
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

A New Q(λ)

Abstract
Q-learning, the most popular of reinforcement
learning algorithms, has always included an ex-
tension to eligibility traces to enable more rapid
learning and improved asymptotic performance
on non-Markov problems. The λ parameter
smoothly shifts on-policy algorithms such as
TD(λ) and Sarsa(λ) from a pure bootstrapping
form (λ = 0) to a pure Monte Carlo form (λ =
1). In off-policy algorithms, including Watkins’s
Q(λ), Peng’s Q(λ), and the recent GQ(λ), the λ
parameter is intended to play the same role, but
does not; on every exploratory action these al-
gorithms bootstrap absolutely regardless of the
value of λ, and as a result they never approxi-
mate pure Monte Carlo learning. It may seem
that this is inevitable for any online off-policy
algorithm; if updates are made on each step on
which the target policy is followed, then how
could just the right updates be ‘unmade’ upon
deviation from the target policy? In this paper,
we introduce a new version of Q(λ) that does ex-
actly that, without significantly increased algo-
rithmic complexity. En route to our new Q(λ),
we introduce a new derivation technique based
on the forward-view/backward view analysis fa-
miliar from TD(λ) but extended to apply at every
time step rather than only at the end of episodes.
We apply this technique to derive a new off-
policy TD(λ) and then our new Q(λ).

1. Off-policy eligibility traces
Eligibility traces (Sutton 1988, Singh & Sutton 1996) are
the mechanism by which temporal-difference (TD) algo-
rithms such as Q-learning (Watkins 1989) and Sarsa (Rum-
mery 1995) escape the tyranny of the time step. In their
simplest, one-step forms, these algorithms pass credit for
an error back to only the single state preceding the error.
If the time step is short, then the backward propagation of
accurate values can be quite slow. With traces, credit is

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

passed back to multiple preceding states, and learning is
often significantly faster.

In on-policy TD algorithms with traces, such as TD(λ) and
Sarsa(λ), the assignment of credit to previous states fades
for more distantly preceding states according to the prod-
uct of the bootstrapping parameter λ ∈ [0, 1]. If λ = 1,
then the traces fade maximally slowly, no bootstrapping is
done, and the resulting algorithm is called a Monte Carlo
algorithm because in the limit it behaves almost exactly as
if learning was to the complete observed return. If λ = 0,
then the one-step form of the algorithm is recovered.

Many off-policy TD algorithms also use traces, but less
successfully. Watkins’s (1989) Q(λ), for example, assigns
credit to preceding state–action pairs, fading with tempo-
ral distance, but only up until the last non-greedy action.
If exploratory actions are common, then the traces rarely
last very long. In part to redress this, Peng’s (1993) Q(λ)
never cuts the traces, but fails to converge to the optimal
value function and still involves bootstrapping irrespective
of λ. A more important problem with Watkins’s Q(λ) is
that it bootstraps (updates its estimates from other esti-
mates) whenever an exploratory action is taken. GQ(λ)
(Maei & Sutton 2010) and GTD(λ) (Maei 2011) extend
Q(λ) to function approximation in a sound way and han-
dle off-policy learning more generally, but have essentially
the same weakness: when the action taken deviates from
the target policy they all cut off their traces and bootstrap.
One consequence is that none of these algorithms can ap-
proximate Monte Carlo algorithms. More generally, the
degree of bootstrapping cannot be set by the user (via λ)
independently of the actions taken.

It might seem impossible for an online off-policy TD algo-
rithm to do anything other than bootstrap when the action
taken deviates from the target policy. By the time of devia-
tion many online updates have already been made, but the
deviation means the subsequent rewards cannot be counted
as due to the target policy. The right thing to do, if λ = 1,
is to somehow undo the earlier updates, but this has always
seemed impossible to do online without vastly increasing
the computational complexity of the algorithm. In this pa-
per we show that, surprisingly, it can be done with very
little additional computation. In the case of linear function
approximation, one additional vector is needed to hold pro-
visional weights, the portion of the main weights that may



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

A New Q(λ)

need to be removed upon deviation, or otherwise adjusted
based on the degree of match to the target policy.

A key part of previous analyses of eligibility traces has
been the notion of a forward view specifying the ideal up-
date in terms of future events (Sutton & Barto 1998, Chap-
ter 7). It can then sometimes be shown that a causal al-
gorithm (a backward view) is mathematically equivalent in
its overall effect to the forward view. Our first contribu-
tion is to introduce a new notion of “interim” forward view
for general off-policy learning and for arbitrary λ and γ
that are not just parameters but general functions of state.
Our second contribution is a powerful technique for ana-
lytically deriving new TD algorithms that are equivalent to
interim forward views. We first illustrate the technique by
using it to show that conventional TD(λ) is equivalent to the
on-policy special case of the interim forward view (itself a
new result), then use it to derive and prove the equivalence
of a new off-policy TD(λ) algorithm. Finally, we intro-
duce an interim forward view for action values and use it
to derive and prove equivalence of our new Q(λ). Like the
original equivalences, ours are exact for offline updating
and approximate for online updating. Our algorithms are
all described in terms of linear function approximation but,
like the original Q-learning, they are guaranteed conver-
gent only for the tabular case; the extension to gradient-TD
methods seems straightforward but is left to future work.

