
An Emphatic Approach to the Problem
of Off-policy Temporal-Difference Learning

Richard S. Sutton sutton@cs.ualberta.ca

A. Rupam Mahmood ashique@cs.ualberta.ca

Martha White whitem@cs.ualberta.ca

Reinforcement Learning and Artificial Intelligence Laboratory

Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada T6G 2E8

Abstract

In this paper we introduce the idea of improving the performance of parametric temporal-
difference (TD) learning algorithms by selectively emphasizing or de-emphasizing their
updates on different time steps. In particular, we show that varying the emphasis of linear
TD(λ)’s updates in a particular way causes its expected update to become stable under
off-policy training. The only prior model-free TD methods to achieve this with per-step
computation linear in the number of function approximation parameters are the gradient-
TD family of methods including TDC, GTD(λ), and GQ(λ). Compared to these methods,
our emphatic TD(λ) is simpler and easier to use; it has only one learned parameter vector
and one step-size parameter. Our treatment includes general state-dependent discount-
ing and bootstrapping functions, and a way of specifying varying degrees of interest in
accurately valuing different states.

Keywords: temporal-difference learning, off-policy training, function approximation,
convergence, stability

1. Parametric Temporal-Difference Learning

Temporal-difference (TD) learning is perhaps the most important idea to come out of the
field of reinforcement learning. The problem it solves is that of efficiently learning to make
a sequence of long-term predictions about how a dynamical system will evolve over time.
The key idea is to use the change (temporal difference) from one prediction to the next as
an error in the earlier prediction. For example, if you are predicting on each day what the
stock-market index will be at the end of the year, and events lead you one day to make a
much lower prediction, then a TD method would infer that the predictions made prior to
the drop were probably too high; it would adjust the parameters of its prediction function
so as to make lower predictions for similar situations in the future. This approach contrasts
with conventional approaches to prediction, which wait until the end of the year when the
final stock-market index is known before adjusting any parameters, or else make only short-
term (e.g., one-day) predictions and then iterate them to produce a year-end prediction.
The TD approach is more convenient computationally because it requires less memory and
because its computations are spread out uniformly over the year (rather than being bunched

c© Richard S. Sutton, A. Rupam Mahmood & Martha White.

Sutton, Mahmood & White

together all at the end of the year). A less obvious advantage of the TD approach is that
it often produces statistically more accurate answers than conventional approaches (Sutton
1988).

Parametric temporal-difference learning was first studied as the key “learning by gen-
eralization” algorithm in Samuel’s (1959) checker player. Sutton (1988) introduced the
TD(λ) algorithm and proved convergence in the mean of episodic linear TD(0), the simplest
parametric TD method. The potential power of parametric TD learning was convincingly
demonstrated by Tesauro (1992, 1995) when he applied TD(λ) combined with neural net-
works and self play to obtain ultimately the world’s best backgammon player. Dayan (1992)
proved convergence in expected value of episodic linear TD(λ) for all λ ∈ [0, 1], and Tsitsik-
lis and Van Roy (1997) proved convergence with probability one of discounted continuing
linear TD(λ). Watkins (1989) extended TD learning to control in the form of Q-learning
and proved its convergence in the tabular case (without function approximation, Watkins
& Dayan 1992), while Rummery (1995) extended TD learning to control in an on-policy
form as the Sarsa(λ) algorithm. Bradtke and Barto (1996), Boyan (1999), and Nedic and
Bertsekas (2003) extended linear TD learning to a least-squares form called LSTD(λ). Para-
metric TD methods have also been developed as models of animal learning (e.g., Sutton &
Barto 1990, Klopf 1988, Ludvig, Sutton & Kehoe 2012) and as models of the brain’s reward
systems (Schultz, Dayan & Montague 1997), where they have been particularly influential
(e.g., Niv & Schoenbaum 2008, O’Doherty 2012). Sutton (2009, 2012) has suggested that
parametric TD methods could be key not just to learning about reward, but to the learning
of world knowledge generally, and to perceptual learning. Extensive analysis of parametric
TD learning as stochastic approximation is provided by Bertsekas (2012, Chapter 6) and
Bertsekas and Tsitsiklis (1996).

Within reinforcement learning, TD learning is typically used to learn approximations
to the value function of a Markov decision process (MDP). Here the value of a state s,
denoted vπ(s), is defined as the sum of the expected long-term discounted rewards that
will be received if the process starts in s and subsequently takes actions as specified by the
decision-making policy π, called the target policy. If there are a small number of states,
then it may be practical to approximate the function vπ by a table, but more generally
a parametric form is used, such as a polynomial, multi-layer neural network, or linear
mapping. Also key is the source of the data, in particular, the policy used to interact with
the MDP. If the data is obtained while following the target policy π, then good convergence
results are available for linear function approximation. This case is called on-policy learning
because learning occurs while “on” the policy being learned about. In the alternative, off-
policy case, one seeks to learn about vπ while behaving (selecting actions) according to
a different policy called the behavior policy, which we denote by µ. Baird (1995) showed
definitively that parametric TD learning was much less robust in the off-policy case (for
λ < 1) by exhibiting counterexamples for which both linear TD(0) and linear Q-learning
had unstable expected updates and, as a result, the parameters of their linear function
approximation diverged to infinity. This is a serious limitation, as the off-policy aspect is
key to Q-learning (perhaps the single most popular reinforcement learning algorithm), to
learning from historical data and from demonstrations, and to the idea of using TD learning
for perception and world knowledge.

2

An Emphatic Approach to Off-policy TD Learning

Over the years, several different approaches have been taken to solving the problem of
off-policy learning with TD learning (λ < 1). Baird (1995) proposed an approach based
on gradient descent in the Bellman error for general parametric function approximation
that has the desired computational properties, but which requires access to the MDP for
double sampling and which in practice often learns slowly. Gordon (1995, 1996) proposed
restricting attention to function approximators that are averagers, but this does not seem to
be possible without storing many of the training examples, which would defeat the primary
strength that we seek to obtain from parametric function approximation. The LSTD(λ)
method was always relatively robust to off-policy training (e.g., Lagoudakis & Parr 2003,
Yu 2010, Mahmood, van Hasselt & Sutton 2014), but its per-step computational complexity
is quadratic in the number of parameters of the function approximator, as opposed to the
linear complexity of TD(λ) and the other methods. Perhaps the most successful approach
to date is the gradient-TD approach (e.g., Maei 2011, Sutton et al. 2009, Maei et al. 2010),
including hybrid methods such as HTD (Hackman 2012). Gradient-TD methods are of
linear complexity and guaranteed to converge for appropriately chosen step-size parameters
but are more complex than TD(λ) because they require a second auxiliary set of parameters
with a second step size that must be set in a problem-dependent way for good performance.
The studies by White (2015), Geist and Scherrer (2014), and Dann, Neumann, and Peters
(2014) are the most extensive empirical explorations of gradient-TD and related methods
to date.

In this paper we explore a new approach to solving the problem of off-policy TD learning
with function approximation. The approach has novel elements but is similar to that devel-
oped by Precup, Sutton, and Dasgupta in 2001. They proposed to use importance sampling
to reweight the updates of linear TD(λ), emphasizing or de-emphasizing states as they were
encountered, and thereby create a weighting equivalent to the stationary distribution under
the target policy, from which the results of Tsitsiklis and Van Roy (1997) would apply and
guarantee convergence. As we discuss later, this approach has very high variance and was
eventually abandoned in favor of the gradient-TD approach. The new approach we explore
in this paper is similar in that it also varies emphasis so as to reweight the distribution of
linear TD(λ) updates, but to a different goal. The new goal is to create a weighting equiva-
lent to the followon distribution for the target policy started in the stationary distribution
of the behavior policy. The followon distribution weights states according to how often they
would occur prior to termination by discounting if the target policy was followed.

Our main result is to prove that varying emphasis according to the followon distribution
produces a new version of linear TD(λ), called emphatic TD(λ), that is stable under general
off-policy training. By “stable” we mean that the expected update over the ergodic distri-
bution (Tsitsiklis & Van Roy 1997) is a contraction, involving a positive definite matrix. We
concentrate on stability in this paper because it is a prerequisite for full convergence of the
stochastic algorithm. Demonstrations that the linear TD(λ) is not stable under off-policy
training have been the focus of previous counterexamples (Baird 1995, Tsitsiklis & Van Roy
1996, 1997, see Sutton & Barto 1998). Substantial additional theoretical machinery would
be required for a full convergence proof. Recent work by Yu (2015) builds on our stability
result to prove that the emphatic TD(λ) converges with probability one.

In this paper we first treat the simplest algorithm for which the difficulties of off-policy
temporal-difference (TD) learning arise—the TD(0) algorithm with linear function approx-

3

Sutton, Mahmood & White

imation. We examine the conditions under which the expected update of on-policy TD(0)
is stable, then why those conditions do not apply under off-policy training, and finally how
they can be recovered for off-policy training using established importance-sampling methods
together with the emphasis idea. After introducing the basic idea of emphatic algorithms
using the special case of TD(0), we then develop the general case. In particular, we consider
a case with general state-dependent discounting and bootstrapping functions, and with a
user-specified allocation of function approximation resources. Our new theoretical results
and the emphatic TD(λ) algorithm are presented fully for this general case. Empirical ex-
amples elucidating the main theoretical results are presented in the last section prior to the
conclusion.

2. On-policy Stability of TD(0)

To begin, let us review the conditions for stability of conventional TD(λ) under on-policy
training with data from a continuing finite Markov decision process. Consider the simplest
function approximation case, that of linear TD(λ) with λ = 0 and constant discount-rate
parameter γ ∈ [0, 1). Conventional linear TD(0) is defined by the following update to the
parameter vector θt ∈ Rn, made at each of a sequence of time steps t = 0, 1, 2, . . ., on
transition from state St ∈ S to state St+1 ∈ S, taking action At ∈ A and receiving reward
Rt+1 ∈ R:

θt+1
.
= θt + α

(
Rt+1 + γθ>t φ(St+1)− θ>t φ(St)

)
φ(St), (1)

where α > 0 is a step-size parameter, and φ(s) ∈ Rn is the feature vector corresponding to
state s. The notation “

.
=” indicates an equality by definition rather than one that follows

from previous definitions. In on-policy training, the actions are chosen according to a target
policy π : A×S→ [0, 1], where π(a|s) .

= P{At=a|St=s}. The state and action sets S and A

are assumed to be finite, but the number of states is assumed much larger than the number
of learned parameters, |S| .= N � n, so that function approximation is necessary. We use
linear function approximation, in which the inner product of the parameter vector and the
feature vector for a state is meant to be an approximation to the value of that state:

θ>t φ(s) ≈ vπ(s)
.
= Eπ[Gt|St=s] , (2)

where Eπ[·] denotes an expectation conditional on all actions being selected according to π,
and Gt, the return at time t, is defined by

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · · . (3)

The TD(0) update (1) can be rewritten to make the stability issues more transparent:

θt+1 = θt + α
(
Rt+1φ(St)︸ ︷︷ ︸

bt∈Rn

−φ(St) (φ(St)− γφ(St+1))>︸ ︷︷ ︸
At∈Rn×n

θt

)

= θt + α(bt −Atθt) (4)

= (I− αAt)θt + αbt.

