for derivation of GTD(λ)in Section 8.4, we consider the follow-
ing projected Bellman-error objective function:

J(θ) = ‖Qθ −ΠT πλQθ‖2d =
(
Pπd δλt (θ)φt

)>
E[φtφ

>
t ]
−1 (Pπd δλt (θ)φt

)
, (108)

where δλt denotes λ-weighted TD error at time t:

δλt (θ)
.

= Gλt (θ)− θ>φt, (109)

and Gλt (θ) is

Gλt (θ) = Rt+1 + γ
[
(1− λ)θ>φt+1 + λGλt+1(θ)

]
, (110)

where φt ≡ φ(St, At).
In the next section, first, we introduce the GQ(λ) algorithm, whose learning parameter

is updated along the stochastic gradient descent of the above objective function, J(θ).

8.9 The GQ(λ) algorithm

First, we specify the GQ(λ) algorithm as follows: The weight vector θ ∈ Rn is initialized
arbitrarily. The secondary weight vector w ∈ Rn is initialized to zero. An auxiliary memory
vector known as the eligibility trace e ∈ Rn is also initialized to zero. Their update rules
are

θt+1 = θt + αtIt
[
δtet − γ(1− λ)(w>t et)φ̄t+1

]
, (111a)
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wt+1 = wt + βtIt
[
δtet − (w>t φt)φt

]
, (111b)

where It is a desirable positive weight (see the GTD(λ) algorithm),

et = φt + γλρtet−1, (112)

δt = Rt+1 + γθ>t φ̄t+1 − θ>t φt, (113)

φ̄t =
∑

a

π(a | St)φ(St, a), (114)

ρt =
π(At | St)
π(At | St)

,

where φt is an alternate notation for φ(St, At), and αt > 0, βt > 0, are positive step-size
parameters for θ and w weights respectively.

In the next section we derive GQ(λ) based on gradient-descent in projected (λ-weighted)
Bellman error objective function.

Algorithm 4 GQ(λ) with linear function approximation

1: Initialize w0 to 0, and θ0 arbitrarily.
2: Choose proper (small) positive values for α, β, and set values for γ ∈ (0, 1], λ ∈ [0, 1].
3: Repeat for each episode:
4: Initialize e = 0.
5: Take At from St according to π, and arrive at St+1.
6: Observe sample, (St, Rt+1, St+1) at time step t (with their corresponding state-action

feature vectors).
7: for each observed sample do
8: φ̄t+1 ←

∑
a π(a | St+1)φ(St+1, a).

9: δt ← Rt+1 + γθ>t φ̄t+1 − θ>t φt.
10: ρt ← π(At|St)

π(At|St)
.

11: et ← φt + ρtγλet−1.
12: θt+1 ← θt + αIt

[
δtet − γ(1− λ)(e>t wt)φ̄t+1

]
.

13: wt+1 ← wt + βIt
[
δtet − (φ>t wt)φt

]
.

14: end for

8.10 Derivation of GQ(λ)

To derive GQ(λ), we follow the GTD(λ) derivation steps (for simplicity, first, we assume It
functions are one).

9. Focusing/views of off-policy TDL

10. Hybrid TDL

11. Conclusion
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12. Popular counterexamples for TD(0) with function approximation

In this section we present some of the well known counterexamples that demonstrate the
stability problem of TD(0) with function approximation.

Baird’s Off-policy Counterexample Consider the 7-star version of the “star” coun-
terexample (Baird, 1995; Sutton and Barto, 1998). The Markov decision process (MDP) is
depicted in Fig. 3. The reward is zero in all transitions, thus the true value functions for
any given policy is zero. The behavior policy, in this example, chooses the solid line action
with probability of 1/7 and the dotted line action with probability of 6/7. The goal is to
learn the value of a target policy that chooses the solid line more often than the probability
of 1/7. In this example, the target policy choose the solid action with probability of 1.

Value functions are approximated linearly. Both TD(0) and dynamic programming
(with incremental updates), however, will diverge on this example; that is, their learning
parameters will go to ±∞ as is illustrated in Fig. 3.

Now, we turn into the stability issues of TD methods in conjunction with nonlinear
function approximation. Despite linear TD(0), nonlinear TD(0) can become unstable and
diverge even under on-policy training. The spiral counterexample, due to Tsitsiklis and
Van Roy (1997), shows divergence of nonlinear TD(0) under on-policy training.

Spiral Counterexample (Tsitsiklis & Van Roy, 1997): Consider the Markov chain
with 3 states as is shown in the left panel of Fig. 9. All state-state transitions are with proba-
bility of 1/2, the reward is always zero, and the discount factor is γ = 0.9. The parametrized
(approximate) value function has a scalar parameter, θ, and takes the nonlinear spiral form

Vθ(s) =
(
a(s) cos (λ̂θ)− b(s) sin (λ̂θ)

)
eεθ.

