A New Q(\)

Abstract

Q-learning, the most popular of reinforcement
learning algorithms, has always included an ex-
tension to eligibility traces to enable more rapid
learning and improved asymptotic performance
on non-Markov problems. The A parameter
smoothly shifts on-policy algorithms such as
TD(A) and Sarsa(\) from a pure bootstrapping
form (A = 0) to a pure Monte Carlo form (A =
1). In off-policy algorithms, including Watkins’s
Q(N), Peng’s Q()), and the recent GQ()), the A
parameter is intended to play the same role, but
does not; on every exploratory action these al-
gorithms bootstrap absolutely regardless of the
value of A, and as a result they never approxi-
mate pure Monte Carlo learning. It may seem
that this is inevitable for any online off-policy
algorithm; if updates are made on each step on
which the target policy is followed, then how
could just the right updates be ‘unmade’ upon
deviation from the target policy? In this paper,
we introduce a new version of Q(\) that does ex-
actly that, without significantly increased algo-
rithmic complexity. En route to our new Q(\),
we introduce a new derivation technique based
on the forward-view/backward view analysis fa-
miliar from TD()) but extended to apply at every
time step rather than only at the end of episodes.
We apply this technique to derive a new off-
policy TD()\) and then our new Q(\).

1. Off-policy eligibility traces

Eligibility traces (Sutton 1988, Singh & Sutton 1996) are
the mechanism by which temporal-difference (TD) algo-
rithms such as Q-learning (Watkins 1989) and Sarsa (Rum-
mery 1995) escape the tyranny of the time step. In their
simplest, one-step forms, these algorithms pass credit for
an error back to only the single state preceding the error.
If the time step is short, then the backward propagation of
accurate values can be quite slow. With traces, credit is
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passed back to multiple preceding states, and learning is
often significantly faster.

In on-policy TD algorithms with traces, such as TD()) and
Sarsa()\), the assignment of credit to previous states fades
for more distantly preceding states according to the prod-
uct of the bootstrapping parameter A € [0,1]. If A = 1,
then the traces fade maximally slowly, no bootstrapping is
done, and the resulting algorithm is called a Monte Carlo
algorithm because in the limit it behaves almost exactly as
if learning was to the complete observed return. If A = 0,
then the one-step form of the algorithm is recovered.

Many off-policy TD algorithms also use traces, but less
successfully. Watkins’s (1989) Q(X), for example, assigns
credit to preceding state—action pairs, fading with tempo-
ral distance, but only up until the last non-greedy action.
If exploratory actions are common, then the traces rarely
last very long. In part to redress this, Peng’s (1993) Q())
never cuts the traces, but fails to converge to the optimal
value function and still involves bootstrapping irrespective
of A. A more important problem with Watkins’s Q()) is
that it bootstraps (updates its estimates from other esti-
mates) whenever an exploratory action is taken. GQ(\)
(Maei & Sutton 2010) and GTD()\) (Maei 2011) extend
Q(A) to function approximation in a sound way and han-
dle off-policy learning more generally, but have essentially
the same weakness: when the action taken deviates from
the target policy they all cut off their traces and bootstrap.
One consequence is that none of these algorithms can ap-
proximate Monte Carlo algorithms. More generally, the
degree of bootstrapping cannot be set by the user (via \)
independently of the actions taken.

It might seem impossible for an online off-policy TD algo-
rithm to do anything other than bootstrap when the action
taken deviates from the target policy. By the time of devia-
tion many online updates have already been made, but the
deviation means the subsequent rewards cannot be counted
as due to the target policy. The right thing to do, if A = 1,
is to somehow undo the earlier updates, but this has always
seemed impossible to do online without vastly increasing
the computational complexity of the algorithm. In this pa-
per we show that, surprisingly, it can be done with very
little additional computation. In the case of linear function
approximation, one additional vector is needed to hold pro-
visional weights, the portion of the main weights that may
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need to be removed upon deviation, or otherwise adjusted
based on the degree of match to the target policy.