4

An Emphatic Approach to Off-policy TD Learning

The matrix At multiplies the parameter θt and is thereby critical to the stability of the
iteration. To develop intuition, consider the special case in which At is a diagonal matrix.
If any of the diagonal elements are negative, then the corresponding diagonal element of
I−αAt will be greater than one, and the corresponding component of θt will be amplified,
which will lead to divergence if continued. (The second term (αbt) does not affect the
stability of the iteration.) On the other hand, if the diagonal elements of At are all positive,
then α can be chosen smaller than one over the largest of them, such that I−αAt is diagonal
with all diagonal elements between 0 and 1. In this case the first term of the update tends
to shrink θt, and stability is assured. In general, θt will be reduced toward zero whenever
At is positive definite.1

In actuality, however, At and bt are random variables that vary from step to step,
in which case stability is determined by the steady-state expectation, limt→∞ E[At]. In
our setting, after an initial transient, states will be visited according to the steady-state
distribution under π (which we assume exists). We represent this distribution by a vector
dπ, each component of which gives the limiting probability of being in a particular state2

[dπ]s
.
= dπ(s)

.
= limt→∞ P{St=s}, which we assume exists and is positive at all states (any

states not visited with nonzero probability can be removed from the problem). The special
property of the steady-state distribution is that once the process is in it, it remains in it. Let
Pπ denote the N × N matrix of transition probabilities [Pπ]ij

.
=
∑

a π(a|i)p(j|i, a) where
p(j|i, a)

.
= P{St+1 =j|St= i, At=a}. Then the special property of dπ is that

P>π dπ = dπ. (5)

Consider any stochastic algorithm of the form (4), and let A
.
= limt→∞ E[At] and

b
.
= limt→∞ E[bt]. We define the stochastic algorithm to be stable if and only if the

corresponding deterministic algorithm,

θ̄t+1
.
= θ̄t + α(b−Aθ̄t), (6)

is convergent to a unique fixed point independent of the initial θ̄0. This will occur iff the
A matrix has a full set of eigenvalues all of whose real parts are positive. If a stochastic
algorithm is stable and α is reduced according to an appropriate schedule, then its parameter
vector may converge with probability one. However, in this paper we focus only on stability
as a prerequisite for convergence (of the original stochastic algorithm), leaving convergence
itself to future work. If the stochastic algorithm converges, it is to a fixed point θ̄ of the
deterministic algorithm, at which Aθ̄ = b, or θ̄ = A−1b. (Stability assures existence of
the inverse.) In this paper we focus on establishing stability by proving that A is positive
definite. From definiteness it immediately follows that A has a full set of eigenvectors
(because y>Ay > 0, ∀y 6= 0) and that the corresponding eigenvalues all have real parts.3

1. A real matrix A is defined to be positive definite in this paper iff y>Ay > 0 for any real vector y 6= 0.
2. Here and throughout the paper we use brackets with subscripts to denote the individual elements of

vectors and matrices.
3. To see the latter, let Re(x) denote the real part of a complex number x, and let y∗ denotes the conjugate

transpose of a complex vector y. Then, for any eigenvalue–eigenvector pair λ,y: 0 < Re(y∗Ay) =
Re(y∗λy) = Re(λ)y∗y =⇒ 0 < Re(λ).

5

Sutton, Mahmood & White

Now let us return to analyzing on-policy TD(0). Its A matrix is

A = lim
t→∞

E[At] = lim
t→∞

Eπ
[
φ(St) (φ(St)− γφ(St+1))>

]

=
∑

s

dπ(s)φ(s)

(
φ(s)− γ

∑

s′
[Pπ]ss′φ(s′)

)>

= Φ>Dπ(I− γPπ)Φ,

where Φ is the N × n matrix with the φ(s) as its rows, and Dπ is the N × N diagonal
matrix with dπ on its diagonal. This A matrix is typical of those we consider in this paper
in that it consists of Φ> and Φ wrapped around a distinctive N × N matrix that varies
with the algorithm and the setting, and which we call the key matrix. An A matrix of this
form will be positive definite whenever the corresponding key matrix is positive definite.4

In this case the key matrix is Dπ(I− γPπ).

For a key matrix of this type, positive definiteness is assured if all of its columns sum
to a nonnegative number. This was shown by Sutton (1988, p. 27) based on two previously
established theorems. One theorem says that any matrix M is positive definite if and
only if the symmetric matrix S = M + M> is positive definite (Sutton 1988, appendix).
The second theorem says that any symmetric real matrix S is positive definite if all of its
diagonal entries are positive and greater than the sum of the corresponding off-diagonal
entries (Varga 1962, p. 23). For our key matrix, Dπ(I − γPπ), the diagonal entries are
positive and the off-diagonal entries are negative, so all we have to show is that each row
sum plus the corresponding column sum is positive. The row sums are all positive because
Pπ is a stochastic matrix and γ < 1. Thus it only remains to show that the column sums
are nonnegative. Note that the row vector of the column sums of any matrix M can be
written as 1>M, where 1 is the column vector with all components equal to 1. The column
sums of our key matrix, then, are:

1>Dπ(I− γPπ) = d>π (I− γPπ)

= d>π − γd>πPπ

= d>π − γd>π (by (5))

= (1− γ)dπ,

all components of which are positive. Thus, the key matrix and its A matrix are positive
definite, and on-policy TD(0) is stable. Additional conditions and a schedule for reducing
α over time (as in Tsitsiklis and Van Roy 1997) are needed to prove convergence with
probability one, θ∞ = A−1b, but the analysis above includes the most important steps
that vary from algorithm to algorithm.

4. Strictly speaking, positive definiteness of the key matrix assures only that A is positive semi-definite,
because it is possible that Φy = 0 for some y 6= 0, in which case y>Ay will be zero as well. To rule
this out, we assume, as is commonly done, that the columns of Φ are linearly independent (i.e., that the
features are not redundant), and thus that Φy = 0 only if y = 0. If this were not true, then convergence
(if it occurs) may not be to a unique θ∞, but rather to a subspace of parameter vectors all of which
produce the same approximate value function.

6

An Emphatic Approach to Off-policy TD Learning

3. Instability of Off-policy TD(0)

Before developing the off-policy setting in detail, it is useful to understand informally why
TD(0) is susceptible to instability. TD learning involves learning an estimate from an es-
timate, which can be problematic if there is generalization between the two estimates. For
example, suppose there is a transition between two states with the same feature represen-
tation except that the second is twice as big:

0

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

When approximate DP converges, it converges to a value function at which the PBE
(12) is zero and, of course, to a fixpoint of its update (14).

That approximate DP converges to a zero of the PBE for linear FA and the on-policy
distribution is an important positive result, representing the most successful generalization
of DP to a powerful class of function approximators. It was a breakthrough of sorts,
representing significant progress towards addressing Bellman’s “curse of dimensionality.”
However, linearity and the on-policy distribution remained significant limitations. In this
paper we will present methods that remove both limitations, so let us examine them more
carefully.

The status of approximate DP’s limitation to linear function approximators is not com-
pletely clear. In practice, such algorithms have been widely used with nonlinear function
approximators with good results. Tesauro’s (1992, 1995) celebrated results with backgam-
mon, for example, were obtained with a nonlinear neural-network function approximator.
It is in fact extremely di�cult to construct a example in which approximate DP fails to
converge under the on-policy distribution. The only such counterexample currently known
is Tsitsiklis and Van Roy’s spiral example, which is complex and contrived. We have tried
to construct a simpler one without success. Moreover, we have recently shown that even,
in the nonlinear case, all fixpoints of the approximate DP update are stable—that if the
approximator is started near a fixpoint it will converge to it (Maei, Sutton & Van Roy
in preparation). It seems quite likely to us that there could be a significant further posi-
tive result to be obtained for nonlinear function approximators and approximate DP. For
the moment, however, there are no positive theoretical results for approximate DP and
nonlinear function approximators.

Approximate DP’s limitation to the on-policy distribution appears more fundamental.
Simple counterexamples were presented by Baird (1995) and by Tsitsiklis and Van Roy
(1997) who also developed a theoretical understanding of the instability. Perhaps the sim-
plest counterexample, and a good one for understanding the issues, is given by this fragment
of an MDP:

0

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) �= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

2✓

So we see there is a fundamental sense in which DP does not work well with parametric
function approximation. This is the problem of DP and FA.

There is a special case that works, where the states are updated with the on-policy
distribution.

✓t+1 = ✓t + ↵
X

s

d⇡(s)
⇥
(B⇡v✓t)(s)� v✓t(s)

⇤
r✓tv✓t(s), (16)

12

where here θ and 2θ are the estimated values of the two states—that is, their feature repre-
sentations are a single feature that is 1 for the first state and 2 for the second (cf. Tsitsiklis
& Van Roy 1996). Now suppose that θ is 10 and the reward on the transition is 0. The
transition is then from a state valued at 10 to a state valued at 20. If γ is near 1 and α
is 0.1, then θ will be increased to approximately 11. But then the next time the transition
occurs there will be an even bigger increase in value, from 11 to 22, and a bigger increase in
θ, to approximately 12.1. If this transition is experienced repeatedly on its own, then the
system is unstable and the parameter increases without bound—it diverges. We call this
the θ→2θ problem.

In on-policy learning, repeatedly experiencing just this single problematic transition
cannot happen, because, after the highly-valued 2θ state has been entered, it must then be
exited. The transition from it will either be to a lesser or equally-valued state, in which
case θ will be significantly decreased, or to an even higher-valued state which in turn must
be followed by an even larger decrease in its estimated value or a still higher-valued state.
Eventually, the promise of high value must be made good in the form of a high reward, or
else estimates will be decreased, and this ultimately constrains θ and forces stability and
convergence. In the off-policy case, however, if there is a deviation from the target policy
then the promise is excused and need never be fulfilled. Later in this section we present a
complete example of how the θ→ 2θ problem can cause instability and divergence under
off-policy training.

With these intuitions, we now detail our off-policy setting. As in the on-policy case, the
data is a single, infinite-length trajectory of actions, rewards, and feature vectors generated
by a continuing finite Markov decision process. The difference is that the actions are
selected not according to the target policy π, but according to a different behavior policy
µ : A× S→ [0, 1], yet still we seek to estimate state values under π (as in (2)). Of course,
it would be impossible to estimate the values under π if the actions that π would take
were never taken by µ and their consequences were never observed. Thus we assume that
µ(a|s) > 0 for every state and action for which π(a|s) > 0. This is called the assumption
of coverage. It is trivially satisfied by any ε-greedy or soft behavior policy. As before we
assume that there is a stationary distribution dµ(s)

.
= limt→∞ P{St=s} > 0,∀s ∈ S, with

corresponding N -vector dµ.

Even if there is coverage, the behavior policy will choose actions with proportions dif-
ferent from the target policy. For example, some actions taken by µ might never be chosen
by π. To address this, we use importance sampling to correct for the relative probability of
taking the action actually taken, At, in the state actually encountered, St, under the target

7

Sutton, Mahmood & White

and behavior policies:

ρt
.
=
π(At|St)
µ(At|St)

.

This quantity is called the importance sampling ratio at time t. Note that its expected
value is one:

Eµ[ρt|St=s] =
∑

a

µ(a|s)π(a|s)
µ(a|s) =

∑

a

π(a|s) = 1.

The ratio will be exactly one only on time steps on which the action probabilities for the two
policies are exactly the same; these time steps can be treated the same as in the on-policy
case. On other time steps the ratio will be greater or less than one depending on whether
the action taken was more or less likely under the target policy than under the behavior
policy, and some kind of correction is needed.

In general, for any random variable Zt+1 dependent on St, At and St+1, we can recover
its expectation under the target policy by multiplying by the importance sampling ratio:

Eµ[ρtZt+1|St=s] =
∑

a

µ(a|s)π(a|s)
µ(a|s)Zt+1

=
∑

a

π(a|s)Zt+1

= Eπ[Zt+1|St=s] , ∀s ∈ S. (7)

We can use this fact to begin to adapt TD(0) for off-policy learning (Precup, Sutton &
Singh 2000). We simply multiply the whole TD(0) update (1) by ρt:

θt+1
.
= θt + ρt α

(
Rt+1 + γθ>t φt+1 − θ>t φt

)
φt (8)

= θt + α
(
ρtRt+1φt︸ ︷︷ ︸

bt

− ρtφt (φt − γφt+1)>︸ ︷︷ ︸
At

θt

)
,

where here we have used the shorthand φt
.
= φ(St). Note that if the action taken at time t

is never taken under the target policy in that state, then ρt = 0 and there is no update on
that step, as desired. We call this algorithm off-policy TD(0).