2. A general off-policy forward view
We consider a continuing setting in which an agent and
environment interact at each of a series of time steps,
t = 0, 1, 2, . . .. At each step t, the environment is in state
St and generates a feature vector φ(St) ∈ Rd. The agent
then chooses an actionAt from a distribution defined by its
fixed behavior policy b(·|St) (the only influence of St on b
is typically assumed to be via φ(St), but we do not enforce
this). The environment then emits a reward Rt+1 ∈ R and
transitions to a new state St+1, and the process continues.
The next state and reward are assumed to be chosen from a
joint distribution that depends only on the preceding state
and action (the Markov assumption). We first consider the
problem of finding a weight vector θ ∈ Rd such that

θ>φ(s) ≈ Eπ

[ ∞∑
t=0

Rt+1

t∏
k=1

γ(Sk)

∣∣∣∣∣S0 = s

]
(1)

in some sense (for some norm), where the expectation is
conditional on actions being selected according to an al-
ternative policy π, called the target policy, and γ(·) is an
almost arbitrary function from the state space to [0, 1]. We
will refer to γ(·) as the termination function because when
it falls to zero it terminates the quantity whose expecta-
tion is being estimated. The only restriction we place on
the termination function (and on the environment) is that

∏∞
k=0 γ(St+k) = 0 w.p.1, ∀t.

If the two policies are the same, π = b, then the setting
is called on-policy. If π 6= b, then we have the off-policy
case, which is harder. In general, π and b may also vary
over time, e.g. in the case of control algorithms which rely
on soft exploration. Normally it is assumed that the behav-
ior policy b overlaps the target policy π in the sense that
π(a|s) > 0 =⇒ b(a|s) > 0. At each time t the degree
of deviation of the target policy from the behavior policy
is captured by the importance-sampling ratio (Precup et al.
2000, 2001):

ρt =
π(At|St)
b(At|St)

. (2)

It is awkward to seek the approximation (1) from data in the
off-policy case because the expectation is under π whereas
the data is due to b. Some actions chosen by b will match
π, but not an infinite number in succession. This is where
it is useful to interpret γ(·) as termination rather than as
discounting. That is, we consider any trajectory, for exam-
ple, S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . as having ter-
minated partly after one step, at S1, with degree of termina-
tion 1−γ(S1), yielding a return ofR1, and partly after two
steps, at S2, with degree of termination γ(S1)(1− γ(S2)),
yielding a return of R1 +R2. The third partial termination
would have a degree of termination of γ1γ2(1−γ3) (where
here we have switched to the shorthand γt = γ(St)) and
yield a return of R1 + R2 + R3. Notice how in this par-
tial termination view we end up with undiscounted, or flat,
returns with no factors involving γ(·) in them. More impor-
tantly, we get short returns that have actually terminated, to
various degrees, after each finite number of steps, rather
that having to wait for the infinite number of steps to get a
return as suggested by the discounting perspective.

Now consider the off-policy aspect and the role of the
importance-sampling ratios. The first return, consisting of
just R1, need to be weighted not just by its degree of ter-
mination, 1−γ1, but also by the importance sampling ratio
ρ0. This ratio will emphasize or de-emphasize this return
depending on whether the action A0 was more or less com-
mon under π than it is under b. If it was an action that
would rarely be done under the target policy π and yet is
in fact common (under the behavior policy b) then this in-
stance of it will be discounted proportionally to make up
for its prevalence. If it would be common under the tar-
get policy but is rare (under the behavior policy) then its
weighting should be pumped up proportionally to balance
its infrequency. The overall weight on this return should
then be the product of the degree of termination and the
importance sampling ratio, or ρ0(1 − γ1). The weight-
ing of the second return, R1 + R2, will depend on its de-
gree of termination, γ1(1 − γ2) times the product of two
importance sampling ratios, ρ0ρ1. The first takes into ac-



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

A New Q(λ)

O↵-policy Monte Carlo

A0

R1

S1

A1

R2

S2

Rt

At�1

⇢0�1⇢1�2⇢2(1 � �3)

A2

S3

R3

⇢0(1 � �1)

⇢0�1⇢1(1 � �2)

S0

St

⇢0�1 · · · ⇢t�1�t

Figure 1. The complex backup for an off-policy Monte Carlo al-
gorithm, illustrating weighting by degree of termination and de-
gree of match of target and behavior policies. Also illustrated is
the notion of an interim forward view, going only up to horizon t,
at which time full bootstrapping is done. The component backups
all use flat returns without discounting.

count the match of the target and behavior policies for A0,
and the second takes into account the match of the poli-
cies for A1. The overall weighting on the second term is
ρ0γ1ρ1(1−γ2). Continuing similarly, the weighting on the
third flat return, R1 +R2 +R3 is ρ0γ1ρ1γ2ρ2(1− γ3).