A key part of previous analyses of eligibility traces has
been the notion of a forward view specifying the ideal up-
date in terms of future events (Sutton & Barto 1998, Chap-
ter 7). It can then sometimes be shown that a causal al-
gorithm (a backward view) is mathematically equivalent in
its overall effect to the forward view. Our first contribu-
tion is to introduce a new notion of “interim” forward view
for general off-policy learning and for arbitrary A and ~
that are not just parameters but general functions of state.
Our second contribution is a powerful technique for ana-
Iytically deriving new TD algorithms that are equivalent to
interim forward views. We first illustrate the technique by
using it to show that conventional TD()) is equivalent to the
on-policy special case of the interim forward view (itself a
new result), then use it to derive and prove the equivalence
of a new off-policy TD()) algorithm. Finally, we intro-
duce an interim forward view for action values and use it
to derive and prove equivalence of our new Q()\). Like the
original equivalences, ours are exact for offline updating
and approximate for online updating. Our algorithms are
all described in terms of linear function approximation but,
like the original Q-learning, they are guaranteed conver-
gent only for the tabular case; the extension to gradient-TD
methods seems straightforward but is left to future work.

2. A general off-policy forward view

We consider a continuing setting in which an agent and
environment interact at each of a series of time steps,
t =0,1,2,.... Ateach step ¢, the environment is in state
S; and generates a feature vector ¢(S;) € RY. The agent
then chooses an action A, from a distribution defined by its
fixed behavior policy b(-|St) (the only influence of S; on b
is typically assumed to be via ¢(.S; ), but we do not enforce
this). The environment then emits a reward R;;; € R and
transitions to a new state Sy 1, and the process continues.
The next state and reward are assumed to be chosen from a
joint distribution that depends only on the preceding state
and action (the Markov assumption). We first consider the
problem of finding a weight vector 8 € R? such that

oo

t
> Ren [T(Se)
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0'p(s) ~E,

So = s] (1)

in some sense (for some norm), where the expectation is
conditional on actions being selected according to an al-
ternative policy , called the zarget policy, and ~(-) is an
almost arbitrary function from the state space to [0, 1]. We
will refer to ~(+) as the termination function because when
it falls to zero it terminates the quantity whose expecta-
tion is being estimated. The only restriction we place on
the termination function (and on the environment) is that

[Toco v(Si+x) = 0 w.p.1, Vt.

If the two policies are the same, m = b, then the setting
is called on-policy. If w # b, then we have the off-policy
case, which is harder. In general, = and b may also vary
over time, e.g. in the case of control algorithms which rely
on soft exploration. Normally it is assumed that the behav-
ior policy b overlaps the target policy 7 in the sense that
w(als) > 0 = b(al]s) > 0. At each time ¢ the degree
of deviation of the target policy from the behavior policy
is captured by the importance-sampling ratio (Precup et al.
2000, 2001):
7(A¢| St)

= Doy, 2
Pt B(ALS) @

It is awkward to seek the approximation (1) from data in the
off-policy case because the expectation is under = whereas
the data is due to b. Some actions chosen by b will match
7, but not an infinite number in succession. This is where
it is useful to interpret v(-) as termination rather than as
discounting. That is, we consider any trajectory, for exam-
ple, So, Ao, R1, 51, A1, Re, So, As, Rs, ... as having ter-
minated partly after one step, at Sy, with degree of termina-
tion 1 —~(S1), yielding a return of Ry, and partly after two
steps, at S, with degree of termination v(S1)(1 — v(S2)).
yielding a return of R; + Rj. The third partial termination
would have a degree of termination of 12 (1 —3) (where
here we have switched to the shorthand v; = ~(.S;)) and
yield a return of R; + Ry 4+ R3. Notice how in this par-
tial termination view we end up with undiscounted, or flat,
returns with no factors involving ~y(+) in them. More impor-
tantly, we get short returns that have actually terminated, to
various degrees, after each finite number of steps, rather
that having to wait for the infinite number of steps to get a
return as suggested by the discounting perspective.