Off-policy TD(0)’s A matrix is

A = lim
t→∞

E[At] = lim
t→∞

Eµ
[
ρtφt (φt − γφt+1)>

]

=
∑

s

dµ(s)Eµ
[
ρkφk (φk − γφk+1)>

∣∣∣Sk = s
]

=
∑

s

dµ(s)Eπ
[
φk (φk − γφk+1)>

∣∣∣Sk = s
]

(by (7))

=
∑

s

dµ(s)φ(s)

(
φ(s)− γ

∑

s′
[Pπ]ss′φ(s′)

)>

= Φ>Dµ(I− γPπ)Φ,

8

An Emphatic Approach to Off-policy TD Learning

where Dµ is the N ×N diagonal matrix with the stationary distribution dµ on its diagonal.
Thus, the key matrix that must be positive definite is Dµ(I − γPπ) and, unlike in the on-
policy case, the distribution and the transition probabilities do not match. We do not have
an analog of (5), P>π dµ 6= dµ, and in fact the column sums may be negative and the matrix
not positive definite, in which case divergence of the parameter is likely.

A simple θ→ 2θ example of divergence that fits the setting in this section is shown in
Figure 1. From each state there are two actions, left and right, which take the process to the
left or right states. All the rewards are zero. As before, there is a single parameter θ and
the single feature is 1 and 2 in the two states such that the approximate values are θ and
2θ as shown. The behavior policy is to go left and right with equal probability from both
states, such that equal time is spent on average in both states, dµ = (0.5, 0.5)>. The target
policy is to go right in both states. We seek to learn the value from each state given that
the right action is continually taken. The transition probability matrix for this example is:

Pπ =

[
0 1
0 1

]
.

The key matrix is

Dµ(I− γPπ) =

[
0.5 0
0 0.5

]
×
[
1 −0.9
0 0.1

]
=

[
0.5 −0.45
0 0.05

]
. (9)

We can see an immediate indication that the key matrix may not be positive definite in
that the second column sums to a negative number. More definitively, one can show that
it is not positive definite by multiplying it on both sides by y = Φ = (1, 2)>:

Φ>Dµ(I− γPπ)Φ =
[
1 2

]
×
[
0.5 −0.45
0 0.05

]
×
[
1
2

]
=
[
1 2

]
×
[
−0.4
0.1

]
= −0.2.

That this is negative means that the key matrix is not positive definite. We have also
calculated here the A matrix; it is this negative scalar, A = −0.2. Clearly, this expected
update and algorithm are not stable.

It is also easy to see the instability of this example more directly, without matrices.
We know that only transitions under the right action cause updates, as ρt will be zero for
the others. Assume for concreteness that initially θt = 10 and that α = 0.1. On a right
transition from the first state the update will be

θt+1 = θt + ρtα
(
Rt+1 + γθ>t φt+1 − θ>t φt

)
φt

= 10 + 2 · 0.1 (0 + 0.9 · 10 · 2− 10 · 1) 1

= 10 + 1.6,

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

� = 0.9

� = 0 µ(right|·) = 0.5

⇡(right|·) = 1

When approximate DP converges, it converges to a value function at which the PBE
(12) is zero and, of course, to a fixpoint of its update (14).

That approximate DP converges to a zero of the PBE for linear FA and the on-policy
distribution is an important positive result, representing the most successful generalization
of DP to a powerful class of function approximators. It was a breakthrough of sorts,
representing significant progress towards addressing Bellman’s “curse of dimensionality.”
However, linearity and the on-policy distribution remained significant limitations. In this
paper we will present methods that remove both limitations, so let us examine them more
carefully.

The status of approximate DP’s limitation to linear function approximators is not com-
pletely clear. In practice, such algorithms have been widely used with nonlinear function
approximators with good results. Tesauro’s (1992, 1995) celebrated results with backgam-
mon, for example, were obtained with a nonlinear neural-network function approximator.
It is in fact extremely di�cult to construct a example in which approximate DP fails to
converge under the on-policy distribution. The only such counterexample currently known
is Tsitsiklis and Van Roy’s spiral example, which is complex and contrived. We have tried
to construct a simpler one without success. Moreover, we have recently shown that even,
in the nonlinear case, all fixpoints of the approximate DP update are stable—that if the
approximator is started near a fixpoint it will converge to it (Maei, Sutton & Van Roy
in preparation). It seems quite likely to us that there could be a significant further posi-
tive result to be obtained for nonlinear function approximators and approximate DP. For
the moment, however, there are no positive theoretical results for approximate DP and
nonlinear function approximators.

Approximate DP’s limitation to the on-policy distribution appears more fundamental.
Simple counterexamples were presented by Baird (1995) and by Tsitsiklis and Van Roy
(1997) who also developed a theoretical understanding of the instability. Perhaps the sim-
plest counterexample, and a good one for understanding the issues, is given by this fragment
of an MDP:

0

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) �= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

2✓

So we see there is a fundamental sense in which DP does not work well with parametric
function approximation. This is the problem of DP and FA.

There is a special case that works, where the states are updated with the on-policy
distribution.

✓t+1 = ✓t + ↵
X

s

d⇡(s)
⇥
(B⇡v✓t)(s)� v✓t(s)

⇤
r✓tv✓t(s), (16)

12

Figure 1: θ→2θ example without a terminal state.

9

Sutton, Mahmood & White

whereas, on a right transition from the second state the update will be

θt+1 = θt + ρtα
(
Rt+1 + γθ>t φt+1 − θ>t φt

)
φt

= 10 + 2 · 0.1 (0 + 0.9 · 10 · 2− 10 · 2) 2

= 10− 0.8.

These two transitions occur equally often, so the net change will be positive. That is, θ will
increase, moving farther from its correct value, zero. Everything is linear in θ, so the next
time around, with a larger starting θ, the increase in θ will be larger still, and divergence
occurs. A smaller value of α would not prevent divergence, only reduce its rate.

4. Off-policy Stability of Emphatic TD(0)

The deep reason for the difficulty of off-policy learning is that the behavior policy may
take the process to a distribution of states different from that which would be encountered
under the target policy, yet the states might appear to be the same or similar because of
function approximation. Earlier work by Precup, Sutton and Dasgupta (2001) attempted
to completely correct for the different state distribution using importance sampling ratios to
reweight the states encountered. It is theoretically possible to convert the state weighting
from dµ to dπ using the product of all importance sampling ratios from time 0, but in
practice this approach has extremely high variance and is infeasible for the continuing (non-
episodic) case. It works in theory because after converting the weighting the key matrix is
Dπ(I− γPπ) again, which we know to be positive definite.

Most subsequent works abandoned the idea of completely correcting for the state dis-
tribution. For example, the work on gradient-TD methods (e.g., Sutton et al. 2009, Maei
2011) seeks to minimize the mean-squared projected Bellman error weighted by dµ. We call
this an excursion setting because we can think of the contemplated switch to the target
policy as an excursion from the steady-state distribution of the behavior policy, dµ. The ex-
cursions would start from dµ and then follow π until termination, followed by a resumption
of µ and thus a gradual return to dµ. Of course these excursions never actually occur during
off-policy learning, they are just contemplated, and thus the state distribution in fact never
leaves dµ. It is the excursion view that we take in this paper, but still we use techniques
similar to those introduced by Precup et al. (2001) to determine an emphasis weighting that
corrects for the state distribution, only toward a different goal (see also Kolter 2011).

The excursion notion suggests a different weighting of TD(0) updates. We consider that
at every time step we are beginning a new contemplated excursion from the current state.
The excursion thus would begin in a state sampled from dµ. If an excursion started it would
pass through a sequence of subsequent states and actions prior to termination. Some of the
actions that are actually taken (under µ) are relatively likely to occur under the target policy
as compared to the behavior policy, while others are relatively unlikely; the corresponding
states can be appropriately reweighted based on importance sampling ratios. Thus, there
will still be a product of importance sampling ratios, but only since the beginning of the
excursion, and the variance will also be tamped down by the discounting; the variance will
be much less than in the earlier approach. In the simplest case of an off-policy emphatic
algorithm, the update at time t is emphasized or de-emphasized proportional to a new scalar

10

An Emphatic Approach to Off-policy TD Learning

variable Ft, defined by F0 = 1 and

Ft
.
= γρt−1Ft−1 + 1, ∀t > 0, (10)

which we call the followon trace. Specifically, we define emphatic TD(0) by the following
update:

θt+1
.
= θt + αFtρt

(
Rt+1 + γθ>t φt+1 − θ>t φt

)
φt (11)

= θt + α
(
FtρtRt+1φt︸ ︷︷ ︸

bt

−Ftρtφt (φt − γφt+1)>︸ ︷︷ ︸
At

θt

)
.

Emphatic TD(0)’s A matrix is

A = lim
t→∞

E[At] = lim
t→∞

Eµ
[
Ftρtφt (φt − γφt+1)>

]

=
∑

s

dµ(s) lim
t→∞

Eµ
[
Ftρtφt (φt − γφt+1)>

∣∣∣St = s
]

=
∑

s

dµ(s) lim
t→∞

Eµ[Ft|St = s]Eµ
[
ρtφt (φt − γφt+1)>

∣∣∣St = s
]

(because, given St, Ft is independent of ρtφt (φt − γφt+1)>)

=
∑

s

dµ(s) lim
t→∞

Eµ[Ft|St = s]
︸ ︷︷ ︸

f(s)

Eµ
[
ρkφk (φk − γφk+1)>

∣∣∣Sk = s
]

=
∑

s

f(s)Eπ
[
φk (φk − γφk+1)>

∣∣∣Sk = s
]

(by (7))

=
∑

s

f(s)φ(s)

(
φ(s)− γ

∑

s′
[Pπ]ss′φ(s′)

)>

= Φ>F(I− γPπ)Φ,

where F is a diagonal matrix with diagonal elements f(s)
.
= dµ(s) limt→∞ Eµ[Ft|St=s],

which we assume exists. As we show later, the vector f ∈ RN with components [f]s
.
= f(s)

can be written as

f = dµ + γP>π dµ +
(
γP>π

)2
dµ + · · · (12)

=
(
I− γP>π

)−1
dµ. (13)

The key matrix is F (I− γPπ), and the vector of its column sums is

1>F(I− γPπ) = f>(I− γPπ)

= d>µ (I− γPπ)−1(I− γPπ) (using (13))

= d>µ ,

11

Sutton, Mahmood & White

all components of which are positive. Thus, the key matrix and the A matrix are positive
definite and the algorithm is stable. Emphatic TD(0) is the simplest TD algorithm with
linear function approximation proven to be stable under off-policy training.

The θ→2θ example presented earlier (Figure 1) provides some insight into how replacing
Dµ by F changes the key matrix to make it positive definite. In general, f is the expected
number of time steps that would be spent in each state during an excursion starting from
the behavior distribution dµ. From (12), it is dµ plus where you would get to in one step
from dµ, plus where you would get to in two steps, etc., with appropriate discounting. In
the example, excursions under the target policy take you to the second state (2θ) and leave
you there. Thus you are only in the first state (θ) if you start there, and only for one step,
so f(1) = dµ(1) = 0.5. For the second state, you can either start there, with probability 0.5,
or you can get there on the second step (certain except for discounting), with probability
0.9, or on the third step, with probability 0.92, etc, so f(2) = 0.5 + 0.9 + 0.92 + 0.93 + · · · =
0.5 + 0.9 · 10 = 9.5. Thus, the key matrix is now

F(I− γPπ) =

[
0.5 0
0 9.5

]
×
[
1 −0.9
0 0.1

]
=

[
0.5 −0.45
0 0.95

]
.

Note that because F is a diagonal matrix, its only effect is to scale the rows. Here it
emphasizes the lower row by more than a factor of 10 compared to the upper row, thereby
causing the key matrix to have positive column sums and be positive definite (cf. (9)). The
F matrix emphasizes the second state, which would occur much more often under the target
policy than it does under the behavior policy.