The true value function is V = (0, 0, 0)>, which is achieved as θ → −∞. The right panel of
the figure, demonstrates the value functions for each state; each axis corresponds to value
function for a given state. As is illustrated in Fig. 9(c), the learning parameter θ diverges
using nonlinear TD(0). Note, here we have used the expected TD(0) update in the plot to
illustrate how the θ parameter evolves under TD learning.

Restricted features: Here, we provide our a counter-example with restricted features.
The purpose of this counter-example is to demonstrate that convergence, most likely, can
not be guaranteed with restricted features; that is, one can find a target policy for which
the learning parameters can divergence. Fig. 10a, shows a very simple example that TD(0)
diverges. One can think that by restricting the features of the next states one can guarantee
the convergence of TD(0). In Fig. 10b, the norm of each feature as well as the size of feature
vectors for the next states are less (or equal) than the starting states. However, TD(0) still
diverges for this example. Similar counterexamples can be found with binary features with
restricted next-state sizes.

Binary features with equal norm: Just like tabular features, one might think, binary
features with the same norm possibly would guarantee the convergence of TD learning.
Fig. 11 demonstrates an example that refutes this idea. If we write the expected TD(0)
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Figure 9: Spiral counterexample, which shows the divergence of nonlinear TD(0) under
on-policy training. Panel a) shows the MDP problem with transitions and
panel b) shows how the value functions evolve. Panel c) shows the learn-
ing parameter diverges to infinity. The parameter is updated according to ex-
pected TD(0) update (approximate dynamic programming style). Here, we used
V0 = (100,−70,−30)>, a = V0, b = (23.094,−98.15, 75.056)>, λ̂ = 0.866 and
ε = 0.05.

✓ 2✓

a)
✓1 + ✓2 ✓1

✓1 + 2✓2 ✓2

p = 1/2

p = 1/2

b)

Figure 10: Restricted features. Panel a) shows a simple example for which TD(0) diverges.
Here, the agent experience only one sample transition at every time step and the
reward is zero. The value functions are shown on the top of each state (features
are 1 and 2, respectively). Panel b) shows an example with restricted features
and each sample transition is observed with probability of 1/2. Reward is zero
for all these examples.

update in the form of E[δ(θ)φ] = −Aθ + b, then the real part eigenvalues of matrix A are
−0.5 +2, +2.75 and +2.75. Because one of the real part eigenvalues is negative then it
makes the linear system unstable and does the TD(0) iterate diverges.

13. Several Proposed Approaches for Solving the Stability Problem of
TD Learning

Several approaches to the stability problem in reinforcement learning have been proposed,
but none have been satisfactory in many ways; they do not satisfy our four desirable al-
gorithmic features. (Also, as we mentioned, there has been several ideas for constraining
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Figure 11: Binary features with equal norms. The value function of each state is shown with
respect to its learning parameters. Here, we consider binary feature vectors with
have equal norm. Just like example demonstrated in Fig. 10, TD(0) diverges for
this example.

features, such as choosing binary feature vectors for each state with equal norm, and one
always can find a counterexample for such forms of feature construction.)

One idea for retaining all four desirable features is to use cumulative products of target-
to-behavior-policy likelihood ratios to re-weight TD updates. In principle it uses cumu-
lative products of importance-weightings (likelihood ratios) over the data trajectory. In
other words, at any given time t, the TD update is re-weighted by cumulative products of
importance-weighting ratios up to time t, so that its expected value is in the same direction
as on-policy update according to the target policy (Precup et al., 2000; 2001). Convergence
can sometimes then be assured by existing results on the convergence of on-policy methods
(Tsitsiklis and Van Roy 97; Tadić 2001). However, the importance-weighting weights are
cumulative products of many target-to-behavior-policy likelihood ratios, and consequently
they, and the corresponding updates, may be of very high variance.

The use of “recognizers” to construct the target policy directly from the behavior policy
(Precup et al., 2006) is one strategy for limiting the variance; another is careful choice of
the target policies (Precup et al., 2001). However, it remains the case that for all of such
methods to date there are always choices of problem, behavior policy, and target policy for
which the variance is infinite, and thus for which there is no guarantee of convergence.

The residual gradient (RG) method (Baird, 1995) has also been proposed as a way of
obtaining all four desirable features. However, as we explained in Section ?? it has some
fundamental drawbacks.

Gordon (1995) and others have questioned the need for linear function approximation.
He has proposed replacing linear function approximation with a more restricted class of ap-
proximation, known as averagers, that never extrapolate outside the range of the observed
data and thus cannot diverge (see also Szepesvari & Smart, 2004). Rightly or wrongly, aver-
agers have been seen as being too constraining and have not been used on large applications
involving online learning. Linear methods, on the other hand, have been widely used (e.g.
Baxter, Tridgell & Weaver, 1998; Schaeffer, Hlynka & Jussila, 2001).
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Linear function approximation is most powerful when very large numbers of features are
used, perhaps millions of features (e.g., as in Silver et al., 2007). In such cases, methods
with O(n) complexity are required.