These weights and the backup diagrams for these three re-
turns are shown in the first three columns of Figure 1. This
is the standard way of diagramming a “complex” backup—
a backup composed of of multiple sub-backups, one per
column, each done in parallel with the weighting written
below them (Sutton & Barto 1998, Chapter 7). An impor-
tant difference, however, is that here the composite backups
all use flat backups, without discounting or embedded ter-
mination, whereas Sutton and Barto always include a scalar
γ implicit in their backup diagrams. The last column of
the diagram is another small innovation. This backup is
an interim forward view, meaning that it looks ahead not
infinitely, but only out to some finite horizon time t. The
horizon could be chosen arbitrarily far out in the future, so
in this limiting sense interim forward views are a general-
ization of conventional forward views. Normally, however,
we will be choosing the horizon far short of infinity. Nor-
mally we will chose t to be something like the current limit
of available data—the current time. Interim forward views
are used to talk about the updates that could have been
done in the past using all the data up to the current time.
Note that this last backup is to a state rather than termina-

O↵-policy TD(�)

A0

R1

S1

A1

R2

S2

Rt

At�1

⇢0(1 � �1)

⇢0�1(1 � �1)

⇢0�1�1⇢1(1 � �2)

⇢0�1�1⇢1�2(1 � �2)

S0

St

⇢0�1�1 · · · ⇢t�1�t

⇢0�1�1 · · · ⇢t�1(1 � �t)

Figure 2. The complex backup for the new off-policy TD(λ)
shows the weighting on each component n-step backup, using flat
returns.

tion. According to the convention of backup diagrams, this
means that bootstrapping using the current approximation
is done at time t.

Next we introduce bootstrapping into our general forward
view. We follow Sutton and Barto (1998, Section 7.10) and
generalize the conventional scalar λ parameter to an arbi-
trary bootstrapping function λ(·) from the state space to
[0, 1]. The bootstrapping factor at time t, λt = λ(St), rep-
resents the degree of bootstrapping upon arrival in St, just
as the termination factor γt = γ(St) represents the degree
of termination upon arriving there. The new backup dia-
gram is shown in Figure 2. Each terminating sub-backup
of the Monte Carlo backup in Figure 1 has been split into
a terminating sub-backup and a bootstrapping sub-backup.
Each sub-backup is a way in which the return can finish and
no longer be subject to reweightings based on subsequent
importance sampling ratios. The overall backup is best read
from left to right. In the first two columns, the return can
terminate in S1 with a weighting of ρ0(1 − γ1), yielding a
return of just R1 or, to the extent that that does not occur,
it can bootstrap in S1 yielding a return of R1 + θ>φ(S1).
Bootstrapping can only be done to the extent that there was
no prior deviation, ρ0, or termination, γ1, and only to the
extent that λ1 is less than 1; the overall weighting is thus
ργ1(1 − λ1). To the extent that neither of these occur we
go on similarly to the two-step sub-backups, which yield
returns of R1 + R2 or R1 + R2 + θ>φ(S2) respectively
if they apply, or we go on to the three-step sub-backups,
and so on until we reach the last bootstrapping sub-backup
at the horizon, at which bootstrapping is complete as if
λt = 1, yielding a return of R1 + · · · + Rt + θ>φ(St)
with weighting ρ0γ1λ1 · · ·λt−1ρt−1γt.



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

A New Q(λ)

There is one final important issue before we can reduce
these ideas and backup diagrams to equations. The preced-
ing discussion has suggested that there is a total amount of
weight that must be split up among the component backups
of the complex backup. This is not totally incorrect. The
expectation of the total weight along a trajectory is always
one by construction, but the total weight for sample trajec-
tory will often be significantly larger or smaller than one.
This is entirely caused by the importance sampling ratios.
Previous complex backups, including off-policy ones like
Q-learning, have not had to deal with this issue. We deal
with it here by switching from viewing the backup diagram
as a way of generating a return to a way of generating an
error. We will compute the weighting and then use it to
weight the complete error rather than just the return por-
tion of the error. This change does not affect the expected
update of the algorithm, but we believe that it significantly
reduces the average variance (Precup et al. 2001).