5. The General Case

We turn now to a very general case of off-policy learning with linear function approximation.
The objective is still to evaluate a policy π from a single trajectory under a different policy
µ, but now the value of a state is defined not with respect to a constant discount rate
γ ∈ [0, 1], but with respect to a discount rate that varies from state to state according
to a discount function γ : S → [0, 1] such that

∏∞
k=1 γ(St+k) = 0,w.p.1, ∀t. That is, our

approximation is still defined by (2), but now (3) is replaced by

Gt
.
= Rt+1 + γ(St+1)Rt+2 + γ(St+1)γ(St+2)Rt+3 + · · · . (14)

State-dependent discounting specifies a temporal envelope within which received rewards are
accumulated. If γ(Sk) = 0, then the time of accumulation is fully terminated at step k > t,
and if γ(Sk) < 1, then it is partially terminated. We call both of these soft termination
because they are like the termination of an episode, but the actual trajectory is not affected.
Soft termination ends the accumulation of rewards into a return, but the state transitions
continue oblivious to the termination. Soft termination with state-dependent termination
is essential for learning models of options (Sutton et al. 1999) and other applications.

Soft termination is particularly natural in the excursion setting, where it makes it easy
to define excursions of finite and definite duration. For example, consider the deterministic
MDP shown in Figure 2. There are five states, three of which do not discount at all,
γ(s) = 1, and are shown as circles, and two of which cause complete soft termination,
γ(s) = 0, and are shown as squares. The terminating states do not end anything other

12

An Emphatic Approach to Off-policy TD Learning

1 1✓2 ✓3
+

1

1
µ(left|·) = 2/3

⇡(right|·) = 1
✓1

1

1

1

1

1

1

✓1 ✓2
+ ✓2 ✓3

� = 1� = 1� = 1 � = 0� = 0

v⇡ =1v⇡ =1v⇡ =2v⇡ =3v⇡ =4

Figure 2: A 5-state chain MDP with soft-termination states at each end.

than the return; actions are still selected in them and, dependent on the action selected,
they transition to next states indefinitely without end. In this MDP there are two actions,
left and right, which deterministically cause transitions to the left or right except at the
edges, where there may be a self transition. The reward on all transitions is +1. The
behavior policy is to select left 2/3rds of the time in all states, which causes more time to
be spent in states on the left than on the right. The stationary distribution can be shown
to be dµ ≈ (0.52, 0.26, 0.13, 0.06, 0.03)>; more than half of the time steps are spent in the
leftmost terminating state.

Consider the target policy π that selects the right action from all states. The correct
value vπ(s) of each state s is written above it in the figure. For both of the two rightmost
states, the right action results in a reward of 1 and an immediate termination, so their values
are both 1. For the middle state, following π (selecting right repeatedly) yields two rewards
of 1 prior to termination. There is no discounting (γ=1) prior to termination, so the middle
state’s value is 2, and similarly the values go up by 1 for each state to its left, as shown.
These are the correct values. The approximate values depend on the parameter vector θt
as suggested by the expressions shown inside each state in the figure. These expressions
use the notation θi to denote the ith component of the current parameter vector θt. In
this example, there are five states and only three parameters, so it is unlikely, and indeed
impossible, to represent vπ exactly. We will return to this example later in the paper.

In addition to enabling definitive termination, as in this example, state-dependent dis-
counting enables a much wider range of predictive questions to be expressed in the form of
a value function (Sutton et al. 2011, Modayil, White & Sutton 2014, Sutton, Rafols & Koop
2006), including option models (Sutton, Precup & Singh 1999, Sutton 1995). For example,
with state-dependent discounting one can formulate questions both about what will happen
during a way of behaving and what will be true at its end. A general representation for
predictions is a key step toward the goal of representing world knowledge in verifiable pre-
dictive terms (Sutton 2009, 2012). The general form is also useful just because it enables
us to treat uniformly many of the most important episodic and continuing special cases of
interest.

A second generalization, developed for the first time in this paper, is to explicitly specify
the states at which we are most interested is obtaining accurate estimates of value. Recall
that in parametric function approximation there are typically many more states than pa-
rameters (N � n), and thus it is usually not possible for the value estimates at all states
to be exactly correct. Valuing some states more accurately usually means valuing others
less accurately, at least asymptotically. In the tabular case where much of the theory of
reinforcement learning originated, this tradeoff is not an issue because the estimates of each
state are independent of each other, but with function approximation it is necessary to spec-

13

Sutton, Mahmood & White

ify relative interest in order to make the problem well defined. Nevertheless, in the function
approximation case little attention has been paid in the literature to specifing the relative
importance of different states (an exception is Thomas 2014), though there are intimations
of this in the initiation set of options (Sutton et al. 1999). In the past it was typically
assumed that we were interested in valuing states in direct proportion to how often they
occur, but this is not always the case. For example, in episodic problems we often care
primarily about the value of the first state, or of earlier states generally (Thomas 2014).
Here we allow the user to specify the relative interest in each state with a nonnegative
interest function i : S → [0,∞). Formally, our objective is to minimize the Mean Square
Value Error (MSVE) with states weighted both by how often they occur and by our interest
in them:

MSVE(θ)
.
=
∑

s∈S
dµ(s)i(s)

(
vπ(s)− θ>φ(s)

)2
. (15)

For example, in the 5-state example in Figure 2, we could choose i(s) = 1,∀s ∈ S, in
which case we would be primarily interested in attaining low error in the states on the left
side, which are visited much more often under the behavior policy. If we want to counter
this, we might chose i(s) larger for states toward the right. Of course, with parametric
function approximation we presumably do not have access to the states as individuals, but
certainly we could set i(s) as a function of the features in s. In this example, choosing
i(s) = 1 + φ2(s) + 2φ3(s) (where φi(s) denotes the ith component of φ(s)) would shift the
focus on accuracy to the states on the right, making it substantially more balanced.

The third and final generalization that we introduce in this section is general bootstrap-
ping. Conventional TD(λ) uses a bootstrapping parameter λ ∈ [0, 1]; we generalize this
to a bootstrapping function λ : S → [0, 1] specifying a potentially different degree of boot-
strapping, 1− λ(s), for each state s. General bootstrapping of this form has been partially
developed in several previous works (Sutton 1995, Sutton & Barto 1998, Maei & Sutton
2010, Sutton et al. 2014, cf. Yu 2012). As a notational shorthand, let us use λt

.
= λ(St) and

γt
.
= γ(St). Then we can define a general notion of bootstrapped return, the λ-return with

state-dependent bootstrapping and discounting:

Gλt
.
= Rt+1 + γt+1

[
(1− λt+1)θ>t φt+1 + λt+1G

λ
t+1

]
. (16)

The λ-return plays a key role in the theoretical understanding of TD methods, in particular,
in their forward views (Sutton & Barto 1998, Sutton, Mahmood, Precup & van Hasselt
2014). In the forward view, Gλt is thought of as the target for the update at time t, even
though it is not available until many steps later (when complete termination γ(Sk) = 0 has
occurred for the first time for some k > t).

Given these generalizations, we can now specify our final new algorithm, emphatic
TD(λ), by the following four equations, for t ≥ 0:

θt+1
.
= θt + α

(
Rt+1 + γt+1θ

>
t φt+1 − θ>t φt

)
et (17)

et
.
= ρt (γtλtet−1 +Mtφt) , with e−1

.
= 0 (18)

Mt
.
= λt i(St) + (1− λt)Ft (19)

Ft
.
= ρt−1γtFt−1 + i(St), with F0

.
= i(S0), (20)

14

An Emphatic Approach to Off-policy TD Learning

where Ft ≥ 0 is a scalar memory called the followon trace. The quantity Mt ≥ 0 is termed
the emphasis on step t. Note that, if desired, Mt can be removed from the algorithm by
substituting its definition into (18).

6. Off-policy Stability of Emphatic TD(λ)

As usual, to analyze the stability of the new algorithm we examine its A matrix. The
stochastic update can be written:

θt+1
.
= θt + α

(
Rt+1 + γt+1θ

>
t φt+1 − θ>t φt

)
et

= θt + α
(

etRt+1︸ ︷︷ ︸
bt

− et (φt − γt+1φt+1)>︸ ︷︷ ︸
At

θt

)
.

Thus,

A = lim
t→∞

E[At] = lim
t→∞

Eµ
[
et (φt − γt+1φt+1)>

]

=
∑

s

dµ(s) lim
t→∞

Eµ
[
et (φt − γt+1φt+1)>

∣∣∣St=s
]

=
∑

s

dµ(s) lim
t→∞

Eµ
[
ρt (γtλtet−1 +Mtφt) (φt − γt+1φt+1)>

∣∣∣St=s
]

=
∑

s

dµ(s) lim
t→∞

Eµ[(γtλtet−1 +Mtφt)|St=s]Eµ
[
ρt(φt − γt+1φt+1)>

∣∣∣St=s
]

(because, given St, et−1 and Mt are independent of ρt(φt − γt+1φt+1)>)

=
∑

s

dµ(s) lim
t→∞

Eµ[(γtλtet−1 +Mtφt)|St=s]
︸ ︷︷ ︸

e(s)∈Rn

Eµ
[
ρk(φk − γk+1φk+1)>

∣∣∣Sk=s
]

=
∑

s

e(s)Eπ[φk − γk+1φk+1|Sk=s]> (by (7))

=
∑

s

e(s)

(
φ(s)−

∑

s′
[Pπ]ss′γ(s′)φ(s′)

)>

= E(I−PπΓ)Φ, (21)

where E is an N × n matrix E> .
= [e(1), · · · , e(N)], and e(s) ∈ Rn is defined by5:

e(s)
.
= dµ(s) lim

t→∞
Eµ[γtλtet−1 +Mtφt|St=s] (assuming this exists)

= dµ(s) lim
t→∞

Eµ[Mt|St=s]
︸ ︷︷ ︸

m(s)

φ(s) + γ(s)λ(s)dµ(s) lim
t→∞

Eµ[et−1|St=s]

= m(s)φ(s)+γ(s)λ(s)dµ(s) lim
t→∞

∑

s̄,ā

P{St−1= s̄, At−1= ā|St=s}Eµ[et−1|St−1= s̄, At−1= ā]

5. Note that this is a slight abuse of notation; et is a vector random variable, one per time step, and e(s)
is a vector expectation, one per state.

15

Sutton, Mahmood & White

= m(s)φ(s) + γ(s)λ(s)dµ(s)
∑

s̄,ā

dµ(s̄)µ(ā|s̄)p(s|s̄, ā)

dµ(s)
lim
t→∞

Eµ[et−1|St−1 = s̄, At−1 = ā]

(using the definition of a conditional probability, a.k.a. Bayes rule)

=m(s)φ(s)+γ(s)λ(s)
∑

s̄,ā

dµ(s̄)µ(ā|s̄)p(s|s̄, ā)
π(ā|s̄)
µ(ā|s̄) lim

t→∞
Eµ[γt−1λt−1et−2+Mt−1φt−1|St−1=s̄]

= m(s)φ(s) + γ(s)λ(s)
∑

s̄

(∑

ā

π(ā|s̄)p(s|s̄, ā)

)
e(s̄)

= m(s)φ(s) + γ(s)λ(s)
∑

s̄

[Pπ]s̄se(s̄).

We now introduce three N ×N diagonal matrices: M, which has the m(s)
.
= dµ(s) limt→∞

Eµ[Mt|St=s] on its diagonal; Γ, which has the γ(s) on its diagonal; and Λ, which has the
λ(s) on its diagonal. With these we can write the equation above entirely in matrix form,
as

E> = Φ>M + E>PπΓΛ

= Φ>M + Φ>MPπΓΛ + Φ>M(PπΓΛ)2 + · · ·
= Φ>M(I−PπΓΛ)−1.