The stability problem of TD methods in conjunction with nonlinear function approxi-
mation is more severe, and nonlinear TD methods can diverge even for the case of on-policy
learning (Tsitsiklis and Van Roy, 1997). There has been little work on addressing this
stability problem, and proposed methods either are restricted to particular conditions or
only partially solve the problem. For example, the Bridge algorithm by Papavassiliou and
Russell (1999) uses a variant of TD learning and is convergent with nonlinear function
approximation. However, it is a complex algorithm with high computational complexity,
which hampers its practicality and also it does not have all of our four desirable algorithmic
features.

14. General Value Functions

In this section we extend GQ(λ) and GTD(λ), which we developed in the previous sections,
to a more general settings, including general value functions (GVFs), terminal-reward func-
tions (outcomes), and allow policies to terminate at any given state with a termination
(probability) function. The GVFs are introduced in Sutton et al. (2011) (also see Maei &
Sutton, 2010; Maei, 2011).

In standard RL, the most common type of prediction is the expected total or discounted
future reward, while following a policy. However, rewards could also be represented in the
form of transient signals while acting—transients are a measure of what happens during
the trajectory rather than its end. We denote the transient signal r : S ×A → R (note, we
will show random variable with capital letters).

The second type of prediction is the expected outcome of policy upon its termination.
We call this function the outcome target function, or terminal-reward function, z : S → R,
where z(s) is the outcome that the agent receives if the policy terminates at state s.

Finally, the prediction could conceivably be a mixture of both a transient and an out-
come. Here we will present the algorithm for predictions with both an outcome part z and
a transient part r, with the two added together. In the common place where one wants only
one of the two, the other is set to zero.

Now we can start to state the goal of learning more precisely. In particular, we would
like our prediction to be equal to the expected value of the outcome target function at
termination plus the cumulative sum of the transient reward function along the way. Thus,
conventional action-value functions are defined in the following general form

Qπ(s, a) ≡ E[Rt+1 +Rt+2 + · · ·+Rt+k + Zt+k | St = s,At = a, π, γ] , (115)

where γ : S → [0, 1] is a discount function representing the probability of continuing to
evaluate policy π from a given state, Qπ(s, a) denotes action value function that evaluates
policy π given state-action pair s, a, and its termination probability 1− γ(s). We call these
action-value functions, general value functions (GVFs).

Our definition of GVFs does not involve discounting factor, as policies will terminate
after some finite time—due to termination probability function 1−γ. Later we will see that
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γ function can be interpreted as discounting factor—γ(s) indicates probability of continuing
policy, π, from state s.

The Equation (115) describes the value functions in a Monte Carlo sense, but of course
we want to include the possibility of temporal-difference learning. To do this, first we re-
write the Equation (115) in the following bootstrapping form, which is derived under MDP
assumption:

Qπ(s, a)

= E[Rt+1 +Rt+2 + · · ·+Rt+k + zt+k | St = s,At = a, π, γ]

=
∑

s′
P (s′ | s, a)

[
r(s, a, s′) + (1− γ(s′))z(s′) + γ(s′)

∑

a′
π(a′ | s′)Qπ(s′, a′)

]

.
= (T πQ)(s, a), (116)

≈ Qθ(s, a) = θ>φ(s, a) (117)

where T π has the form of Bellman operator for any given state-action pair, thus, we call
the above equation a Bellman equation.

In the next section we show how to learn the parameter vector θ through a gradient TD
method.

14.1 GQ(λ) for Learning GVFs

Table (5) shows how to use GQ(λ) with linear function approximation for GVFs.

Algorithm 5 GQ(λ) for Learning GVFs

1: Initialize w0 to 0, and θ0 arbitrarily.
2: Choose proper (small) positive values for α, β.
3: Repeat for each episode:
4: Initialize e = 0.
5: Take At from St according to π, and arrive at St+1.
6: Observe sample, (St, Rt+1, Zt+1, St+1) at time step t (with their corresponding state-

action feature vectors).
7: for each observed sample do
8: φ̄t+1 ←

∑
a π(a | St+1)φ(St+1, a), and

λt ← λ(St), γt ← γ(St),γt+1 ← γ(St+1).
9: δt ←

(
Rt+1 + (1− γt+1)Zt+1 + γt+1θ

>
t φ̄t+1

)
− θ>t φt.

10: ρt ← π(At|St)
π(At|St)

.
11: et ← φt + ρtγtλtet−1.
12: θt+1 ← θt + αIt

[
δtet − γt+1(1− λt+1)(e

>
t wt)φ̄t+1

]
.