As an example of the issue, consider a case where the
first action substantially deviates from the target policy, say
ρ0 = 0.01, and then terminates, γ1 = 0. This yields a
return of just 0.01 · R1. Conversely, suppose the first ac-
tion strongly matches the target policy with ρ0 = 10 and
then termination occurs. This yields a target of 10 · R1. If
we view the weighting as on these returns, then the errors
0.01·R1−θ>φ(S0) and 10·R1−θ>φ(S0) we will move the
estimate θ>φ(S0) in one case toward nearly zero and in the
other case towards a potentially large number, even if R1 is
the same in the two cases. If instead we view the weighing
as on the errors, then both errors will be R1 − θ>φ(S0),
only one will be weighted by 0.01 and the other by 10.
The updates will be different sizes, but not gratuitously in
different directions. This specific example is contrived of
course, with termination after just one step, but widely dif-
fering weightings are in fact not at all atypical here due to
the products of multiple importance-sampling ratios.

In our complex backup (Figure 2) there are two kinds of
sub-backups. The first, ending with a terminal state, corre-
sponds to an n-step error without bootstrapping:

ε
(n)
t = Rt+1 +Rt+2 + · · ·+Rt+n − θ>φ(St). (3)

The second sub-backup of each pair, ending with a non-
terminal state, corresponds to an n-step flat TD error, that
is, an n-step error with bootstrapping but no discounting or
termination:

δ̄
(n)
t = Rt+1 + · · ·+Rt+n +θ>φ(St+n)−θ>φ(St). (4)

Using these, the overall error corresponding to the forward
view in Figure 2, which we denote δρt , can be written com-
pactly as a nested sum of pairs of terms, each correspond-

ing to a sub-backup of the figure:

δρ0,t = ρ0

[
(1− γ1)ε

(1)
0 + γ1(1− λ1)δ̄

(1)
0

+ γ1λ1ρ1

[
(1− γ2)ε

(2)
0 + γ2(1− λ2)δ̄

(2)
0

+ γ2λ2ρ2

[
(1− γ3)ε

(3)
0 + γ3(1− λ3)δ̄

(3)
0

+ · · · γt−1λt−1ρt−1
[
(1− γt)ε(t)0 + γtδ̄

(t)
0

]]]]
= ρ0

t∑
n=1

D
(n−1)
0

(
(1− γn)ε

(n)
0 + γn(1− λtn)δ̄

(n)
0

)
.

where λtn is syntactic sugar for λn except for n = t, in
which case it is defined to be 0. We denote D(n−1)

0 =∏n−1
i=1 γiλiρi. Note that in general D(0)

t = 1 and

D
(n)
t = γt+1λt+1ρt+1D

(n−1)
t+1 . (5)

3. Analysis of the forward view
In this section we analyze and present several formal results
for the general forward view. Some of these will be used
to simplify computations later and some are of independent
interest. First, we define

φt = φ(St) (6)

δt = Rt+1 + γt+1θ
>φt+1 − θ>φt (7)

and note the following obvious but useful identities:

δt = ε
(1)
t + γt+1θ

>φt+1 (8)

δ̄
(n)
t = ε

(n)
t + θ>φt+n (9)

δ̄
(n)
t = δ̄

(n−1)
t+1 + δ̄

(1)
t = δ̄

(n−1)
t + δ̄

(1)
t+n−1 (10)

ε
(n)
t = ε

(n−1)
t+1 + δ̄

(1)
t = δ̄

(n−1)
t + ε

(1)
t+n−1. (11)

Using these, we can rewrite δρk,t (for any 0 ≤ k < t) in a
useful recursive form:

δρk,t = ρk

t−k∑
n=1

D
(n−1)
k

(
ε
(n)
k + γk+nθ

>φk+n − γk+nλ
t
k+nδ̄

(n)
k

)
(12)

= ρkδk − ρkγk+1λ
t
k+1δ̄

(1)
k

+ ρk

t−k∑
n=2

γk+1λ
t
k+1ρk+1D

(n−2)
k+1

(
γk+nθ

>φk+n

+ ε
(n−1)
k+1 + δ̄

(1)
k − γk+nλ

t
k+n(δ̄

(n−1)
k+1 + δ̄

(1)
k )

)
= ρk

(
δk + γk+1λ

t
k+1δ

ρ
k+1,t + γk+1λ

t
k+1(Ck+1,t − 1)δ̄

(1)
k

)
(13)



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

A New Q(λ)

where:

Ck,t =

t−k∑
n=1

D
(n−1)
k (1− γk+nλtk+n) (14)

=

t−k∑
n=1

(1− γk+nλtk+n)

n−1∏
i=1

γk+iλ
t
k+iρk+i(15)

We now show that the on-policy forward-view of TD(λ)
with general γ and λ is a special case of the off-policy
TD(λ) forward view.

Lemma 1. If ∀l, ρl = 1, then: Ck,t = 1,∀k < t, t

Proof. Because ρl = 1,∀l, we have: Ck,t =
∑t−k
n=1(1 −

γk+nλ
t
k+n)

∏n−1
i=1 γk+iλ

t
k+i. It is easy to prove by induc-

tion that:

Ck,t = 1−
t−k∏
n=1

γk+nλ
t
k+n

Because λtt = 0 by definition, Ck,t = 1.