Finally, combining this equation with (21) we obtain

A = Φ>M(I−PπΓΛ)−1(I−PπΓ)Φ, (22)

and through similar steps one can also obtain emphatic TD(λ)’s b vector,

b = Erπ = Φ>M(I−PπΓΛ)−1rπ, (23)

where rπ is the N -vector of expected immediate rewards from each state under π.

Emphatic TD(λ)’s key matrix, then, is M(I − PπΓΛ)−1(I − PπΓ). To prove that it is
positive definite we will follow the same strategy as we did for emphatic TD(0). The first
step will be to write the last part of the key matrix in the form of the identity matrix minus
a probability matrix. To see how this can be done, consider a slightly different setting in
which actions are taken according to π, and in which 1− γ(s) and 1− λ(s) are considered
probabilities of ending by terminating or by bootstrapping, respectively. That is, for any
starting state, a trajectory involves a state transition according to Pπ, possibly terminating
according to I−Γ, then possibly ending with a bootstrapping event according to I−Λ, and
then, if neither of these occur, continuing with another state transition and more chances
to end, and so on until an ending of one of the two kinds occurs. For any start state i ∈ S,
consider the probability that the trajectory ends in state j ∈ S with an ending event of the
bootstrapping kind (according to I−Λ). Let Pλ

π be the matrix with this probability as its

16

An Emphatic Approach to Off-policy TD Learning

ijth component. This matrix can be written

Pλ
π = PπΓ(I−Λ) + PπΓΛPπΓ(I−Λ) + PπΓ(ΛPπΓ)2(I−Λ) + · · ·

=

(∞∑

k=0

(PπΓΛ)k
)

PπΓ(I−Λ)

= (I−PπΓΛ)−1PπΓ(I−Λ).

= (I−PπΓΛ)−1(PπΓ−PπΓΛ)

= (I−PπΓΛ)−1(PπΓ− I + I−PπΓΛ)

= I− (I−PπΓΛ)−1(I−PπΓ),

or,
I−Pλ

π = (I−PπΓΛ)−1(I−PπΓ). (24)

It follows then that M(I − Pλ
π) = M(I − PπΓΛ)−1(I − PπΓ) is another way of writing

emphatic TD(λ)’s key matrix (cf. (22)). This gets us considerably closer to our goal of
proving that the key matrix is positive definite. It is now immediate that its diagonal entries
are nonnegative and that its off diagonal entries are nonpositive. It is also immediate that
its row sums are nonnegative.

There remains what is typically the hardest condition to satisfy: that the column sums
of the key matrix are positive. To show this we have to analyze M, and to do that we first
analyze the N -vector f with components f(s)

.
= dµ(s) limt→∞ Eµ[Ft|St=s] (we assume that

this limit and expectation exist). Analyzing f will also pay the debt we incurred in Section
4 when we claimed without proof that f (in the special case treated in that section) was as
given by (13). In the general case:

f(s) = dµ(s) lim
t→∞

Eµ[Ft|St=s]

= dµ(s) lim
t→∞

Eµ[i(St) + ρt−1γtFt−1|St=s] (by (20))

= dµ(s)i(s) + dµ(s)γ(s) lim
t→∞

∑

s̄, ā

P{St−1 = s̄, At−1 = ā|St=s} π(ā|s̄)
µ(ā|s̄)Eµ[Ft−1|St−1 = s̄]

= dµ(s)i(s) + dµ(s)γ(s)
∑

s̄, ā

dµ(s̄)µ(ā|s̄)p(s|s̄, ā)

dµ(s)

π(ā|s̄)
µ(ā|s̄) lim

t→∞
Eµ[Ft−1|St−1 = s̄]

(using the definition of a conditional probability, a.k.a. Bayes rule)

= dµ(s)i(s) + γ(s)
∑

s̄, ā

π(ā|s̄)p(s|s̄, ā)dµ(s̄) lim
t→∞

Eµ[Ft−1|St−1 = s̄]

= dµ(s)i(s) + γ(s)
∑

s̄

[Pπ]s̄sf(s̄).

This equation can be written in matrix-vector form, letting i be the N -vector with compo-
nents [i]s

.
= dµ(s)i(s):

f = i + ΓP>π f

= i + ΓP>π i + (ΓP>π)2i + · · ·

=
(
I− ΓP>π

)−1
i. (25)

17

Sutton, Mahmood & White

This proves (13), because there i(s)
.
= 1,∀s (thus i = dµ), and γ(s)

.
= γ,∀s.

We are now ready to analyze M, the diagonal matrix with the m(s) on its diagonal:

m(s) = dµ(s) lim
t→∞

Eµ[Mt|St=s]

= dµ(s) lim
t→∞

Eµ[λt i(St) + (1− λt)Ft|St=s] (by (19))

= dµ(s)λ(s)i(s) + (1− λ(s)) f(s),

or, in matrix-vector form, letting m be the N -vector with components m(s),

m = Λi + (I−Λ)f

= Λi + (I−Λ)
(
I− ΓP>π

)−1
i (using (25))

=
[
Λ(I− ΓP>π) + (I−Λ)

]
(I− ΓP>π)−1i

=
(
I−ΛΓP>π

)(
I− ΓP>π

)−1
i (26)

=
(
I−Pλ

π
>)−1

i. (using (24))

Now we are ready for the final step of the proof, showing that all the columns of the key
matrix M(I−Pλ

π) sum to a positive number. Using the result above, the vector of column
sums is

1>M(I−Pλ
π) = m>(I−Pλ

π)

= i>(I−Pλ
π)−1(I−Pλ

π)

= i>.

If we further assume that i(s) > 0, ∀s ∈ S, then the column sums are all positive, the key
matrix is positive definite, and emphatic TD(λ) and its expected update are stable. This
result can be summarized in the following theorem, the main result of this paper, which we
have just proved:

Theorem 1 (Stability of Emphatic TD(λ)) For any

• Markov decision process {St, At, Rt+1}∞t=0 with finite state and actions sets S and A,

• behavior policy µ with a stationary invariant distribution dµ(s) > 0,∀s ∈ S,

• target policy π with coverage, i.e., s.t., if π(a|s) > 0, then µ(a|s) > 0,

• discount function γ : S→ [0, 1] s.t.
∏∞
k=1 γ(St+k) = 0,w.p.1,∀t > 0,

• bootstrapping function λ : S→ [0, 1],

• interest function i : S→ (0,∞),

• feature function φ : S → Rn s.t. the matrix Φ ∈ R|S|×n with the φ(s) as its rows has
linearly independent columns,

18

An Emphatic Approach to Off-policy TD Learning

the A matrix of linear emphatic TD(λ) (as given by (17–20), and assuming the existence
of limt→∞ E[Ft|St= s] and limt→∞ E[et|St= s], ∀s ∈ S),

A = lim
t→∞

Eµ[At] = lim
t→∞

Eµ
[
et (φt − γt+1φt+1)>

]
= Φ>M(I−Pλ

π)Φ, (27)

is positive definite. Thus the algorithm and its expected update are stable.

As mentioned at the outset, stability is necessary but not always sufficient to guarantee
convergence of the parameter vector θt. Yu (2015) has recently built on our stability result
to show that in fact emphatic TD(λ) converges with probability one when the step size α
is reduced appropriately over time. Convergence as anticipated is to the unique fixed point
θ̄ of the deterministic algorithm (6), in other words, to

Aθ̄ = b or θ̄ = A−1b. (28)

This solution can be characterized as a minimum (in fact, a zero) of the Projected Bellman
Error (PBE, Sutton et al. 2009) using the λ-dependent Bellman operator T (λ) : RN → RN
(Tsitiklis & Van Roy 1997) and the weighting of states according to their emphasis. For our
general case, we need a version of the T (λ) operator extended to state-dependent discounting
and bootstrapping. This operator looks ahead to future states to the extent that they are
bootstrapped from, that is, according to Pλ

π, taking into account the reward received along
the way. The appropriate operator, in vector form, is

T (λ)v
.
= (I−PπΓΛ)−1rπ + Pλ

πv. (29)

This operator is a contraction with fixed point v = vπ. Recall that our approximate value
function is Φθ, and thus the difference between Φθ and T (λ)(Φθ) is a Bellman-error vector.
The projection of this with respect to the feature matrix and the emphasis weighting is the
emphasis-weighted PBE:

PBE(θ)
.
= Π

(
T (λ)(Φθ)−Φθ

)

.
= Φ(Φ>MΦ)−1Φ>M

(
T (λ)(Φθ)−Φθ

)
(see Sutton et al. 2009)

= Φ(Φ>MΦ)−1Φ>M
(

(I−PπΓΛ)−1rπ + Pλ
πΦθ −Φθ

)
(by (29))

= Φ(Φ>MΦ)−1
(
b + Φ>M(Pλ

π − I)Φθ
)

(by (23))

= Φ(Φ>MΦ)−1 (b−Aθ) . (by (27))

From (28), it is immediate that this is zero at the fixed point θ̄, thus PBE(θ̄) = 0.

7. Derivation of the Emphasis Algorithm

Emphatic algorithms are based on the idea that if we are updating a state by a TD method,
then we should also update each state that it bootstraps from, in direct proportion. For
example, suppose we decide to update the estimate at time t with unit emphasis, perhaps
because i(St) = 1, and then at time t+ 1 we have γ(St+1) = 1 and λ(St+1) = 0. Because of

19

Sutton, Mahmood & White

the latter, we are fully bootstrapping from the value estimate at t+1 and thus we should also
make an update of it with emphasis equal to t’s emphasis. If instead λ(St+1) = 0.5, then
the update of the estimate at t + 1 would gain a half unit of emphasis, and the remaining
half would still be available to allocate to the updates of the estimate at t + 2 or later
times depending on their λs. And of course there may be some emphasis allocated directly
updating the estimate at t + 1 if i(St+1) > 0. Discounting and importance sampling also
have effects. At each step t, if γ(St) < 1, then there is some degree of termination and to
that extent there is no longer any chance of bootstrapping from later time steps. Another
way bootstrapping may be cut off is if ρt = 0 (a complete deviation from the target policy).
More generally, if ρ 6= 1, then the opportunity for bootstrapping is scaled up or down
proportionally.

It may seem difficult to work out precisely how each time step’s estimates bootstrap
from which later states’ estimates for all cases. Fortunately, it has already been done.
Equation 6 of the paper by Sutton, Mahmood, Precup, and van Hasselt (2014) specifies
this in their “forward view” of off-policy TD(λ) with general state-dependent discounting
and bootstrapping. From this equation (and their (5)) it is easy to determine the degree to
which the update of the value estimate at time k bootstraps from (multiplicatively depends
on) the value estimates of each subsequent time t. It is

ρk

(
t−1∏

i=k+1

γiλiρi

)
γt(1− λt).

It follows then that the total emphasis on time t, Mt, should be the sum of this quantity
for all times k < t, each times the emphasis Mk for those earlier times, plus any intrinsic
interest i(St) in time t:

Mt
.
= i(St) +

t−1∑

k=0

Mkρk

(
t−1∏

i=k+1

γiλiρi

)
γt(1− λt)

= λti(St) + (1− λt)i(St) + (1− λt)γt
t−1∑

k=0

ρkMk

t−1∏

i=k+1

γiλiρi

= λti(St) + (1− λt)Ft,
which is (19), where

Ft
.
= i(St) + γt

t−1∑

k=0

ρkMk

t−1∏

i=k+1

γiλiρi

= i(St) + γt

(
ρt−1Mt−1 +

t−2∑

k=0

ρkMk

t−1∏

i=k+1

γiλiρi

)

= i(St) + γt

(
ρt−1Mt−1 + ρt−1λt−1γt−1

t−2∑

k=0

ρkMk

t−2∏

i=k+1

γiλiρi

)

= i(St) + γtρt−1

(
λt−1i(St−1) + (1− λt−1)Ft−1︸ ︷︷ ︸

Mt−1

+λt−1γt−1

t−2∑

k=0

ρkMk

t−2∏

i=k+1

γiλiρi

)

20

An Emphatic Approach to Off-policy TD Learning

= i(St) + γtρt−1

(
Ft−1 + λt−1

(
−Ft−1 + i(St−1) + γt−1

t−2∑

k=0

ρkMk

t−2∏

i=k+1

γiλiρi

︸ ︷︷ ︸
Ft−1

))

= i(St) + γtρt−1Ft−1,

which is (20), completing the derivation of the emphasis algorithm.