Now consider the off-policy aspect and the role of the
importance-sampling ratios. The first return, consisting of
just Rq, need to be weighted not just by its degree of ter-
mination, 1 — ~1, but also by the importance sampling ratio
po. This ratio will emphasize or de-emphasize this return
depending on whether the action Ag was more or less com-
mon under 7 than it is under b. If it was an action that
would rarely be done under the target policy 7 and yet is
in fact common (under the behavior policy b) then this in-
stance of it will be discounted proportionally to make up
for its prevalence. If it would be common under the tar-
get policy but is rare (under the behavior policy) then its
weighting should be pumped up proportionally to balance
its infrequency. The overall weight on this return should
then be the product of the degree of termination and the
importance sampling ratio, or pg(1 — 71). The weight-
ing of the second return, Ry + R, will depend on its de-
gree of termination, 1 (1 — 72) times the product of two
importance sampling ratios, ppp;. The first takes into ac-
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Figure 1. The complex backup for an off-policy Monte Carlo al-
gorithm, illustrating weighting by degree of termination and de-
gree of match of target and behavior policies. Also illustrated is
the notion of an interim forward view, going only up to horizon ¢,
at which time full bootstrapping is done. The component backups
all use flat returns without discounting.

count the match of the target and behavior policies for Ag,
and the second takes into account the match of the poli-
cies for A;. The overall weighting on the second term is
pov1p1(1—72). Continuing similarly, the weighting on the
third flat return, Ry + Ra + R3 is poy1p172p2(1 — 73).

These weights and the backup diagrams for these three re-
turns are shown in the first three columns of Figure 1. This
is the standard way of diagramming a “complex” backup—
a backup composed of of multiple sub-backups, one per
column, each done in parallel with the weighting written
below them (Sutton & Barto 1998, Chapter 7). An impor-
tant difference, however, is that here the composite backups
all use flat backups, without discounting or embedded ter-
mination, whereas Sutton and Barto always include a scalar
~ implicit in their backup diagrams. The last column of
the diagram is another small innovation. This backup is
an interim forward view, meaning that it looks ahead not
infinitely, but only out to some finite horizon time ¢. The
horizon could be chosen arbitrarily far out in the future, so
in this limiting sense interim forward views are a general-
ization of conventional forward views. Normally, however,
we will be choosing the horizon far short of infinity. Nor-
mally we will chose ¢ to be something like the current limit
of available data—the current time. Interim forward views
are used to talk about the updates that could have been
done in the past using all the data up to the current time.
Note that this last backup is to a state rather than termina-
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Figure 2. The complex backup for the new off-policy TD()\)
shows the weighting on each component n-step backup, using flat
returns.

tion. According to the convention of backup diagrams, this
means that bootstrapping using the current approximation
is done at time .