We now show that this algorithm is the same as usual TD(λ)
in the on-policy case. Let δρk = limt→∞ δρk,t Recall that the
on-policy forward-view update of TD(λ) can be written as

αδλkφk = α(Gλk − θ>φk)φk, (16)

where the λ-return, Gλk is defined recursive as (Maei,
2011):

Gλk =Rk+1 + γk+1

(
(1− λk+1)θ>φk+1 + λk+1G

λ
k+1

)
.

so the on-policy forward-view error can be written as

δλk =Gλk − θ>φkδk + γk+1λk+1

(
Gλk+1 − θ>φk+1

)
= δk + γk+1λk+1δ

λ
k+1. (17)

Theorem 1. If ρl = 1 ∀l, then the forward-view (12) is
equivalent to the on-policy forward-view update of TD(λ)
defined in (16).

Proof. If ρl = 1 ∀l, from (13) and Lemma 1 taking the
limit as t→∞,we have:

δρk = δk + γk+1λk+1δ
ρ
k+1.

Hence, the two forward-view updates coincide.

We now briefly examine the correctness of the off-policy
algorithm.

Lemma 2. Eb[Ck,t] = 1.

Proof. Follows immediately from the definitions of ρ and
Ck,t and Lemma 1.

Theorem 2. Let b and π be the behavior and the target
policies, respectively. Then, in expectation, the off-policy
forward-view (13) under the behavior policy achieves the
on-policy forward-view (16) under the target policy, that
is,

Eb
[
δρk,tφk

]
= Eπ

[
δλk,tφk

]
.

Proof. Follows immediately from (13), Lemma 2 and
Eqs.(17).

4. Interim equivalence of forward and
backward views

Based on the forward view defined in Sec. 2 and its general
form (13), the ideal forward-view update at time k given
only the portion of the trajectory up through St, ∆θF

k,t, is
given by:

∆θF
k,t = αδρk,tφk (18)

We now introduce an interim equivalence technique for
deriving an equivalent backward-view algorithm from a
forward-view algorithm. If the weight vector is held at θ,
it follows then that the ideal (off-line) forward-view weight
vector, given only the data up through St, is

θ∗t = θ +

t−1∑
k=0

∆θF
k,t,

and that the corresponding ideal update, from t to t+ 1, is

∆θ∗t = θ∗t+1 − θ∗t =

t∑
k=0

∆θF
k,t+1 −

t−1∑
k=0

∆θF
k,t.

Hence, one should simply work from the equation above to
derive the backward-view update:

∆θBt =

t∑
k=0

∆θF
k,t+1 −

t−1∑
k=0

∆θF
k,t. (19)

We now prove that the backward view obtained this way is
equivalent to the forward view. This will be the cornerstone
of all eligibility trace algorithms presented in the rest of the
paper.

Theorem 3. The total update generated by any backward
view derived using (19) is equivalent to the total forward
update up to time t:

∀t,
t−1∑
k=0

∆θBk =

t−1∑
k=0

∆θFk,t.

Proof:
∑t−1
k=0 ∆θBk =

∑t−1
k=0(θ∗k+1 − θ∗k) = θ∗t − θ =∑t−1

k=0 ∆θFk . �



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

A New Q(λ)

We now illustrate how this interim equivalence technique
can be applied to derive a backward view for the on-policy
TD(λ) with general γ and λ. The forward-view of on-
policy TD(λ) with general γ and λ can be defined as

∆θFk,t = αδλk,tφk. (20)

The truncated on-policy λ-TD error with general γ and λ,
δλk,t, is obtained by setting all ρ = 1 in (13), and taking into
account Lemma 1, as:,

δλk,t = δk + γk+1λ
t
k+1δ

λ
k+1,t.

To derive the backward view for the on-policy TD(λ) with
general γ and λ, we can write:

1

α

(
t∑

k=0

∆θFk,t+1 −
t−1∑
k=0

∆θFk,t

)
=

t∑
k=0

δλk,t+1φk −
t−1∑
k=0

δλk,tφk

= δtφt +

t−1∑
k=0

(
δλk,t+1 − δλk,t

)
φk

= δtφt +

t−1∑
k=0

γk+1λ
t
k+1

(
δλk+1,t+1 − δλk+1,t

)
φk

= δtφt +

t−1∑
k=0

(
t−k−1∏
i=1

γk+iλ
t
k+i

)(
δλt−1,t+1 − δλt−1,t

)
φk

= δtφt +

t−1∑
k=0

(
t−k−1∏
i=1

γk+iλ
t
k+i

)
γkλ

t
kδkφk

= δtet,

where we define et (the eligibility trace vector) as:

et = φt +

t−1∑
k=0

(
t−k∏
i=1

γk+iλ
t
k+i

)
φk

= φt + γtλt

(
φt−1 +

t−2∑
k=0

(
t−k−1∏
i=1

γk+iλ
t
k+i

)
φk

)
= φt + γtλtet−1.