8. Empirical Examples

In this section we present empirical results with example problems that verify and elucidate
the formal results already presented. A thorough empirical comparison of emphatic TD(λ)
with other methods is beyond the scope of the present article.

The main focus in this paper, as in much previous theory of TD algorithms with function
approximation, has been on the stability of the expected update. If an algorithm is unstable,
as Q-learning and off-policy TD(λ) are on Baird’s (1995) counterexample, then there is no
chance of its behaving in a satisfactory manner. On the other hand, even if the update is
stable it may be of very high variance. Off-policy algorithms involve products of potentially
an infinite number of importance-sampling ratios, which can lead to fluxuations of infinite
variance.

As an example of what can happen, let’s look again at the θ→ 2θ problem shown in
Figure 1 (and shown again in the upper left of Figure 3). Consider what happens to Ft in
this problem if we have interest only in the first state, and the right action happens to be
taken on every step (i.e., i(S0) = 1 then i(St) = 0,∀t > 0, and At = right, ∀t ≥ 0). In this
case, from (20),

Ft = ρt−1γtFt−1 + i(St) =
t−1∏

j=0

ρjγ = (2 · 0.9)t,

which of course goes to infinity as t → ∞. On the other hand, the probability of this
specific infinite action sequence is zero, and in fact Ft will rarely take on very high values.
In particular, the expected value of Ft remains finite at

Eµ[Ft] = 0.5 · 2 · 0.9 · Eµ[Ft−1] + 0.5 · 0 · 0.9 · Eµ[Ft−1]

= 0.9 · Eµ[Ft−1]

= 0.9t,

which tends to zero as t → ∞. Nevertheless, this problem is indeed a difficult case, as the
variance of Ft is infinite:

Var[Ft] = E
[
F 2
t

]
− (E[Ft])

2

= 0.5t(2t0.9t)2 − (0.9t)2

= (0.92 · 2)t − (0.92)t

= 1.62t − 0.81t,

21

Sutton, Mahmood & White

steps

off-policy TD

emphatic TD

w

µ(right|·) = 0.1

⇡(right|·) = 1

2ww 0
� = 0.9 � = 0

µ(right|·) = 0.1

⇡(right|·) = 1

2ww 0
� = 0.9 � = 0

steps

off-policy TD

emphatic TD
w

� = 0.9

� = 0 µ(right|·) = 0.5

⇡(right|·) = 1
2ww

µ(right|·) = 0.1

⇡(right|·) = 1

2ww 0
� = 0.9 � = 0

off-policy TD(0)

emphatic TD(0)

off-policy TD(0)

emphatic TD(0)

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

� = 0.9

� = 0 µ(right|·) = 0.5

⇡(right|·) = 1

When approximate DP converges, it converges to a value function at which the PBE
(12) is zero and, of course, to a fixpoint of its update (14).

That approximate DP converges to a zero of the PBE for linear FA and the on-policy
distribution is an important positive result, representing the most successful generalization
of DP to a powerful class of function approximators. It was a breakthrough of sorts,
representing significant progress towards addressing Bellman’s “curse of dimensionality.”
However, linearity and the on-policy distribution remained significant limitations. In this
paper we will present methods that remove both limitations, so let us examine them more
carefully.

The status of approximate DP’s limitation to linear function approximators is not com-
pletely clear. In practice, such algorithms have been widely used with nonlinear function
approximators with good results. Tesauro’s (1992, 1995) celebrated results with backgam-
mon, for example, were obtained with a nonlinear neural-network function approximator.
It is in fact extremely di�cult to construct a example in which approximate DP fails to
converge under the on-policy distribution. The only such counterexample currently known
is Tsitsiklis and Van Roy’s spiral example, which is complex and contrived. We have tried
to construct a simpler one without success. Moreover, we have recently shown that even,
in the nonlinear case, all fixpoints of the approximate DP update are stable—that if the
approximator is started near a fixpoint it will converge to it (Maei, Sutton & Van Roy
in preparation). It seems quite likely to us that there could be a significant further posi-
tive result to be obtained for nonlinear function approximators and approximate DP. For
the moment, however, there are no positive theoretical results for approximate DP and
nonlinear function approximators.

Approximate DP’s limitation to the on-policy distribution appears more fundamental.
Simple counterexamples were presented by Baird (1995) and by Tsitsiklis and Van Roy
(1997) who also developed a theoretical understanding of the instability. Perhaps the sim-
plest counterexample, and a good one for understanding the issues, is given by this fragment
of an MDP:

0

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) �= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

2✓

So we see there is a fundamental sense in which DP does not work well with parametric
function approximation. This is the problem of DP and FA.

There is a special case that works, where the states are updated with the on-policy
distribution.

✓t+1 = ✓t + ↵
X

s

d⇡(s)
⇥
(B⇡v✓t)(s)� v✓t(s)

⇤
r✓tv✓t(s), (16)

12

1

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

� = 0.9

� = 0 µ(right|·) = 0.5

⇡(right|·) = 1

When approximate DP converges, it converges to a value function at which the PBE
(12) is zero and, of course, to a fixpoint of its update (14).

That approximate DP converges to a zero of the PBE for linear FA and the on-policy
distribution is an important positive result, representing the most successful generalization
of DP to a powerful class of function approximators. It was a breakthrough of sorts,
representing significant progress towards addressing Bellman’s “curse of dimensionality.”
However, linearity and the on-policy distribution remained significant limitations. In this
paper we will present methods that remove both limitations, so let us examine them more
carefully.

The status of approximate DP’s limitation to linear function approximators is not com-
pletely clear. In practice, such algorithms have been widely used with nonlinear function
approximators with good results. Tesauro’s (1992, 1995) celebrated results with backgam-
mon, for example, were obtained with a nonlinear neural-network function approximator.
It is in fact extremely di�cult to construct a example in which approximate DP fails to
converge under the on-policy distribution. The only such counterexample currently known
is Tsitsiklis and Van Roy’s spiral example, which is complex and contrived. We have tried
to construct a simpler one without success. Moreover, we have recently shown that even,
in the nonlinear case, all fixpoints of the approximate DP update are stable—that if the
approximator is started near a fixpoint it will converge to it (Maei, Sutton & Van Roy
in preparation). It seems quite likely to us that there could be a significant further posi-
tive result to be obtained for nonlinear function approximators and approximate DP. For
the moment, however, there are no positive theoretical results for approximate DP and
nonlinear function approximators.

Approximate DP’s limitation to the on-policy distribution appears more fundamental.
Simple counterexamples were presented by Baird (1995) and by Tsitsiklis and Van Roy
(1997) who also developed a theoretical understanding of the instability. Perhaps the sim-
plest counterexample, and a good one for understanding the issues, is given by this fragment
of an MDP:

0

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) �= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

2✓

So we see there is a fundamental sense in which DP does not work well with parametric
function approximation. This is the problem of DP and FA.

There is a special case that works, where the states are updated with the on-policy
distribution.

✓t+1 = ✓t + ↵
X

s

d⇡(s)
⇥
(B⇡v✓t)(s)� v✓t(s)

⇤
r✓tv✓t(s), (16)

12

1

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

� = 0.9

� = 0 µ(right|·) = 0.5

⇡(right|·) = 1

When approximate DP converges, it converges to a value function at which the PBE
(12) is zero and, of course, to a fixpoint of its update (14).

That approximate DP converges to a zero of the PBE for linear FA and the on-policy
distribution is an important positive result, representing the most successful generalization
of DP to a powerful class of function approximators. It was a breakthrough of sorts,
representing significant progress towards addressing Bellman’s “curse of dimensionality.”
However, linearity and the on-policy distribution remained significant limitations. In this
paper we will present methods that remove both limitations, so let us examine them more
carefully.

The status of approximate DP’s limitation to linear function approximators is not com-
pletely clear. In practice, such algorithms have been widely used with nonlinear function
approximators with good results. Tesauro’s (1992, 1995) celebrated results with backgam-
mon, for example, were obtained with a nonlinear neural-network function approximator.
It is in fact extremely di�cult to construct a example in which approximate DP fails to
converge under the on-policy distribution. The only such counterexample currently known
is Tsitsiklis and Van Roy’s spiral example, which is complex and contrived. We have tried
to construct a simpler one without success. Moreover, we have recently shown that even,
in the nonlinear case, all fixpoints of the approximate DP update are stable—that if the
approximator is started near a fixpoint it will converge to it (Maei, Sutton & Van Roy
in preparation). It seems quite likely to us that there could be a significant further posi-
tive result to be obtained for nonlinear function approximators and approximate DP. For
the moment, however, there are no positive theoretical results for approximate DP and
nonlinear function approximators.

Approximate DP’s limitation to the on-policy distribution appears more fundamental.
Simple counterexamples were presented by Baird (1995) and by Tsitsiklis and Van Roy
(1997) who also developed a theoretical understanding of the instability. Perhaps the sim-
plest counterexample, and a good one for understanding the issues, is given by this fragment
of an MDP:

0

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) �= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

2✓

So we see there is a fundamental sense in which DP does not work well with parametric
function approximation. This is the problem of DP and FA.

There is a special case that works, where the states are updated with the on-policy
distribution.

✓t+1 = ✓t + ↵
X

s

d⇡(s)
⇥
(B⇡v✓t)(s)� v✓t(s)

⇤
r✓tv✓t(s), (16)

12

1

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

� = 0.9

� = 0 µ(right|·) = 0.5

⇡(right|·) = 1

When approximate DP converges, it converges to a value function at which the PBE
(12) is zero and, of course, to a fixpoint of its update (14).

That approximate DP converges to a zero of the PBE for linear FA and the on-policy
distribution is an important positive result, representing the most successful generalization
of DP to a powerful class of function approximators. It was a breakthrough of sorts,
representing significant progress towards addressing Bellman’s “curse of dimensionality.”
However, linearity and the on-policy distribution remained significant limitations. In this
paper we will present methods that remove both limitations, so let us examine them more
carefully.

The status of approximate DP’s limitation to linear function approximators is not com-
pletely clear. In practice, such algorithms have been widely used with nonlinear function
approximators with good results. Tesauro’s (1992, 1995) celebrated results with backgam-
mon, for example, were obtained with a nonlinear neural-network function approximator.
It is in fact extremely di�cult to construct a example in which approximate DP fails to
converge under the on-policy distribution. The only such counterexample currently known
is Tsitsiklis and Van Roy’s spiral example, which is complex and contrived. We have tried
to construct a simpler one without success. Moreover, we have recently shown that even,
in the nonlinear case, all fixpoints of the approximate DP update are stable—that if the
approximator is started near a fixpoint it will converge to it (Maei, Sutton & Van Roy
in preparation). It seems quite likely to us that there could be a significant further posi-
tive result to be obtained for nonlinear function approximators and approximate DP. For
the moment, however, there are no positive theoretical results for approximate DP and
nonlinear function approximators.

Approximate DP’s limitation to the on-policy distribution appears more fundamental.
Simple counterexamples were presented by Baird (1995) and by Tsitsiklis and Van Roy
(1997) who also developed a theoretical understanding of the instability. Perhaps the sim-
plest counterexample, and a good one for understanding the issues, is given by this fragment
of an MDP:

0

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) �= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

2✓

So we see there is a fundamental sense in which DP does not work well with parametric
function approximation. This is the problem of DP and FA.

There is a special case that works, where the states are updated with the on-policy
distribution.