13: wt+1 ← wt + βIt
[
δtet − (φ>t wt)φt

]
.

14: end for

To derive GQ(λ) with linear function approximation for GVFs, we follow the derivation
of GQ(λ) for standard value functions (see also Maei, 2011). GQ(λ) has been implemented
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in Horde architecture (Sutton et al., 2011), in a robotic task, which involves a complex and
non-stationary environment.

14.2 GTD(λ) for Learning GVFs

Analogous to action-value functions, general state-value functions can be learned through
a gradient TD method for GVFs. The state-value function are needed for various optimal
control methods, such as policy gradient method with actor-critic architecture for predicting
grounded world-knowledge (Sutton, 2009).

Table (6) shows how to use GTD(λ) for GVFs with varying eligibility traces. For the
detailed derivations see Maei (2011).

Algorithm 6 GTD(λ) for GVFs

1: Initialize w0 to 0, and θ0 arbitrarily.
2: Choose proper (small) positive values for α, β.
3: Repeat for each episode:
4: Initialize e = 0
5: Take At from St according to π, and arrive at St+1.
6: Observe sample, (φt, Rt+1, Zt+1, φt+1), where φt = φ(St).
7: for each observed sample do
8: λt ← λ(St), γt ← γ(St),γt+1 ← γ(St+1).
9: δt ←

(
Rt+1 + (1− γt+1)Zt+1 + γt+1θ

>
t φt+1

)
− θ>t φt.

10: ρt ← π(At|St)
π(At|St)

.

11: et ← ρt (φt + γtλtet−1).
12: θt+1 ← θt + αIt

[
δtet − γt+1(1− λt+1)(e

>
t wt)φt+1

]
.

13: wt+1 ← wt + βIt
[
δtet − (φ>t wt)φt

]
.

14: end for

15. Discussions

In this paper, we presented a new family of temporal-difference learning algorithms based
on gradient descent. Our gradient-TD algorithms can be viewed as performing stochastic
gradient-descent in a mean-square projected Bellman-error (PBE) objective function whose
optimum is the TD-solution. Another key technique was introducing a set of auxiliary
weights that were used in the update of actual parameters. The auxiliary weights were
trained online, based on a stochastic update rule. All of our gradient-TD algorithms are
guaranteed to converge.

The recent gradient TD methods (with TDC-style update, that is, TD update and a
correction term), such as GTD(λ), seems more effective than GTD2 and GTD1 that were
developed in Sutton, Szepesvári and Maei (2008) and Sutton et al. (2009). Such gradient
TD algorithms, for the first time, have made it possible to have TD learning with linear
complexity both in terms of memory and per-time-step computation while retaining their
stability for general settings, including nonlinear function approximation and off-policy
learning.
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We also incorporated eligibility traces into our gradient-TD methods. Particularly, we
considered a general scenario that eligibility trace function can be an arbitrary function of
state, thus, can vary over time.

Another contribution is extending and making gradient-TD algorithms suitable for learn-
ing general value functions (GVFs). In standard RL, the value of a state is a measure of
predicted future rewards from that state by following a policy. However, in the real-world,
predictions are not necessarily in the form of future rewards. We would like to be able to
answer questions such as: “If I keep moving forward now, would I bump to a wall after
few second?” This question not only considers the outcome of moving forward after a few
second, it also suggest that the policy of moving forward is only excited in particular states.
The GVFs formulation is suitable for answering these temporally abstract predictions, which
are also essential for representing abstract, higher level-knowledge about courses of action,
or options. Here, we let policies to have their own activation and termination conditions,
thus, making them suitable for option-conditional predictions (Sutton et al., 1998; 1999 ).

Although, in this paper, we focused on TD methods in the context of reinforcement
learning, all these new ideas and methods can also be extended to various approximate DP
methods. A good way to understand the impact of this work is to see it a a way of curing
the curse-of-dimensionality.

The curse appears in large class of decision-making problems or problems that involve
learning from interaction. Dynamic Programming (DP) is a general approach for solving
complex decision-making problems. However, due to Bellman’s curse-of-dimensionality it
has not been extended in solving large-scale applications. The curse is considered as a male-
diction that has stopped scientists from finding exact solutions for large number of practical
problems (Bellman, 1961, p. 94). Approximate DP methods—a collection of techniques for
finding approximate DP solution— have been proposed to cure the curse.

However, approximate DP methods have cured the curse only partially. Baird’s coun-
terexample suggests we may have a stability problem when using approximate DP methods.
Particularly, the problem arises when we are interested in algorithms that have the following
desirable features: incremental, online, and linear complexity both in terms of memory and
per-time-step computation.

The GQ(λ) can also be extended to control problems (Maei, et al. 2010, Maei, 2011).
The future research is to conduct a through convergence analysis for control case.
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