Therefore,

∆θBt =

t∑
k=0

∆θFk,t+1 −
t−1∑
k=0

∆θFk,t = αδtet, (21)

which is the on-policy backward view update of TD(λ)
with general γ and λ. Note that, for constant γ and λ, this
update becomes the conventional on-policy backward view
update of TD(λ).

5. Derivation of a New TD(λ)
We now use the same interim equivalence technique to de-
rive our new off-policy TD(λ) backward-view algorithm,

starting from the forward view (12):

δρk,t = ρkD
(t−k−1)
k

(
(1− γt)ε(t−k)k + γtδ̄

(t−k)
k

)
+

t−k−1∑
n=1

ρkD
(n−1)
k

(
(1− γk+n)ε

(n)
k + γk+n(1− λk+n)δ̄

(n)
k

)
.

Using (8), (10) and (11), we can write it recursively as

δρk,t = ρkD
(t−k−1)
k δt−1 + ρkγt−1λt−1ρt−1D

(t−k−2)
k δ̄

(t−k−1)
k

− ρkγt−1λt−1D
(t−k−2)
k δ̄

(t−k−1)
k

+ ρkD
(t−k−2)
k

(
(1 − γt−1)εt−k−1

k + γt−1δ̄
(t−k−1)
k

)
+

t−k−2∑
n=1

ρkD
(n−1)
k

(
(1 − γk+n)εnk + γk+n(1 − λk+n)δ̄

(n)
k

)
= δρk,t−1 + ρkD

t−k−1
k δt−1

+ (ρt−1 − 1)γt−1λt−1ρkD
t−k−2
k δ̄

(t−k−1)
k .

The forward-view update at k, given only the data up
through St, is

∆θFk,t = αδρk,tφk. (22)

Then to derive the backward view, we can use the same
technique that we developed in the previous section and
write:

1

α

(
t∑

k=0

∆θFk,t+1 −
t−1∑
k=0

∆θFk,t

)

= δρt,t+1φt +

t−1∑
k=0

[
δρk,t+1 − δ

ρ
k,t

]
φk

= ρtδtφt

+

t−1∑
k=0

[
ρkD

(t−k)
k δt + (ρt − 1)γtλtρkD

(t−k−1)
k δ̄

(t−k)
k

]
φk

= δtet + (ρt − 1)ut.

We define et as

et = ρtφt +

t−1∑
k=0

ρkD
(t−k)
k φk

= ρtφt + γtλtρt

(
ρt−1φt−1 +

t−2∑
k=0

ρkD
(t−k−1)
k φk

)
= ρt (φt + γtλtet−1) , (23)

and ut as

ut = γtλt

t−1∑
k=0

ρkD
(t−k−1)
k δ̄

(t−k)
k φk

= γtλt

(
ρt−1γt−1λt−1

t−2∑
k=0

ρkD
(t−k−2)
k δ̄

(t−k−1)
k φk



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

A New Q(λ)

+

t−2∑
k=0

ρkD
(t−k−1)
k δ̄

(1)
t−1φk + ρt−1δ̄

(1)
t−1φt−1

)
= γtλt

(
ρt−1ut−1 + δ̄

(1)
t−1et−1

)
.

Let us redefine ut = αut. Then we can write

ut = γtλt

(
ρt−1ut−1 + αδ̄

(1)
t−1et−1

)
. (24)

Then the off-policy backward-view update of TD(λ) with
general γ and λ can be written as

∆θBt =

t∑
k=0

∆θFk,t+1 −
t−1∑
k=0

∆θFk,t = αδtet + (ρt − 1)ut. (25)

Note that, for ρt = 1 ∀t, the last term in the weight up-
date (25) is eliminated, and this algorithm becomes the on-
policy TD(λ) update with general γ and λ.

Theorem 4. The backward view algorithm defined by (23),
(24) and (25) is equivalent to the forward-view defined in
(22).

Proof. The proof follows from Theorem 3 and the above
derivation.

6. Derivation of a new Q(λ)
We now extend the off-policy forward-view for action
value estimation. Here, we consider a given target policy,
although the algorithm readily extends to the case of con-
trol, by considering the target policy to be changing with
time, for example, greedy with respect to the current ac-
tion value estimates. We assume that feature vectors are
now defined over state action-pairs, rather than states. The
learning problem is to find a parameter vector θ such that:

θ>φ(s, a) ≈ Eπ
[
Gλt

∣∣∣St = s,At = a
]
,

As before, for brevity we denote φt = φ(St, At). The in-
tuition for the forward view is given in Fig. 3. This is the
same as Fig. 2 with two differences: trajectories start with
state-action pairs, and at the end, bootstrapping is done us-
ing the value of the state (considering all possible actions
that the target policy may follow from then on):∑

a

π(a|St+1)θ>φ(St+1, a) = θ>φ̄πt+1,

where we denote by φ̄πt =
∑
a π(a|St)φ(St, a) the ex-

pected feature under policy π.