Next we introduce bootstrapping into our general forward
view. We follow Sutton and Barto (1998, Section 7.10) and
generalize the conventional scalar \ parameter to an arbi-
trary bootstrapping function A(-) from the state space to
[0, 1]. The bootstrapping factor at time ¢, Ay = A(S;), rep-
resents the degree of bootstrapping upon arrival in Sy, just
as the termination factor v; = ~y(S;) represents the degree
of termination upon arriving there. The new backup dia-
gram is shown in Figure 2. Each terminating sub-backup
of the Monte Carlo backup in Figure 1 has been split into
a terminating sub-backup and a bootstrapping sub-backup.
Each sub-backup is a way in which the return can finish and
no longer be subject to reweightings based on subsequent
importance sampling ratios. The overall backup is best read
from left to right. In the first two columns, the return can
terminate in S; with a weighting of po(1 — ~1), yielding a
return of just R; or, to the extent that that does not occur,
it can bootstrap in S; yielding a return of Ry + 0 T¢(S)).
Bootstrapping can only be done to the extent that there was
no prior deviation, pg, or termination, ~y;, and only to the
extent that \; is less than 1; the overall weighting is thus
py1(1 — A1). To the extent that neither of these occur we
go on similarly to the two-step sub-backups, which yield
returns of Ry + Ry or Ry + Ry + 0 T¢p(Ss) respectively
if they apply, or we go on to the three-step sub-backups,
and so on until we reach the last bootstrapping sub-backup
at the horizon, at which bootstrapping is complete as if
A¢ = 1, yielding a return of Ry + --- + R; + 0o(S;)
with weighting poy1 A1 -+ - Ade—1pt—1%-
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There is one final important issue before we can reduce
these ideas and backup diagrams to equations. The preced-
ing discussion has suggested that there is a total amount of
weight that must be split up among the component backups
of the complex backup. This is not totally incorrect. The
expectation of the total weight along a trajectory is always
one by construction, but the total weight for sample trajec-
tory will often be significantly larger or smaller than one.
This is entirely caused by the importance sampling ratios.
Previous complex backups, including off-policy ones like
Q-learning, have not had to deal with this issue. We deal
with it here by switching from viewing the backup diagram
as a way of generating a refurn to a way of generating an
error. We will compute the weighting and then use it to
weight the complete error rather than just the return por-
tion of the error. This change does not affect the expected
update of the algorithm, but we believe that it significantly
reduces the average variance (Precup et al. 2001).

As an example of the issue, consider a case where the
first action substantially deviates from the target policy, say

= 0.01, and then terminates, y; = 0. This yields a
return of just 0.01 - ;. Conversely, suppose the first ac-
tion strongly matches the target policy with pg = 10 and
then termination occurs. This yields a target of 10 - R;. If
we view the weighting as on these returns, then the errors
0.01-R;—0 T (Sp) and 10- R, — 0 "¢p(S,) we will move the
estimate 8 '¢(Sp) in one case toward nearly zero and in the
other case towards a potentially large number, even if R; is
the same in the two cases. If instead we view the weighing
as on the errors, then both errors will be Ry — 0 T¢p(Sy),
only one will be weighted by 0.01 and the other by 10.
The updates will be different sizes, but not gratuitously in
different directions. This specific example is contrived of
course, with termination after just one step, but widely dif-
fering weightings are in fact not at all atypical here due to
the products of multiple importance-sampling ratios.

In our complex backup (Figure 2) there are two kinds of
sub-backups. The first, ending with a terminal state, corre-
sponds to an n-step error without bootstrapping:

&) = Ryg1 + Ripo + -+ Risn —070(S)). (3)

The second sub-backup of each pair, ending with a non-
terminal state, corresponds to an n-step flat TD error, that
is, an n-step error with bootstrapping but no discounting or
termination:

5(")

R+ + Ripn+0¢(Siin) —070(Sy). (4)

Using these, the overall error corresponding to the forward
view in Figure 2, which we denote 6, can be written com-
pactly as a nested sum of pairs of terms, each correspond-

ing to a sub-backup of the figure:

86+ =po [(1 — e (1= A8

+ Y1 A1p1 {(1 - 72)68 )4 Y2(1 — /\2)5

+ Y2A2p2 {(1 - ”/3)65)3) +73(1 — )\3)5(()3)

+ -1 A—1Pe-1 [(1 - %)6((;) + 'Yt(s(()t)]}H

=poy_ Dy ((1 —n)ed” + (1 - AZ)&()”)) :

n=1

where \! is syntactic sugar for )\, except for n = t, in
which case it is defined to be 0. We denote D(()nfl) =
[T7= 7iAips. Note that in general D{” = 1 and

DI =y hep1pe1 D Y. o)

3. Analysis of the forward view

In this section we analyze and present several formal results
for the general forward view. Some of these will be used
to simplify computations later and some are of independent
interest. First, we define

b: = d(St) (6)
6 = Riv1 + 7410 "prs1 — 0"y @)

and note the following obvious but useful identities:

