
6.1. TD PREDICTION 131

TD(0)

The diagram to the right is the backup diagram for tabular TD(0). The
value estimate for the state node at the top of the backup diagram is up-
dated on the basis of the one sample transition from it to the immediately
following state. We refer to TD and Monte Carlo updates as sample back-
ups because they involve looking ahead to a sample successor state (or
state–action pair), using the value of the successor and the reward along
the way to compute a backed-up value, and then changing the value of the
original state (or state–action pair) accordingly. Sample backups di↵er from the full
backups of DP methods in that they are based on a single sample successor rather
than on a complete distribution of all possible successors.

Finally, note that the quantity in brackets in the TD(0) update is a sort of error,
measuring the di↵erence between the estimated value of St and the better estimate
Rt+1+�V (St+1). This quantity, called the TD error, arises in various forms through-
out reinforcement learning:

�t
.
= Rt+1 + �V (St+1) � V (St). (6.5)

Notice that the TD error at each time is the error in the estimate made at that time.
Because the TD error depends on the next state and next reward, it is not actually
available until one time step later. That is, �t is the error in V (St), available at time
t + 1. Also note that if the array V does not change during the episode (as it does
not in Monte Carlo methods), then the Monte Carlo error can be written as a sum
of TD errors:

Gt � V (St) = Rt+1 + �Gt+1 � V (St) + �V (St+1) � �V (St+1) (from (3.3))

= �t + �
�
Gt+1 � V (St+1)

�

= �t + ��t+1 + �2
�
Gt+2 � V (St+2)

�

= �t + ��t+1 + �2�t+2 + · · · + �T�t�1�T�1 + �T�t
�
GT � V (ST )

�

= �t + ��t+1 + �2�t+2 + · · · + �T�t�1�T�1 + �T�t
�
0 � 0

�

=
T�1X

k=t

�k�t�k. (6.6)

This identity is not exact if V is updated during the episode (as it is in TD(0)), but
if the step size is small then it may still hold approximately. Generalizations of this
identity play an important role in the theory and algorithms of temporal-di↵erence
learning.

Exercise 6.1 If V changes during the episode, then (6.6) only holds approximately;
what would the di↵erence be between the two sides? Let Vt denote the array of state
values used at time t in the TD error (6.5) and in the TD update (6.2). Redo the
derivation above to determine the additional amount that must be added to the sum
of TD errors in order to equal the Monte Carlo error.

Example 6.1: Driving Home Each day as you drive home from work, you try to
predict how long it will take to get home. When you leave your o�ce, you note the

7.1. N -STEP TD PREDICTION 155

where T is the last time step of the episode. Let us call this quantity the target of
the backup. Whereas in Monte Carlo backups the target is the return, in one-step
backups the target is the first reward plus the discounted estimated value of the next
state, which we call the one-step return:

G(1)
t

.
= Rt+1 + �Vt(St+1),

where Vt : S ! R here is the estimate at time t of v⇡, in which case it makes sense
that �Vt(St+1) should take the place of the remaining terms �Rt+2 + �2Rt+3 + · · · +
�T�t�1RT , as we discussed in the previous chapter. Our point now is that this idea
makes just as much sense after two steps as it does after one. The target for a
two-step target is the two-step return:

G(2)
t

.
= Rt+1 + �Rt+2 + �2Vt+1(St+2)

= Rt+1 + �G(1)
t+1,

where now �2Vt+1(St+2) corrects for the absence of the terms �2Rt+3 + �3Rt+4 +
· · · + �T�t�1RT . Similarly, the target for an arbitrary n-step backup is the n-step
return:

G(n)
t

.
= Rt+1 + �Rt+2 + · · · + �n�1Rt+n + �nVt+n�1(St+n) (7.1)

= Rt+1 + �G(n�1)
t+1 , n > 1, 0  t < T � n. (7.2)

All the n-step returns can be considered approximations to the full return, truncated
after n steps and then corrected for the remaining missing terms by Vt+n�1(St+n).
If t + n � T (if the n-step return extends to or beyond termination), then all the
missing terms are taken as zero and the n-step return defined to be equal to the

ordinary full return (G(n)
t

.
= Gt if t + n � T ).

