Finally, note that the quantity in brackets in the TD(0) update is a sort of error,
measuring the difference between the estimated value of S; and the better estimate
Ri41+79V (S¢4+1). This quantity, called the T'D error, arises in various forms through-
out reinforcement learning:

6t = Rt+1 + ’YV(SH_:[) - V(St) (65)

Notice that the TD error at each time is the error in the estimate made at that time.
Because the TD error depends on the next state and next reward, it is not actually
available until one time step later. That is, d; is the error in V(.S;), available at time
t 4+ 1. Also note that if the array V' does not change during the episode (as it does
not in Monte Carlo methods), then the Monte Carlo error can be written as a sum
of TD errors:

Gy —V(St) = Riv1 +7Gev1 — V(Sy) + vV (Se41) — YV (Se41) (from (3.3))
=6 +7(Geg1 — V(Se41))
=6 + Y01 + 72 (Grya — V(Si42))
= 0 + Y0441 + 725t+2 +--+ ’YT7t715T—1 + ’YTft(GT - V(ST))
=0t + Y01 + V02 + -+ o + 470 - 0)

T—1
=) A (6.6)
k=t

This identity is not exact if V' is updated during the episode (as it is in TD(0)), but
if the step size is small then it may still hold approximately. Generalizations of this
identity play an important role in the theory and algorithms of temporal-difference
learning.

Exercise 6.1 If V changes during the episode, then (6.6) only holds approximately;
what would the difference be between the two sides? Let V; denote the array of state
values used at time ¢ in the TD error (6.5) and in the TD update (6.2). Redo the
derivation above to determine the additional amount that must be added to the sum
of TD errors in order to equal the Monte Carlo error.

Note that n-step returns for n > 1 involve future rewards and value functions that
are not available at the time of transition from ¢ to £ 4+ 1. No real algorithm can use
the n-step return until after it had seen R;y, and computed Viy,_1. The first time
these are available to be used is t+n. The natural algorithm for using n-step returns
is thus

Vign(St) = Vign—1(St) + o G§”) — ‘/t-l—n—l(st):| y 0<t<T, (7.3)

while the values of all other states remain unchanged, Vi, (s) = Vign—1(8), Vs # S;.
We call this algorithm n-step TD. Note that no changes at all are made during the
first n — 1 steps of each episode. To make up for that, an equal number of addition
updates are made at the end of the episode, after termination and before starting
the next episode. Complete pseudocode is given in the box on the next page.

Exercise 7.1 In Chapter 6 we noted that the Monte Carlo error can be written
as the sum of TD errors if the value estimates don’t change from step to step (6.6).
Show that the n-step error used in (7.3) can also be written as a sum TD errors
(again if the value estimates don’t change) generalizing the earlier result.

Exercise 7.2 (programming) With an n-step method, the value estimates do
change from step to step, so an algorithm that used the sum of TD errors (see
previous exercise) in place of the error in (7.3) would actually be a slightly different
algorithm. Would it be a better algorithm or a worse one? Devise and program a
small experiment to answer this question empirically.