5 = eV 4 y10T (8)
5" = (n)+9T¢t+n )
R A S  SUNIMIN 1)
¢’ = qnV+8) ="+l A

Using these, we can rewrite d; , (forany 0 < k < t)ina
useful recursive form:

t—k

Ot = Pk Z DY ( 0 4 Y8  Prgn — %MAZM&"@Z)

n=1

= 0k — PE Vet b 1105
t—k

+ o D Weri s e DY (’7k+n9T¢k+n

n=2

+ 6k+11> + 5<1) - ”Yk+n>‘k+n(5l(:r1l) + S’(cl)))

= Pk (5k + 7k+1)\z+15£+17t + Vet 1 M eg1 (Crge — 1)5,9)
(13)
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where:
t—k
Cre = Z D" V(1 = Vs M) (14)
n=1
t—k n—1
= Y (= YernMn) [] verireropnsd15)
n=1 i=1

We now show that the on-policy forward-view of TD(\)
with general v and ) is a special case of the off-policy
TD(\) forward view.

Lemma 1. IfV], p; =1, then: Cj,x = 1,Vk < t,t

Proof. Because p; = 1,VI, we have: Cr, = S0 7% (1 —

n=1
VitnNosn) = YitiNj - It is easy to prove by induc-
tion that:

t—k
Ck,t =1- H ’Yk+n)\2+n
n=1
Because ! = 0 by definition, Cj, ; = 1. O

We now show that this algorithm is the same as usual TD()\)
in the on-policy case. Let 8} = lim;_, o 0}, . Recall that the
on-policy forward-view update of TD()) can be written as

adpor = a(Gy — 0"y oy, (16)

where the \-return, Gﬁ is defined recursive as (Maeli,
2011):

Gp=Ris1 4741 (1= Xeg1)0 T drrn + Me1Gryy) -
so the on-policy forward-view error can be written as
5p =G — 0" D0k + 1 ki1 (Ghyr — 0 i)
=0k + Vi1 Ak+10041- (17)

Theorem 1. If p; = 1 VI, then the forward-view (12) is
equivalent to the on-policy forward-view update of TD(\)
defined in (16).

Proof. If p; = 1 VI, from (13) and Lemma 1 taking the
limit as ¢ — oo,we have:

O = Ok + k1 Mer10p -

Hence, the two forward-view updates coincide. O

We now briefly examine the correctness of the off-policy
algorithm.

Lemma 2. E,[C} ;] = 1.

Proof. Follows immediately from the definitions of p and
C,+ and Lemma 1. O

Theorem 2. Let b and 7 be the behavior and the target
policies, respectively. Then, in expectation, the off-policy
forward-view (13) under the behavior policy achieves the
on-policy forward-view (16) under the target policy, that
is,

Ep, {(Sz,td)k} =E, [&?,t@bk] :

Proof. Follows immediately from (13), Lemma 2 and
Eqs.(17). O]

4. Interim equivalence of forward and
backward views

Based on the forward view defined in Sec. 2 and its general
form (13), the ideal forward-view update at time k£ given
only the portion of the trajectory up through S;, AGF 10 18
given by:

Al;, = ady b, (18)

We now introduce an interim equivalence technique for
deriving an equivalent backward-view algorithm from a
forward-view algorithm. If the weight vector is held at 6,
it follows then that the ideal (off-line) forward-view weight
vector, given only the data up through S, is

t—1
0; =0+ A6,
k=0

and that the corresponding ideal update, from ¢ to ¢ + 1, is
t t—1
Al = t*+1 —-0; = ZAO&H - ZAGZ,r
k=0 k=0

Hence, one should simply work from the equation above to
derive the backward-view update:

t t—1
ABP =D "AOL ., — D A6, (19)
k=0 k=0

We now prove that the backward view obtained this way is
equivalent to the forward view. This will be the cornerstone
of all eligibility trace algorithms presented in the rest of the
paper.