✓t+1 = ✓t + ↵
X

s

d⇡(s)
⇥
(B⇡v✓t)(s)� v✓t(s)

⇤
r✓tv✓t(s), (16)

12

1

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) 6= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

� = 0.9

� = 0 µ(right|·) = 0.5

⇡(right|·) = 1

When approximate DP converges, it converges to a value function at which the PBE
(12) is zero and, of course, to a fixpoint of its update (14).

That approximate DP converges to a zero of the PBE for linear FA and the on-policy
distribution is an important positive result, representing the most successful generalization
of DP to a powerful class of function approximators. It was a breakthrough of sorts,
representing significant progress towards addressing Bellman’s “curse of dimensionality.”
However, linearity and the on-policy distribution remained significant limitations. In this
paper we will present methods that remove both limitations, so let us examine them more
carefully.

The status of approximate DP’s limitation to linear function approximators is not com-
pletely clear. In practice, such algorithms have been widely used with nonlinear function
approximators with good results. Tesauro’s (1992, 1995) celebrated results with backgam-
mon, for example, were obtained with a nonlinear neural-network function approximator.
It is in fact extremely di�cult to construct a example in which approximate DP fails to
converge under the on-policy distribution. The only such counterexample currently known
is Tsitsiklis and Van Roy’s spiral example, which is complex and contrived. We have tried
to construct a simpler one without success. Moreover, we have recently shown that even,
in the nonlinear case, all fixpoints of the approximate DP update are stable—that if the
approximator is started near a fixpoint it will converge to it (Maei, Sutton & Van Roy
in preparation). It seems quite likely to us that there could be a significant further posi-
tive result to be obtained for nonlinear function approximators and approximate DP. For
the moment, however, there are no positive theoretical results for approximate DP and
nonlinear function approximators.

Approximate DP’s limitation to the on-policy distribution appears more fundamental.
Simple counterexamples were presented by Baird (1995) and by Tsitsiklis and Van Roy
(1997) who also developed a theoretical understanding of the instability. Perhaps the sim-
plest counterexample, and a good one for understanding the issues, is given by this fragment
of an MDP:

0

The other two goals for approximation are related to the Bellman equation, which can
be written compactly in vector form as

v⇡ = B⇡v⇡, (7)

where B⇡ : R|S| ! R|S| is the Bellman operator for policy ⇡, defined by

(B⇡v)(s) =
X

a2A
⇡(s, a)

"
r(s, a) + �

X

s02S
p(s0|s, a)v(s0)

#
, 8s 2 S, 8v : S ! R. (8)

(If the state and action spaces are continuous, then the sums are replaced by integrals and
the function p(·|s, a) is taken to be a probability density.) The true value function v⇡ is
the unique solution to the Bellman equation; the Bellman equation can be viewed as an
alternate way of defining v⇡. For any value function v : S ! R not equal to v⇡, there will
always be at least one state s at which v(s) �= (B⇡v)(s).

The discrepancy between the two sides of the Bellman equation, v⇡ �B⇡v⇡, is an error
vector, and reducing it is the basis for our second and third goals for approximation. The
second goal is to minimize the error vector’s length in the d-metric. That is, to minimize
the mean-squared Bellman error :

BE(✓) =
X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤2
. (9)

Note that if v⇡ is not representable, then it is not be possible to reduce the Bellman error
to zero. For any v✓, the corresponding B⇡v✓ will generally not be representable; it will lie
outside the space of representable functions, as suggested by the figure...

Finally, in our third goal of approximation, we first project the Bellman error and then
minimize its length. That is, we minimize the error not in the Bellman equation (7) but in
its projected form:

v✓ = ⇧B⇡v✓, (10)

Unlike the original Bellman equation, for most function approximators (e.g., linear ones)
the projected Bellman equation can be solved exactly. If it can’t be solved exactly, you can
minimize the mean-squared projected Bellman error :

PBE(✓) =
X

s2S
d(s)

⇥
(⇧(B⇡v✓ � v✓))(s)

⇤2
. (11)

The minimum is achieved at the projection fixpoint, at which

X

s2S
d(s)

⇥
(B⇡v✓)(s)� v✓(s)

⇤
r✓v✓(s) = ~0. (12)

PBE = 0 min BE ✓1 ✓2

Now we must finish this section by discussing the relative merits of the second and
third goals. This comes down to two counterexamples using POMDPs. One shows that
the BE is not well defined for POMDP data, the other shows that the minimum is not

5

2✓

So we see there is a fundamental sense in which DP does not work well with parametric
function approximation. This is the problem of DP and FA.

There is a special case that works, where the states are updated with the on-policy
distribution.

✓t+1 = ✓t + ↵
X

s

d⇡(s)
⇥
(B⇡v✓t)(s)� v✓t(s)

⇤
r✓tv✓t(s), (16)

12

Figure 3: Emphatic TD approaches the correct value of zero, whereas conventional off-
policy TD diverges, on fifty trajectories on the θ → 2θ problems shown above
each graph. Also shown as a thick line is the trajectory of the deterministic
expected-update algorithm (6). On the continuing problem (left) emphatic TD
had occasional high variance deviations from zero.

which tends to ∞ as t→∞.
What does actually happen on this problem? The thin blue lines in Figure 3 (left) show

the trajectories of the single parameter θ over time in 50 runs with this problem with λ=0
and α=0.001, starting at θ=1.0. We see that most trajectories of emphatic TD(0) rapidly
approached the correct value of θ=0, but a few made very large steps away from zero and
then returned. Because the variance of Ft (and thus of Mt and et) grows to infinity as t
tends to infinity, there is always a small chance of an extremely large fluxuation taking θ far
away from zero. Off-policy TD(0), on the other hand, diverged to infinity in all individual
runs.

For comparison, Figure 3 (right) shows trajectories for a θ→ 2θ problem in which Ft
and all the other variables and their variances are bounded. In this problem, the target
policy of selecting right on all steps leads to a soft terminal state (γ(s) = 0) with fixed
value zero, which then transitions back to start again in the leftmost state, as shown in the
upper right of the figure. (This is an example of how one can reproduce the conventional
notions of terminal state and episode in a soft termination setting.) Here we have chosen the
behavior policy to take the action left with probability 0.9, so that its stationary distribution
distinctly favors the left state, whereas the target policy would spend equal time in each
of the two states. This change increases the variance of the updates, so we used a smaller
step size, α = 0.0001; other settings were unchanged. Conventional off-policy TD(0) still
diverged in this case, but emphatic TD(0) converged reliably to zero.

Finally, Figure 4 shows trajectories for the 5-state example shown earlier (and again
in the upper part of the figure). In this case, everything is bounded under the target
policy, and both algorithms converged. The emphatic algorithm achieved a lower MSVE in

22

An Emphatic Approach to Off-policy TD Learning

1 1✓2 ✓3
+

1

1
µ(left|·) = 2/3

⇡(right|·) = 1
✓1

1

1

1

1

1

1

✓1 ✓2
+ ✓2 ✓3

� = 1� = 1� = 1 � = 0� = 0

v⇡ =1v⇡ =1v⇡ =2v⇡ =3v⇡ =4

Figure 4: Twenty learning curves and their analytic expectation on the 5-state problem
from Section 5, in which excursions terminate promptly and both algorithms
converge reliably. Here λ = 0, θ0 = 0, α = 0.001, and i(s) = 1,∀s. The MSVE
performance measure is defined in (15).

this example (nevertheless, we do not mean to claim any general empirical advantage for
emphatic TD(λ) at this time).

Also shown in these figures as a thick dark line is the trajectory of the deterministic
algorithm: θ̄t+1 = θ̄t + α(b − Aθ̄t) (6). Tsitsiklis and Van Roy (1997) argued that, for
small step-size parameters and in the steady-state distribution, on-policy TD(λ) follows
its expected-update algorithm in an “average” sense, and we see much the same here for
emphatic TD(λ).

These examples show that although emphatic TD(λ) is stable for any MDP and all
functions λ, γ and (positive) i, for some problems and functions the parameter vector
continues to fluxuate with a chance of arbitrarily large deviations (for constant α > 0). It
is not clear how great of a problem this is. Certainly it is much less of a problem than
the positive instability (Baird 1995) that can occur with off-policy TD(λ) (stability of the
expected update precludes this). The possibility of large fluxuations may be inherent in any
algorithm for off-policy learning using importance sampling with long eligibility traces. For
example, the updates of GTD(λ) and GQ(λ) (Maei 2011) with λ = 1 will tend to infinite
variance as t→∞ on Baird’s counterexample and on the example in Figures 1 and 3(left).
And, as mentioned earlier, convergence with probability one can still be guaranteed if α is
reduced appropriately over time (Yu, 2015).

In practice, however, even when asymptotic convergence can be guaranteed, high vari-
ance can be problematic as it may require very small step sizes and slow learning. High

23

Sutton, Mahmood & White

variance frequently arises in off-policy algorithms when they are Monte Carlo algorithms
(no TD learning) or they have eligibility traces with high λ (at λ= 1, TD algorithms be-
come Monte Carlo algorithms). In both cases the root problem is the same: importance
sampling ratios that become very large when multiplied together. For example, in the
θ→ 2θ problem discussed at the beginning of this section, the ratio was only two, but the
products of successive twos rapidly produced a very large Ft. Thus, the first way in which
variance can be controlled is to ensure that large products cannot occur. We are actually
concerned with products of both ρts and γts. Occasional termination (γt = 0), as in the
5-state problem, is thus one reliable way of preventing high variance. Another is through
choice of the target and behavior policies that together determine the importance sampling
ratios. For example, one could define the target policy to be equal to the behavior policy
whenever the followon or eligibility traces exceed some threshold. These tricks can also be
done prospectively. White (personal communication) has proposed that the learner com-
pute at each step the variance of what GTD(λ)’s traces would be on the following step. If
the variance is in danger of becoming too large, then λt is reduced for that step to prevent
it. For emphatic TD(λ), the same conditions could be used to adjust γt or one of the
policies to prevent the variance from growing too large. Another idea for reducing variance
is to use weighted importance sampling (as suggested by Precup et al. 2001) together with
the ideas of Mahmood et al. (2014, 2015a) for extending weighted importance sampling to
linear function approximation. Finally, a good solution may even be found by something
as simple as bounding the values of Ft or et. This would limit variance at the cost of bias,
which might be a good tradeoff if done properly.

9. Conclusions and Future Work

We have introduced a way of varying the emphasis or strength of the updates of TD learning
algorithms from step to step, based on importance sampling, that should result in much
lower variance than previous methods (Precup et al. 2001). In particular, we have introduced
the emphatic TD(λ) algorithm and shown that it solves the problem of instability that
plagues conventional TD(λ) when applied in off-policy training situations in conjunction
with linear function approximation. Compared to gradient-TD methods, emphatic TD(λ)
is simpler in that it has a single parameter vector and a single step size rather than two
of each. The per-time-step complexities of gradient-TD and emphatic-TD methods are
both linear in the number of parameters; both are much simpler than quadratic complexity
methods such LSTD(λ) and its off-policy variants. We have also presented a few empirical
examples of emphatic TD(0) compared to conventional TD(0) adapted to off-policy training.
These examples illustrate some of emphatic TD(λ)’s basic strengths and weaknesses, but
a proper empirical comparison with other methods remains for future work. Extensions of
the emphasis idea to action-value and control methods such as Sarsa(λ) and Q(λ), to true-
online forms (van Seijen & Sutton 2014), and to weighted importance sampling (Mahmood
et al. 2014, 2015a) are also natural and remain for future work.

Yu (2015) has recently extended the emphatic idea to a least-squares algorithm and
proved that it and our emphatic TD(λ) are convergent with probability one. She has also
obtained a stronger result that does not require that the interest be positive in all states,
using an argument similar to that given here about column sums and the Varga (1962)

24

An Emphatic Approach to Off-policy TD Learning

theorem for irreducibly diagonally dominant matrices (Yu 2015, see also Mahmood et al.
2015b). Asymptotic bounds on the error of emphatic TD(λ) have recently been obtained
by Hallak, Tamar, Munos, and Mannor (2015).

