
Possible 499/609 Course Project: Non-stationary bandits

This project is a combination of the following programming exercises, newly added
to Chapter 2. You may have to experiment with some of the parameters to get good
results
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often converge very slowly or need considerable tuning in order to obtain a satisfac-
tory convergence rate. Although sequences of step-size parameters that meet these
convergence conditions are often used in theoretical work, they are seldom used in
applications and empirical research.

Exercise 2.3 If the step-size parameters, ↵n, are not constant, then the estimate
Qn is a weighted average of previously received rewards with a weighting di↵erent
from that given by (2.6). What is the weighting on each prior reward for the general
case, analogous to (2.6), in terms of the sequence of step-size parameters?

Exercise 2.4 (programming) Design and conduct an experiment to demonstrate
the di�culties that sample-average methods have for nonstationary problems. Use a
modified version of the 10-armed testbed in which all the q⇤(a) start out equal and
then take independent random walks (say by adding a normally distributed increment
with mean zero and standard deviation 0.01 to all the q⇤(a) on each step). Prepare
plots like Figure 2.2 for an action-value method using sample averages, incrementally
computed, and another action-value method using a constant step-size parameter,
↵ = 0.1. Use " = 0.1 and longer runs, say of 10,000 steps.

2.6 Optimistic Initial Values

All the methods we have discussed so far are dependent to some extent on the initial
action-value estimates, Q1(a). In the language of statistics, these methods are biased
by their initial estimates. For the sample-average methods, the bias disappears once
all actions have been selected at least once, but for methods with constant ↵, the bias
is permanent, though decreasing over time as given by (2.6). In practice, this kind
of bias is usually not a problem and can sometimes be very helpful. The downside is
that the initial estimates become, in e↵ect, a set of parameters that must be picked
by the user, if only to set them all to zero. The upside is that they provide an easy
way to supply some prior knowledge about what level of rewards can be expected.

Initial action values can also be used as a simple way of encouraging exploration.
Suppose that instead of setting the initial action values to zero, as we did in the
10-armed testbed, we set them all to +5. Recall that the q⇤(a) in this problem
are selected from a normal distribution with mean 0 and variance 1. An initial
estimate of +5 is thus wildly optimistic. But this optimism encourages action-value
methods to explore. Whichever actions are initially selected, the reward is less than
the starting estimates; the learner switches to other actions, being “disappointed”
with the rewards it is receiving. The result is that all actions are tried several times
before the value estimates converge. The system does a fair amount of exploration
even if greedy actions are selected all the time.

Figure 2.3 shows the performance on the 10-armed bandit testbed of a greedy
method using Q1(a) = +5, for all a. For comparison, also shown is an "-greedy
method with Q1(a) = 0. Initially, the optimistic method performs worse because it
explores more, but eventually it performs better because its exploration decreases
with time. We call this technique for encouraging exploration optimistic initial val-
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appear to generalize to the full reinforcement learning problem that we consider in
the rest of the book.

Bayesian methods assume a known initial distribution over the action values and
then updates the distribution exactly after each step (assuming that the true action
values are stationary). In general, the update computations can be very complex,
but for certain special distributions (called conjugate priors) they are easy. One
possibility is to then select actions at each step according to their posterior proba-
bility of being the best action. This method, sometimes called posterior sampling
or Thompson sampling, often performs similarly to the best of the distribution-free
methods we have presented in this chapter.

In the Bayesian setting it is even conceivable to compute the optimal balance be-
tween exploration and exploitation. Clearly, for any possible action we can compute
the probability of each possible immediate reward and the resultant posterior distri-
butions over action values. This evolving distribution becomes the information state
of the problem. Given a horizon, say of 1000 steps, one can consider all possible
actions, all possible resulting rewards, all possible next actions, all next rewards, and
so on for all 1000 steps. Given the assumptions, the rewards and probabilities of
each possible chain of events can be determined, and one need only pick the best.
But the tree of possibilities grows extremely rapidly; even if there are only two ac-
tions and two rewards, the tree will have 22000 leaves. It is generally not feasible to
perform this immense computation exactly, but perhaps it could be approximated
e�ciently. This approach would e↵ectively turn the bandit problem into an instance
of the full reinforcement learning problem; it is beyond the current state of the art,
but someday it may be possible to use reinforcement learning methods such as those
presented in Part II of this book to approximate this optimal solution.

Exercise 2.7 (programming) Make a figure analogous to Figure 2.6 for the non-
stationary case outlined in Exercise 2.4. Create a single long sequence of true action
values q⇤

t (a) over 200,000 steps. As a performance measure for each algorithm (and
parameter setting) use its average reward over the second 100,000 steps.

Bibliographical and Historical Remarks

2.1 Bandit problems have been studied in statistics, engineering, and psychology.
In statistics, bandit problems fall under the heading “sequential design of ex-
periments,” introduced by Thompson (1933, 1934) and Robbins (1952), and
studied by Bellman (1956). Berry and Fristedt (1985) provide an extensive
treatment of bandit problems from the perspective of statistics. Narendra
and Thathachar (1989) treat bandit problems from the engineering perspec-
tive, providing a good discussion of the various theoretical traditions that
have focused on them. In psychology, bandit problems have played roles in
statistical learning theory (e.g., Bush and Mosteller, 1955; Estes, 1950).

The term greedy is often used in the heuristic search literature (e.g., Pearl,
1984). The conflict between exploration and exploitation is known in control