Theorem 3. The total update generated by any backward
view derived using (19) is equivalent to the total forward
update up to time t:

t—1 t—1
VEY AP =D A6,
k=0 k=0

Proof: 3, 4 A6F = Y ((6i — 6;) = 6f — 60 =
S0 A6y O
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We now illustrate how this interim equivalence technique
can be applied to derive a backward view for the on-policy
TD(\) with general v and A\. The forward-view of on-
policy TD(A) with general v and A can be defined as

AO;, = adp . (20)

The truncated on-policy A-TD error with general v and A,
57 4» is obtained by setting all p = 1in (13), and taking into
account Lemma 1, as:,

A ¢ o
Okt = Ok + Vi1 Ak 10k 41 ¢

To derive the backward view for the on-policy TD()) with
general v and A\, we can write:

t t—1 t t—1
1
a (Z INTIREDY A9£t> =D e Br = D R
k=0 k=0 k=0 k=0

i1
=01y + Z (62,t+1 - 52,t) Pk
k=0
=1
Oy + Z Vi1 A a1 (5l/c\+1,t+1 - 51/f\+1,t) P
k=0
-1

0rpr + Z
k=

S

t—1
= 0+ Z (
k=0

drey,

t—k—1
H ’Yk+z>\k+z

=1

t—k—1

H k+z>‘k+z

=1

A A
) 5t—1,t+1 - 5t—1,t)

> Ve Ok P

where we define e; (the eligibility trace vector) as:

t—1 t—k
e, = @+ Z (H ’Yk+i>\§g+i> ol
k=0 \i=1
t—2 ft—k—1
= ¢y +mM <¢)t1 + ( H ’Vk+z)\k+z> k)
k=0 \ i=1
= ¢+ er-1.
Therefore,
t—1
AGF = ZAOk 1= A6 =ade,  (21)
k=0 k=0

which is the on-policy backward view update of TD()\)
with general v and \. Note that, for constant v and A, this
update becomes the conventional on-policy backward view
update of TD(\).

5. Derivation of a New TD()\)

We now use the same interim equivalence technique to de-
rive our new off-policy TD(\) backward-view algorithm,

starting from the forward view (12):

6p, = puDyF Y ((1 e +%51(f7k))
t—k—1
n—1 n <(n
+ Z p/cD,(C )((1 - %Jrn)f,(c ) Y (1 — )\k+n)5l(c )>-
n=1

Using (8), (10) and (11), we can write it recursively as

5;2@ = PkD;(Ctikiw(Stfl + pk%f1)\t71pt71D£t7k72)5;it7k71)

_ pkrytil)\tilD(t—k—Q)S(t—k—l)
t—k—1

+ oDy ((1 —v-1)e, T+ 'ytflgl(:ikil))
t—k—2 _
+ Z PkD;(cnfl) ((1 — Yetn)€k + Vetn(l — /\k+n)51(cn))
n=1

= 6Z,t—1 + PkD£7k715t—1

+ (pt—1 — 1)'yt71)\#1ka2719—25}(:71@71)'
The forward-view update at k, given only the data up

through Sy, is
Aelf,t = ady  Pr. (22)

Then to derive the backward view, we can use the same
Dk technique that we developed in the previous section and

write:
1 t t—1
- <Z e A0§t>
k=0 k=0
t—1
= 5f,t+1¢t + Z [5Z,t+1 - 5Z,t] Pr
k=0
= pids ¢y
t—1 -
+ Z [ka;(:_k)at + (ot — 1)7t/\thD;it_k_1)5;(:_k)} Pk
k=0

= 0rer + (pr — Dy

We define e; as

t—1
e =pids + Z PkD;({;tik)Qbk

k=0
t—2
= pr@r + Ve Aepe (Pt1¢t1 +y PkD;(:kl)qbk)
k=0
=pi (s + Ve Aver—1), (23)
and u; as
-1 )
w = WA Z kalit—k—l)(;]it—k)qbk
k=0

t—2

T Vi Z kal(Ct—k—2)5](€t—k—1)¢k
k=0

Vet (
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t—2
+ Z ﬂkD;(fikil)gt(i)lfﬁk + Pt—15t(i)1 ¢t—1>
k=0
= "M (ptflutfl + gﬁ)letq) .