Two additional ideas for future work deserve special mention.

First, note that the present work has focused on ways of ensuring that the key matrix
is positive definite, which implies positive definiteness of the A matrix and thus that the
update is stable. An alternative strategy would be to work directly with the A matrix.
Recall that the A matrix is vastly smaller than the key matrix; it has a row and column
for each feature, whereas the key matrix has a row and column for each state. It might be
feasible then to keep statistics for each row and column of A, whereas of course it would
not be feasible for the large key matrix. For example, one might try to use such statistics
to directly test for diagonal dominance (and thus positive definiteness) of A. If it were
possible to adjust some of the free parameters (e.g., the λ or i functions) to ensure positive
definiteness while reducing the variance of Ft, then a substantially improved algorithm
might be found.

The second idea for future work is that the emphasis algorithm, by tracing the depen-
dencies among the estimates at various states, is doing something clever that ought to show
up as improved bounds on the asymptotic approximation error. The bound given by Tsit-
siklis and Van Roy (1997) probably cannot be significantly improved if λ, γ, i, and ρ are
all constant, because in this case emphasis asymptotes to a constant that can be absorbed
into the step size. But if any of these vary from step to step, then emphatic TD(λ) is
genuinely different and may improve over conventional TD(λ). In particular, consider an
episodic on-policy case where i(s)

.
=1 and λ(s)

.
=0, for all s ∈ S, and γ(s)

.
=1 for all states

except for a terminal state where it is zero (and from which a new episode starts). In this
case emphasis would increase linearly within an episode to a maximum on the final state,
whereas conventional TD(λ) would give equal weight to all steps within the episode. If
the feature representation were insufficient to represent the value function exactly, then the
emphatic algorithm might improve over the conventional algorithm in terms of asymptotic
MSVE (15). Similarly, improvements in asymptotic MSVE over conventional algorithms
might be possible whenever i varies from state to state, such as in the common episodic case
in which we are interested only in accurately valuing the start state of the episode, and yet
we choose λ < 1 to reduce variance. There may be a wide range of interesting theoretical
and empirical work to be done along these lines.

Acknowledgements

The authors thank Hado van Hasselt, Doina Precup, Huizhen Yu, and Brendan Bennett
for insights and discussions contributing to the results presented in this paper, and the
entire Reinforcement Learning and Artificial Intelligence research group for providing the
environment to nurture and support this research. We gratefully acknowledge funding from
Alberta Innovates – Technology Futures and from the Natural Sciences and Engineering
Research Council of Canada.

25

Sutton, Mahmood & White

References

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function approx-
imation. In Proceedings of the 12th International Conference on Machine Learning,
pp. 30–37. Morgan Kaufmann, San Francisco. Important modifications and errata added
to the online version on November 22, 1995.

Bertsekas, D. P. (2012). Dynamic Programming and Optimal Control: Approximate Dy-
namic Programming, Fourth Edition. Athena Scientific, Belmont, MA.

Bertsekas, D. P., Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA.

Boyan, J. A., (1999). Least-squares temporal difference learning. In Proceedings of the 16th
International Conference on Machine Learning, pp. 49–56.

Bradtke, S., Barto, A. G. (1996). Linear least-squares algorithms for temporal difference
learning. Machine Learning 22:33–57.

Dayan, P. (1992). The convergence of TD(λ) for general λ. Machine Learning 8:341–362.

Dann, C., Neumann, G., Peters, J. (2014). Policy evaluation with temporal differences: A
survey and comparison. Journal of Machine Learning Research 15 :809–883.

Geist, M., Scherrer, B. (2014). Off-policy learning with eligibility traces: A survey. Journal
of Machine Learning Research 15 :289–333.

Gordon, G. J. (1995). Stable function approximation in dynamic programming. In
A. Prieditis and S. Russell (eds.), Proceedings of the 12th International Conference on
Machine Learning, pp. 261–268. Morgan Kaufmann, San Francisco. An expanded ver-
sion was published as Technical Report CMU-CS-95-103. Carnegie Mellon University,
Pittsburgh, PA, 1995.

Gordon, G. J. (1996). Stable fitted reinforcement learning. In D. S. Touretzky, M. C. Mozer,
M. E. Hasselmo (eds.), Advances in Neural Information Processing Systems: Proceedings
of the 1995 Conference, pp. 1052–1058. MIT Press, Cambridge, MA.

Hackman, L. (2012). Faster Gradient-TD Algorithms. MSc thesis, University of Alberta.

Hallak, A., Tamar, A., Munos, R., Mannor, S. (2015). Generalized emphatic temporal
difference learning: Bias-variance analysis. ArXiv:1509.05172.

Klopf, A. H. (1988). A neuronal model of classical conditioning. Psychobiology 16 (2):85–
125.

Kolter, J. Z. (2011). The fixed points of off-policy TD. In Advances in Neural Information
Processing Systems 24, pp. 2169–2177.

Lagoudakis, M., Parr, R. (2003). Least squares policy iteration. Journal of Machine Learn-
ing Research 4 :1107–1149.

Ludvig, E. A., Sutton, R. S., Kehoe, E. J. (2012). Evaluating the TD model of classical
conditioning. Learning & behavior 40 (3):305–319.

26

An Emphatic Approach to Off-policy TD Learning

Maei, H. R. (2011). Gradient Temporal-Difference Learning Algorithms. PhD thesis, Uni-
versity of Alberta.

Maei, H. R., Sutton, R. S. (2010). GQ(λ): A general gradient algorithm for temporal-
difference prediction learning with eligibility traces. In Proceedings of the Third Confer-
ence on Artificial General Intelligence, pp. 91–96. Atlantis Press.

Maei, H. R., Szepesvári, Cs., Bhatnagar, S., Sutton, R. S. (2010). Toward off-policy learning
control with function approximation. In Proceedings of the 27th International Conference
on Machine Learning, pp. 719–726.

Mahmood, A. R., van Hasselt, H., Sutton, R. S. (2014). Weighted importance sampling for
off-policy learning with linear function approximation. Advances in Neural Information
Processing Systems 27.

Mahmood, A. R., Sutton, R. S. (2015a). Off-policy learning based on weighted importance
sampling with linear computational complexity. Proceedings of the 31st Conference on
Uncertainty in Artificial Intelligence, Amsterdam, Netherlands.

Mahmood, A. R., Yu, H., White, M., Sutton, R. S. (2015b). Emphatic temporal-difference
learning. European Workshop on Reinforcement Learning, ArXiv:1507.01569.

Modayil, J., White, A., Sutton, R. S. (2014). Multi-timescale nexting in a reinforcement
learning robot. Adaptive Behavior 22 (2):146–160.

Nedić, A., Bertsekas, D. P. (2003). Least squares policy evaluation algorithms with linear
function approximation. Discrete Event Dynamic Systems 13 (1-2):79–110.

Niv, Y., Schoenbaum, G. (2008). Dialogues on prediction errors. Trends in cognitive sci-
ences 12 (7):265–272.

O’Doherty, J. P. (2012). Beyond simple reinforcement learning: The computational neurobi-
ology of reward learning and valuation. European Journal of Neuroscience 35 (7):987–990.

Precup, D., Sutton, R. S., Dasgupta, S. (2001). Off-policy temporal-difference learning with
function approximation. In Proceedings of the 18th International Conference on Machine
Learning, pp. 417–424.

Precup, D., Sutton, R. S., Singh, S. (2000). Eligibility traces for off-policy policy evaluation.
In Proceedings of the 17th International Conference on Machine Learning, pp. 759–766.
Morgan Kaufmann.

Rummery, G. A. (1995). Problem Solving with Reinforcement Learning. PhD thesis, Uni-
versity of Cambridge.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM
Journal on Research and Development 3:210–229. Reprinted in E. A. Feigenbaum, &
J. Feldman (Eds.), Computers and thought. New York: McGraw-Hill.

Schultz, W., Dayan, P., Montague, P. R. (1997). A neural substrate of prediction and
reward. Science 275 (5306):1593–1599.

27

Sutton, Mahmood & White

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine
Learning 3 :9–44, erratum p. 377.

Sutton, R. S. (1995). TD models: Modeling the world at a mixture of time scales. In
Proceedings of the 12th International Conference on Machine Learning, pp. 531–539.
Morgan Kaufmann.

Sutton, R. S. (2009). The grand challenge of predictive empirical abstract knowledge.
Working Notes of the IJCAI-09 Workshop on Grand Challenges for Reasoning from Ex-
periences.

Sutton, R. S. (2012). Beyond reward: The problem of knowledge and data. In Proceedings
of the 21st International Conference on Inductive Logic Programming, S. H. Muggleton,
A. Tamaddoni-Nezhad, F. A. Lisi (Eds.): ILP 2011, LNAI 7207, pp. 2–6. Springer,
Heidelberg.

Sutton, R. S., Barto, A. G. (1990). Time-derivative models of Pavlovian reinforcement. In
M. Gabriel and J. Moore (Eds.), Learning and Computational Neuroscience: Foundations
of Adaptive Networks, pp. 497–537. MIT Press, Cambridge, MA.

Sutton, R. S., Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press.

Sutton, R. S., Mahmood, A. R., Precup, D., van Hasselt, H. (2014). A new Q(λ) with in-
terim forward view and Monte Carlo equivalence. In Proceedings of the 31st International
Conference on Machine Learning. JMLR W&CP 32(2).

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, Cs., Wiewiora,
E. (2009). Fast gradient-descent methods for temporal-difference learning with linear
function approximation. In Proceedings of the 26th International Conference on Machine
Learning, pp. 993–1000, ACM.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., Precup, D.
(2011). Horde: A scalable real-time architecture for learning knowledge from unsuper-
vised sensorimotor interaction. In Proceedings of the 10th International Conference on
Autonomous Agents and Multiagent Systems, pp. 761–768.

Sutton, R. S., Precup D., Singh, S. (1999). Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence 112:181–211.

Sutton, R. S., Rafols, E. J., Koop, A. (2006). Temporal abstraction in temporal-difference
networks. Advances in Neural Information Processing Systems 18. MIT Press.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning
8 :257–277.

Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Communications of t
he ACM 38 (3):58–68.

Thomas, P. (2014). Bias in natural actor–critic algorithms. In Proceedings of the 31st
International Conference on Machine Learning. JMLR W&CP 32(1):441–448.

Tsitsiklis, J. N., Van Roy, B. (1996). Feature-based methods for large scale dynamic
programming. Machine Learning, 22:59–94.

28

An Emphatic Approach to Off-policy TD Learning

Tsitsiklis, J. N., Van Roy, B. (1997). An analysis of temporal-difference learning with
function approximation. IEEE Transactions on Automatic Control 42:674–690.

van Seijen, H., Sutton, R. S. (2014). True online TD(λ). In Proceedings of the 31st Inter-
national Conference on Machine Learning. JMLR W&CP 32(1):692–700.

Varga, R. S. (1962). Matrix Iterative Analysis. Englewood Cliffs, NJ: Prentice-Hall.

Wang, M., Bertsekas, D. P. (2013). Stabilization of stochastic iterative methods for singular
and nearly singular linear systems. Mathematics of Operations Research 39 (1):1-30.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, University of
Cambridge.

Watkins, C. J. C. H., Dayan, P. (1992). Q-learning. Machine Learning 8:279–292.

White, A. (2015). Developing a Predictive Approach to Knowledge. Phd thesis, University
of Alberta.

Yu, H. (2010). Convergence of least squares temporal difference methods under general
conditions. In Proceedings of the 27th International Conference on Machine Learning,
pp. 1207–1214.

Yu, H. (2012). Least squares temporal difference methods: An analysis under general
conditions. SIAM Journal on Control and Optimization 50 (6), 3310–3343.

Yu, H. (2015). On convergence of emphatic temporal-difference learning. ArXiv:1506.02582.
A shorter version appeared in Proceedings of the Conference on Computational Learning
Theory.

29