Note that n-step returns for n > 1 involve future rewards and value functions that
are not available at the time of transition from t to t + 1. No real algorithm can use
the n-step return until after it had seen Rt+n and computed Vt+n�1. The first time
these are available to be used is t+n. The natural algorithm for using n-step returns
is thus

Vt+n(St)
.
= Vt+n�1(St) + ↵

h
G(n)

t � Vt+n�1(St)
i
, 0  t < T, (7.3)

while the values of all other states remain unchanged, Vt+n(s) = Vt+n�1(s), 8s 6= St.
We call this algorithm n-step TD. Note that no changes at all are made during the
first n � 1 steps of each episode. To make up for that, an equal number of addition
updates are made at the end of the episode, after termination and before starting
the next episode. Complete pseudocode is given in the box on the next page.

Exercise 7.1 In Chapter 6 we noted that the Monte Carlo error can be written
as the sum of TD errors if the value estimates don’t change from step to step (6.6).
Show that the n-step error used in (7.3) can also be written as a sum TD errors
(again if the value estimates don’t change) generalizing the earlier result.

156 CHAPTER 7. MULTI-STEP BOOTSTRAPPING

n-step TD for estimating V ⇡ v⇡

Initialize V (s) arbitrarily, s 2 S

Parameters: step size ↵ 2 (0, 1], a positive integer n
All store and access operations (for St and Rt) can take their index mod n

Repeat (for each episode):
Initialize and store S0 6= terminal
T  1
For t = 0, 1, 2, . . . :
| If t < T , then:
| Take an action according to ⇡(·|St)
| Observe and store the next reward as Rt+1 and the next state as St+1

| If St+1 is terminal, then T  t + 1
| ⌧  t� n + 1 (⌧ is the time whose state’s estimate is being updated)
| If ⌧ � 0:

| G 
Pmin(⌧+n,T )

i=⌧+1 �i�⌧�1Ri

| If ⌧ + n < T , then: G G + �nV (S⌧+n) (G(n)
⌧ )

| V (S⌧ ) V (S⌧ ) + ↵ [G� V (S⌧ )]
Until ⌧ = T � 1

Exercise 7.2 (programming) With an n-step method, the value estimates do
change from step to step, so an algorithm that used the sum of TD errors (see
previous exercise) in place of the error in (7.3) would actually be a slightly di↵erent
algorithm. Would it be a better algorithm or a worse one? Devise and program a
small experiment to answer this question empirically.

The n-step return uses the value function Vt+n�1 to correct for the missing rewards
beyond Rt+n. An important property of n-step returns is that their expectation is
guaranteed to be a better estimate of v⇡ than Vt+n�1 is, in a worst-state sense. That
is, the worst error of the expected n-step return is guaranteed to be less than or
equal to �n times the worst error under Vt+n�1:

max
s

���E⇡

h
G(n)

t

���St =s
i
� v⇡(s)

���  �n max
s

���Vt+n�1(s)� v⇡(s)
���, (7.4)

for all n � 1. This is called the error reduction property of n-step returns. Because
of the error reduction property, one can show formally that all n-step TD methods
converge to the correct predictions under appropriate technical conditions. The n-
step TD methods thus form a family of sound methods, with one-step TD methods
and Monte Carlo methods as extreme members.

Example 7.1: n-step TD Methods on the Random Walk Consider using
n-step TD methods on the random walk task described in Example 6.2 and shown
in Figure 6.2. Suppose the first episode progressed directly from the center state,
C, to the right, through D and E, and then terminated on the right with a return
of 1. Recall that the estimated values of all the states started at an intermediate