Let us redefine u; = au;. Then we can write
U = Ve (ptflutfl + agﬁ)letfl) . (24)

Then the off-policy backward-view update of TD(\) with
general v and A can be written as

t—1

t
ABP = AOf, ., — Y A6, =adie, + (pr — Duy. (25)

k=0 k=0

Note that, for p, = 1 V¢, the last term in the weight up-
date (25) is eliminated, and this algorithm becomes the on-
policy TD()\) update with general v and .

Theorem 4. The backward view algorithm defined by (23),
(24) and (25) is equivalent to the forward-view defined in
(22).

Proof. The proof follows from Theorem 3 and the above
derivation. O

6. Derivation of a new Q()\)

We now extend the off-policy forward-view for action
value estimation. Here, we consider a given target policy,
although the algorithm readily extends to the case of con-
trol, by considering the target policy to be changing with
time, for example, greedy with respect to the current ac-
tion value estimates. We assume that feature vectors are
now defined over state action-pairs, rather than states. The
learning problem is to find a parameter vector 6 such that:

07p(s,a) ~ E, [G?‘St — 5, A = a} :

As before, for brevity we denote ¢p; = ¢(S¢, A¢). The in-
tuition for the forward view is given in Fig. 3. This is the
same as Fig. 2 with two differences: trajectories start with
state-action pairs, and at the end, bootstrapping is done us-
ing the value of the state (considering all possible actions
that the target policy may follow from then on):

Z 7(alSe+1)0 @ (Sit1,a) = 0@ 4,

where we denote by ¢F = >, m(a|S;)P(S,a) the ex-
pected feature under policy .

Let eE") be the n-step undiscounted, uncorrected error
and we redefine J;, the usual TD-error for action values.
. 1 —

Hence, it follows that §, = e,i) + 'kaHT(;SZH and

e 0T =G el Y 4 0T

Then following the intuition in Sec. 2, we redefine the
forward-view TD error of the Q-value function as below:

—k— —k i
5Z7t = Dl(ct 1)(61(: ) + 'YtOT‘bt )
t—k—1
3 D e

n=1

+ Yetn (1 — >\k+n)9T<7_5£+n} .

We can write 5,@775 recursively as

5= {5
+ 7t—1>\t—1pt—1D;(:_k_2) (01— 0P} )
+ ’Yt—l)\t—lpt—lDl(:_k_Q) egct_k_l) + OTq_&f_l)
- 'Yt—1/\t—1D;(ctik72) (61(:%71) + 9T&’f—1>

+ Dt=k=2) (e;fﬁkil) + %—10—'—&5?71)
t—k—2
n—1 n
+ Z Dy )[(1 — Y Akn ey

n=1

+ Y (1 — Ak+n)0T&)Z+n:|
=00, + DY V6 + DTV (¢4 - $7y)
+ (pr—1 — 1)’Yt—1)\t—1D;(:_k_2) (Egct_k_l) + 9—%?—1) .

The forward-view update at k, given only the data up
through S;, is given as before by:

Ab}, = adl ¢y (26)

Using the interim equivalence analysis technique, we can
derive the backward view as follows:

t t—1
1
T PORTAES oV
k=0 k=0
t—1
=00 10t + Z [5£,t+1 - 51@,4 Pr
k=0

t—1 t—1
=8+ Y DY Mo+ > DYV (¢ — 7)o

k=0 k=0
t—1 B
+ (o= Dyede DDV + 0707 )
k=0

=de +07 (e — &F) (€1 — p1) + (pr — Duy.
where we define e; as:

t—1

e = ¢t ZDl(ct_k)qsk = @1+ vAiper—1,
k=0
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Figure 3. Weighting of Q(\) backups