Let ε(n)t be the n-step undiscounted, uncorrected error
and we redefine δk the usual TD-error for action values.
Hence, it follows that δk = ε

(1)
k + γk+1θ

>φ̄πk+1 and

ε
(t−k)
k + γtθ

>φ̄πt = δt−1 + ε
(t−k−1)
k + θ>φt−1.

Then following the intuition in Sec. 2, we redefine the
forward-view TD error of the Q-value function as below:

δρk,t =D
(t−k−1)
k (ε

(t−k)
k + γtθ

>φ̄πt )

+

t−k−1∑
n=1

D
(n−1)
k

[
(1− γk+nλk+n)ε

(n)
k

+ γk+n(1− λk+n)θ>φ̄πk+n
]
.

We can write δρk,t recursively as

δρk,t =D
(t−k−1)
k δt−1

+ γt−1λt−1ρt−1D
(t−k−2)
k

(
θ>φt−1 − θ>φ̄πt−1

)
+ γt−1λt−1ρt−1D

(t−k−2)
k

(
ε
(t−k−1)
k + θ>φ̄πt−1

)
− γt−1λt−1D(t−k−2)

k

(
ε
(t−k−1)
k + θ>φ̄πt−1

)
+ D(t−k−2)

(
ε
(t−k−1)
k + γt−1θ

>φ̄πt−1
)

+

t−k−2∑
n=1

D
(n−1)
k

[
(1− γk+nλk+n)ε

(n)
k

+ γk+n(1− λk+n)θ>φ̄πk+n
]

= δρk,t−1 +D
(t−k−1)
k δt−1 +D

(t−k−1)
k θ>

(
φt−1 − φ̄πt−1

)
+ (ρt−1 − 1)γt−1λt−1D

(t−k−2)
k

(
ε
(t−k−1)
k + θ>φ̄πt−1

)
.

The forward-view update at k, given only the data up
through St, is given as before by:

∆θFk,t = αδρk,tφk. (26)

Using the interim equivalence analysis technique, we can
derive the backward view as follows:

1

α

(
t∑

k=0

∆θFk,t+1 −
t−1∑
k=0

∆θFk,t

)

= δρt,t+1φt +

t−1∑
k=0

[
δρk,t+1 − δ

ρ
k,t

]
φk

= δtφt +

t−1∑
k=0

D
(t−k)
k δtφk +

t−1∑
k=0

D
(t−k)
k θ>

(
φt − φ̄πt

)
φk

+ (ρt − 1)γtλt

t−1∑
k=0

D
(t−k−1)
k (ε

(t−k)
k + θ>φ̄πt )φk

= δtet + θ>
(
φt − φ̄πt

)
(et − φt) + (ρt − 1)ut.

where we define et as:

et = φt +

t−1∑
k=0

D
(t−k)
k φk = φt + γtλtρtet−1,



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

A New Q(λ)

New Q(�)

A0

R1

S1

A1

R2

S2

Rt

St

At�1

(1 � �1)

�1(1 � �1)

�1�1⇢1(1 � �2)

�1�1⇢1�2(1 � �2)

�1�1⇢1 · · · �t�1�t�1⇢t�1�t

�1�1⇢1 · · · �t�1�t�1⇢t�1(1 � �t)

Figure 3. Weighting of Q(λ) backups

and ut as

ut = γtλt

t−1∑
k=0

D
(t−k−1)
k

(
ε
(t−k)
k + θ>φ̄πt

)
φk

= γtλt

(
ρt−1γt−1λt−1

t−2∑
k=0

D
(t−k−2)
k

(
ε
(t−k−1)
k

+ θ>φ̄πt−1
)
φk +

(
Rt + θ>φ̄πt − θ>φt−1

)
φt−1

+

t−2∑
k=0

D
(t−k−1)
k

(
Rt + θ>φ̄πt − θ>φ̄πt−1

)
φk

)
= γtλt

(
ρt−1ut−1 + (Rt + θ>φ̄πt − θ>φt−1)et−1

+ θ>
(
φt−1 − φ̄πt−1

)
(et−1 − φt−1)

)
.

We redefine ut = αut. From this backward view, a new
off-policy Q(λ) algorithm can be obtained. For any time t,
the incremental updates of the new off-policy Q(λ) are:

δt=Rt+1 + γt+1θ
>φ̄πt+1 − θ>t φt (27)

et=φt + γtλtρtet−1 (28)
∆θt=αδtet + αθ>(φt − φ̄πt )(et − φt) + (ρt − 1)ut(29)

ut+1=γt+1λt+1

(
ρtut + α(Rt+1 + θ>φ̄πt+1 − θ>φt)et

+ αθ>(φt − φ̄πt )(et − φt)
)
. (30)

Theorem 5. The backward-view algorithm defined by (27),
(28), (29) and (30) is equivalent to the forward view defined
in (26).