and u; as

t—1
Uy =Y A Z D;(:_k_l) (E;(;_k) + OT(ZE?) b
k=0

t—2
=7\t (Pt—l%—1)\t—1 Z D,(thk’z) (61(:*’9*1)
k=0
* aqull)qsk * (Rt +0'¢7 -7 tfl) Di—1

t—2
i ZDl(ct_k_l) (Rt T GT(mr _ qugzr_l) (f)k)
k=0

=Y\ (ptflutfl + (R + BT? -0 t—1)€t—1

+07 (i1 — O7 1) (€11 — ¢t71)>~

We redefine u; = au;. From this backward view, a new
off-policy Q(\) algorithm can be obtained. For any time ¢,
the incremental updates of the new off-policy Q()) are:

8=Rys1 + 71110 @F 1 — 0/, 27)

er=¢; + e eprer_1 (28)
AB,=abie; + B (P — dF)(er — b1) + (pr — 1ud29)
Ut g 1=Y+1 A 141 (Ptut + (Rt + 0@ — 07y )e,

+ a8 (¢ — &) (er — 1)) (30)

Theorem 5. The backward-view algorithm defined by (27),
(28), (29) and (30) is equivalent to the forward view defined
in (26).

The proof immediately follows from Theorem 3 and the
above derivation.

In the on-policy case, p = 1 eliminates the last term in the
A0 update and results in the usual eligibility trace algo-
rithm for action values. On the other hand, A = 0 always

eliminates the second term, because e; = ¢, in that case.
As b, = m; in the on-policy case, the remaining terms in the
6 update coincide with the update of the Expected Sarsa al-
gorithm. With A > 0, this algorithm becomes the summa-
tion Q(A) by Rummery (1994). In addition, we think this is
also a proper implementation of the Expected Sarsa()) al-
gorithm in the sense that it has a corresponding equivalent
forward-view.

For the control case, if the target policy is greedy wrt
the action values, then ¢7 = ¢(s¢,a*), where a* =
argmax, 0 '¢(s;,a) and 07¢T, ; = max, 0 P(s;, a).
Note that the second term in the 8 update is eliminated in
this case, because if the action at time ¢ is greedy, then
¢; = @7, and if the action is non-greedy, then p; = 0 and
hence e; = ¢;. In that case, the 8 update becomes similar
to that of Watkin’s Q()) except that the eligibility trace in-
volves p;, and there is an additional term (p; — 1)u;. This
term is responsible for unmaking the right update when
a non-greedy action is taken, which is not done in Q(\)
or any other off-policy control algorithms with eligibility
traces. Also note that, the terms in the @ update can be
rearrange in the following way:

A, = adipy + (pr — 1)uy
+a (Resr + 7410 ¢, — 0707 (er — @) .

Now, if we drop all the p; from the eligibility trace update
and drop the (p; — 1)u; term from the € update, then this
algorithm becomes Peng’s Q(\). This similarity can also
be appreciated from the resemblance in backup diagrams
of both algorithms (for a backup diagram of Peng’s Q(\),
see Sutton & Barto 1998). The main difference is that our
new Q(A) algorithm weights the component backups with
important sampling ratios.

7. Conclusion and future work

We presented a new approach for deriving off-policy eli-
gibility trace TD algorithms, which is general and yields
new versions of both TD and Q-learning. The current pre-
sentation has focused on the case of fixed target policy and
linear function approximation. Convergence in the tabular
case should follow by simple application of existing theo-
retical results. However, when linear function approxima-
tion is used a gradient-based extension of these algorithms
may be required (cf. Maei 2011), but this extension seems
straightforward. Convergence in the control case has never
been established for any algorithms for A > 0 and this re-
mains an open problem. We presented algorithms which
are exactly equivalent in the off-line case, when updates to
the parameter vector are applied at the end of a batch of
data. Equivalence to online updating, when 6 is modified
at every time step, remains to be established. We note that
this result has not yet been provided even for usual TD(\).
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