The proof immediately follows from Theorem 3 and the
above derivation.

In the on-policy case, ρ = 1 eliminates the last term in the
∆θ update and results in the usual eligibility trace algo-
rithm for action values. On the other hand, λ = 0 always

eliminates the second term, because et = φt in that case.
As bt = πt in the on-policy case, the remaining terms in the
θ update coincide with the update of the Expected Sarsa al-
gorithm. With λ > 0, this algorithm becomes the summa-
tion Q(λ) by Rummery (1994). In addition, we think this is
also a proper implementation of the Expected Sarsa(λ) al-
gorithm in the sense that it has a corresponding equivalent
forward-view.

For the control case, if the target policy is greedy wrt
the action values, then φ̄πt = φ(st, a

∗), where a∗ =
argmaxa θ

>φ(st, a) and θ>φ̄πt+1 = maxa θ
>φ(st, a).

Note that the second term in the θ update is eliminated in
this case, because if the action at time t is greedy, then
φt = φ̄πt , and if the action is non-greedy, then ρt = 0 and
hence et = φi. In that case, the θ update becomes similar
to that of Watkin’s Q(λ) except that the eligibility trace in-
volves ρt, and there is an additional term (ρt − 1)ut. This
term is responsible for unmaking the right update when
a non-greedy action is taken, which is not done in Q(λ)
or any other off-policy control algorithms with eligibility
traces. Also note that, the terms in the θ update can be
rearrange in the following way:

∆θt = αδtφt + (ρt − 1)ut

+ α
(
Rt+1 + γt+1θ

>φ̄πt+1 − θ>φ̄πt
)

(et − φt) .
Now, if we drop all the ρt from the eligibility trace update
and drop the (ρt − 1)ut term from the θ update, then this
algorithm becomes Peng’s Q(λ). This similarity can also
be appreciated from the resemblance in backup diagrams
of both algorithms (for a backup diagram of Peng’s Q(λ),
see Sutton & Barto 1998). The main difference is that our
new Q(λ) algorithm weights the component backups with
important sampling ratios.

7. Conclusion and future work
We presented a new approach for deriving off-policy eli-
gibility trace TD algorithms, which is general and yields
new versions of both TD and Q-learning. The current pre-
sentation has focused on the case of fixed target policy and
linear function approximation. Convergence in the tabular
case should follow by simple application of existing theo-
retical results. However, when linear function approxima-
tion is used a gradient-based extension of these algorithms
may be required (cf. Maei 2011), but this extension seems
straightforward. Convergence in the control case has never
been established for any algorithms for λ > 0 and this re-
mains an open problem. We presented algorithms which
are exactly equivalent in the off-line case, when updates to
the parameter vector are applied at the end of a batch of
data. Equivalence to online updating, when θ is modified
at every time step, remains to be established. We note that
this result has not yet been provided even for usual TD(λ).



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

A New Q(λ)

References
Maei, H. R., Sutton, R. S. (2010). GQ(λ): A general gra-

dient algorithm for temporal- difference prediction learn-
ing with eligibility traces. In Proceedings of the Third
Conference on Artificial General Intelligence, pp. 91–96.
Atlantis Press.

Maei, H. R. (2011). Gradient Temporal-Difference Learn-
ing Algorithms. PhD thesis, University of Alberta.

Peng, J., Williams, R. J. (1994). Incremental multi-step Q-
learning. In Proceedings of the 11th International Con-
ference on Machine Learning, pages 226–232.

Precup, D., Sutton, R. S., Singh, S. (2000). Eligibility
traces for off-policy policy evaluation. In Proceedings of
the 17th International Conference on Machine Learning,
pp. 759–766. Morgan Kaufmann.

Precup, D., Sutton, R. S., Dasgupta, S. (2001). Off-policy
temporal-difference learning with function approxima-
tion. In Proceedings of the 18th International Conference
on Machine Learning, pp. 417–424.

Rummery, G. A. (1995). Problem Solving with Reinforce-
ment Learning. PhD thesis, Cambridge University.

Singh, S. P., Sutton, R. S. (1996). Reinforcement learning
with replacing eligibility traces. Machine Learning, 22:
123–158.

Sutton, R. S. (1988). Learning to predict by the methods of
temporal differences. Machine Learning, 3:9–44.

Sutton, R. S., Barto, A. G. (1998). Reinforcement Learn-
ing: An Introduction. MIT Press.

Watkins, C. J. C. H. (1989). Learning from Delayed Re-
wards. PhD thesis, Cambridge University.

Watkins, C. J. C. H., Dayan, P. (1992). Q-learning. Ma-
chine Learning, 8:279–292.


